Proving Preservation of Partial Correctness with ACL2: A Mechanical Compiler Source Level Correctness Proof

Wolfgang Goerigk

Christian-Albrechts-Universität zu Kiel, Germany
wg@informatik.uni-kiel.de
http://www.informatik.uni-kiel.de/~wg/

Outline:

→ Background, Three Steps to Correct Realistic Compilation
→ Source Level Verification is not Sufficient
→ Correct Implementation, Preservation of Partial Correctness
→ Source and Target Language, the Compiler
→ The Correctness Proof in ACL2
→ Conclusions and Further Work
Generate correct executables from correct source programs

- manually
- using unverified compilers

- using verified compilers (trusted compiler executables)

Verifix DFG research group (Karlsruhe, Kiel, Ulm)
for realistic source languages and real target processors
Generate correct executables from correct source programs

- manually
- using unverified compilers
 - without verified compiling specification
 - manually semantically checked [state-of-the-art certification]
 - semantically checked by machine [Pnueli et al., Necula 1998, translation validation]
 - with verified compiling specification
 - manually syntactically checked [Goerigk, Hoffmann 1998]
 - syntactically checked by machine [Traverso et al., 1998]
- using verified compilers (trusted compiler executables)

 Verifix DFG research group (Karlsruhe, Kiel, Ulm)
 for realistic source languages and real target processors
Construct and correctly implement compilers and compiler generators

- for realistic imperative and object-oriented source languages
- for real target and host processors
- generating efficient code that compares to unverified compilers
- exploiting mechanical proof support, e.g., by PVS or ACL2
- industrially approved compiler architecture and construction techniques
- proof methodology supplements compiler construction, not vice versa

- exploit runtime result verification
 (a posteriori program or result checking) and
- an initial fully trusted compiler as sound bootstrapping basis
Three Steps Towards Trusted Realistic Compilation

1. **Specification** of a compiling relation C_{TL}^{SL} between abstract source and target languages SL and TL, and compiling (specification) verification w.r.t. language semantics $\llbracket \cdot \rrbracket_{SL}$, $\llbracket \cdot \rrbracket_{TL}$ and an appropriate semantics relation σ_{TL}^{SL}.

2. **Implementation** of a corresponding compiler program π_{SL} in high level implementation language SL (close to the specification language), and high level compiler implementation verification w.r.t. C_{TL}^{SL}.

3. **Low level implementation** of a corresponding compiler executable m_{TL} written in binary target machine language TL, and low level compiler implementation verification w.r.t. $\llbracket \pi_{SL} \rrbracket_{SL}$.
Three Steps Towards Trusted Realistic Compilation

① **Specification** of a compiling relation $\mathcal{C}_{\text{TL}}^{\text{SL}}$ between abstract source and target languages SL and TL, and **compiling (specification) verification** w.r.t. language semantics $[\cdot]_{\text{SL}}$, $[\cdot]_{\text{TL}}$ and an appropriate semantics relation $\sigma_{\text{TL}}^{\text{SL}}$. theoretical comp. sc., progr. lang. theory, [McCarthy and Painter 1967], ...

② **Implementation** of a corresponding compiler program π_{SL} in high level implementation language SL (close to the specification language), and **high level compiler implementation verification** w.r.t. $\mathcal{C}_{\text{TL}}^{\text{SL}}$. [Polak 1981], [Moore 1988, 1996], [Curzon 1994, 1996] software eng., formal methods like VDM, RAISE, CIP, PROSPECTRA, Z, B, ...

③ **Low level implementation** of a corresponding compiler executable m_{TL} written in binary target machine language TL, and **low level compiler implementation verification** w.r.t. $[\pi_{\text{SL}}]_{\text{SL}}$. virtually nothing, only demands [Chirica and Martin 1986], [Moore 1988]
Towards Trusted Realistic Compilation

1. **Specification** of a compiling relation C_{SL}^{TL} between abstract source and target languages SL and TL, and compiling (specification) verification w.r.t. language semantics $⟦·⟧_{SL}$, $⟦·⟧_{TL}$ and an appropriate semantics relation $σ_{SL}^{TL}$.

2. **Implementation** of a corresponding compiler program $π_{SL}$ in high level implementation language SL (close to the specification language), and high level compiler implementation verification w.r.t. C_{SL}^{TL}.

3. **Low level implementation** of a corresponding compiler executable m_{TL} written in binary target machine language TL, and low level compiler implementation verification w.r.t. $⟦π_{SL}⟧_{SL}$.
① **Specification** of a compiling relation C^{SL}_{TL} between abstract source and target languages SL and TL, and **compiling (specification) verification** w.r.t. language semantics $⟦·⟧_{SL}$, $⟦·⟧_{TL}$ and an appropriate semantics relation $σ^{SL}_{TL}$.

② **Implementation** of a corresponding compiler program $π_{SL}$ in high level implementation language SL (close to the specification language), and **high level compiler implementation verification** w.r.t. C^{SL}_{TL}.
① Specification of a compiling relation C_{SL}^{TL} between abstract source and target languages SL and TL, and compiling (specification) verification w.r.t. language semantics $[[\cdot]]_{SL}$, $[[\cdot]]_{TL}$ and an appropriate semantics relation σ_{SL}^{TL}.

② Implementation of a corresponding compiler program π_{SL} in high level implementation language SL (close to the specification language), and high level compiler implementation verification w.r.t. C_{SL}^{TL}.

③′ Strong Compiler Bootstrap Test: Compile π_{SL} to m_{TL} by a twofold bootstrapping, using an unverified SL-compiler \overline{m}. Apply m_{TL} to π_{SL} and test if m_{TL} reproduces itself.
Semantical relations $\sigma_{TL}^{SL} : \text{Sem}_{SL} \rightarrow \text{Sem}_{TL}$ express notions of **correct implementation**. Here are some wishes:

- handle **non-determinism** of the source program semantics
- handle **resource limitations** of the target machine
- allow for **optimizations** that require well-definedness properties of the source program
- handle **(non-terminating) reactive** programs, e.g., preserve definedness properties of the source program
- allow for full recursion and dynamic data types, e.g. for **transformational** programs like compilers, ...
procedure p ();
 begin int x; x := 42 end;

procedure q ();
 begin int y; print (y) end;

begin p(); q() end.
Specification Refinement (intuitive):

The implementation should at least return every specified result, i.e., it should be at least as defined as the specification.

Preservation of Partial Correctness (intuitive):

The implementation should at most return specified results, i.e., we do not want to see any non-erroneous incorrect result.
Semantical Relations and Correct Implementation

\(\Omega : \) error outcomes, \(A \subseteq \Omega \) acceptable errors, \(U = \Omega \setminus A \) unacceptable (chaotic) errors

\[
\begin{align*}
\begin{array}{c}
\llbracket \pi \rrbracket_{SL} \in \text{Sem}_{SL} : \quad iD^\Omega_{SL} \\
\sigma^\Omega_{TL}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\llbracket m \rrbracket_{TL} \in \text{Sem}_{TL} : \quad iD^\Omega_{TL} \\
\end{array}
\end{align*}
\]

Definition: \(m \) correctly implements \(\pi \) relative to \(A \), iff for any \(d \in iD^\Omega_{SL} \) with

\[
(\llbracket \pi \rrbracket_{SL} ; \sigma^\Omega_{TL}) (d) \cap U = \emptyset \]

we have

\[
(i\rho^\Omega_{TL} ; \llbracket m \rrbracket_{TL}) (d) \subseteq (\llbracket \pi \rrbracket_{SL} ; \sigma^\Omega_{TL}) (d) \cup A
\]

[Goerigk/Langmaack 2000], [Müller-Olm/Wolf 1999]
Choose $\Omega = \text{def} \{ \perp \}$ and $A = \text{def} \{ \perp \} \implies U = \Omega \setminus A = \emptyset$.

\[
\begin{array}{c}
\left[\pi \right]_{\text{SL}} \in \text{Sem}_{\text{SL}} : i D_{\text{SL}} \{ \perp \} \xrightarrow{\left[\pi \right]_{\text{SL}}} o D_{\text{SL}} \{ \perp \}
\\
\sigma_{\text{TL}} \downarrow i \rho_{\text{TL}} \\
\left[m \right]_{\text{TL}} \in \text{Sem}_{\text{TL}} : i D_{\text{TL}} \{ \perp \} \xrightarrow{\left[m \right]_{\text{TL}}} o D_{\text{TL}} \{ \perp \}
\end{array}
\]

Definition: We say that m *L-simulates* π (or that the step $\pi \mapsto m$ preserves partial correctness) iff

\[
(i \rho_{\text{TL}} ; \left[m \right]_{\text{TL}}) \subseteq (\left[\pi \right]_{\text{SL}} ; o \rho_{\text{TL}})
\]

Syntax:

\[
p ::= ((d_1 \ldots d_n) (x_1 \ldots x_k) e)
\]
\[
d ::= (\text{defun } f (x_1 \ldots x_n) e)
\]
\[
e ::= c \mid x \mid (\text{if } e_1 e_2 e_3) \mid (f e_1 \ldots e_n) \mid (\text{op } e_1 \ldots e_n)
\]

A Sample Program - Factorial:

\[
(((\text{defun } \text{fac } (n) (\text{if } (= n 0) 1 (* n (\text{fac } (1- n))))))
\]

Operational Semantics (interpreter function):

\[
(\text{defun } \text{evaluate } (\text{defs } \text{vars } \text{main } \text{inputs } n) \ldots)
\]

Semantics of forms (expressions):

\[
(\text{defun } \text{evl } (\text{form } \text{genv } \text{env } n) \ldots) \text{ returns } ([\text{form}]) \text{ or } \text{error}
\]
\[
(\text{defun } \text{evlist } (\text{forms } \text{genv } \text{env } n) \ldots)
\]
Machine Instructions

(PUSHC c) (PUSHV i) (POP n) (IF m₁ m₂) (OPR op) (CALL f)

Operational Semantics (interpreter function):

(defun execute (prog stack n) ...)

Stepwise Execution of Machine Instructions:

(defun mstep (instr code stack n) ...)
(defun msteps (instr-seq code stack n) ...)
We compile expressions according to the stack principle:

The instruction sequence m for the expression e pushes the value v of e onto the stack. Operators and functions consume their arguments.

Variable Access

For any x_i in $(x_0 \ldots x_k)$ we find the value of x_i at position $top + |x_i \ldots x_k| - 1$ on the stack.
Compiling Expressions

\[
\text{top of stack} = s_0
\]

\[
v_k = s_{\text{top}}
v_{k-1} = s_{\text{top}+1}
v_1 = s_{\text{top}+k-1}
v_0 = s_{\text{top}+k}
\]

\{ top auxiliary cells \}

\{ current stack frame \}

\{ k + 1 cells \}

\[\text{compile-form}\ (form, (x_0 \ldots x_k), top) = form'_{\text{top}} =\]

\[c \mapsto ((\text{PUSHC } c)) \]

\[x_i \mapsto ((\text{PUSHV } top + |x_i \ldots x_k| - 1)) \]

\[(\text{if } e_1 e_2 e_3) \mapsto e'_{1,\text{top}} \cdot (\text{IF } e'_{2,\text{top}} e'_{3,\text{top}}) \]

\[(f e_0 \ldots e_n) \mapsto e'_{0,\text{top}} \cdot \ldots \cdot e'_{n,\text{top}+n} \cdot (\text{CALL } f) \]

\[(op e_0 \ldots e_n) \mapsto e'_{0,\text{top}} \cdot \ldots \cdot e'_{n,\text{top}+n} \cdot (\text{OPR } op) \]
Lemma 1 (Variable access). For any \(n \geq 1 \), \((\text{evl } x_i \ \text{genv } \text{env } n) \) is defined and

\[
\begin{align*}
\text{env} & = (\text{bind } (x_0 \ldots x_k)(\text{rev } (\text{get-stack-frame } (x_0 \ldots x_k) \ \text{top } s))) \\
& = ((x_0 \cdot s_{\text{top}+k}) \ldots (x_k \cdot s_{\text{top}}))
\end{align*}
\]
Lemma 2 (Constants). For any \(n \geq 1 \), \(\text{evl } c \text{ genv env n} \) is defined and

\[c \cdot s = \text{car (evl } c \text{ genv env n)} \cdot s = \text{mstep (PUSHC } c) \ldots s \ n \]

\[= \text{msteps (compile-form } c (x_0 \ldots x_k) \text{ top) } \ldots s \ n \]
Theorems 1 and 2 (Compiler correctness for forms (form lists))

If the machine, executed on a compiled form (list), is defined on a stack for an \(n \), then the following three conjectures hold:

1. The semantics of the form (list) – in the given function environment and with the free variables bound to their values in the current stack-frame – is defined for the same \(n \).

2. The machine returns a new stack with the value(s) of the form(s) on top (in reverse order).

3. The stack just below the result value(s) remains unchanged.
Theorem 3 (Compiler preserves partial correctness)

(defthm compiler-correctness-for-programs
 (let ((new-stack (execute (compile-program defs vars main)
 (append (rev inputs) stack) n))
 (value (car (evaluate defs vars main inputs n))))
 (implies
 (and (wellformed-program defs vars main) (defined new-stack)
 (true-listp inputs) (equal (len vars) (len inputs)))
 (equal new-stack (cons value stack))))
Theorem 1 (Compiler correctness for forms)

(defthm compiler-correctness-for-forms
 (let ((value
 (evl form
 (construct-genv dcls)
 (bind cenv (rev (get-stack-frame cenv top stack)) env)
 n))
 (new-stack (msteps (compile-form form cenv top)
 (download (compile-defs dcls)) stack n)))
 (implies
 (and (natp top)
 (wellformed-defs dcls (construct-genv dcls))
 (wellformed-form form (construct-genv dcls) cenv)
 (defined new-stack))
 (and (defined value)
 (equal new-stack (cons (car value) stack))))))
Theorem 2 (Compiler correctness for form lists)

(defthm compiler-correctness-for-form-lists
 (let ((values
 (evlist forms
 (construct-genv dcls)
 (bind cenv (rev (get-stack-frame cenv top stack)) env)
 n))
 (new-stack (msteps (compile-forms forms cenv top)
 (download (compile-defs dcls)) stack n)))
 (implies
 (and (natp top)
 (wellformed-defs dcls (construct-genv dcls))
 (wellformed-forms forms (construct-genv dcls) cenv)
 (defined new-stack))
 (and (defined values)
 (equal new-stack (append (rev values) stack)))))))
Induction on \(n \) and the **structural depth** of forms

```lisp
(defun compiler-induction (flag x cenv env top dcls stack n)
  (declare (xargs :measure (cons (1+ (acl2-count n)) (acl2-count x))))
  (if (or (zp n) (atom x)) (list x cenv env top dcls stack n)
    ...
    ;; function call
    (list (compiler-induction nil
          (cdr x) cenv env top dcls stack n)
          (compiler-induction t
            (get-body (car x)) (construct-genv dcls))
            (get-vars (car x)) (construct-genv dcls))
            (bind cenv (rev (get-stack-frame cenv top stack)) env)
            0 dcls
            (msteps (compile-forms (cdr x) cenv top)
              (download (compile-defs dcls))
              stack n)
            (1- n))))))
  ...)
```
Simultaneous Proof of Theorems 1 and 2

Prove Theorems 1 and 2 simultaneously:

(defmacro theorem-1 (form cenv env top dcls stack n) ...)
(defmacro theorem-2 (forms cenv env top dcls stack n) ...)

(defun prove-theorems (flag)
 (if flag
 (theoem-1 x cenv env top dcls stack n)
 (theoem-2 x cenv env top dcls stack n))
:hints ("Goal"
 :induct (compiler-induction flag x cenv env top dcls stack n)
 ...)"

(defun prove-theoem-2 (flag)
 (theoem-1 x cenv env top dcls stack n)
 :hints ("Goal" :by
 (:instance compiler-correctness-form-forms (flag t)))))
Conclusions

- We seriously and rigorously have to tackle target level implementation verification as well.
- Source level verification and testing or validation alone are not sufficient!
- As it stands, this fact is now mechanically proved in ACL2. [Goerigk 1999, 2000].
- There is a repeatable technique for constructing initial, fully verified compiler implementations from the scratch and for realistic systems implementation languages [Goerigk and Hoffmann 1998, Hoffmann 1998] → a major Goal of Verifix.
- The known gap between high level verification and software integration [Verifix, since 1994, BSI, 1996] can be closed.

Some Future Work

- Formalize further compilation phases, i.e., data refinement, code linearization, machine code generation.
- Prove full compiler correctness formally and mechanically in ACL2 (including target level implementation correctness).