Partial Functions in ACL2

Panagiotis Manolios and J Strother Moore

Department of Computer Sciences, University of Texas at Austin
{pete, moore}@cs.utexas.edu
http://www.cs.utexas. edu/users/{pete R moore}

Abstract. We describe a macro for introducing “partial functions” into
ACL2, i.e., functions not defined everywhere. The function “definitions”
are actually admitted via the encapsulation principle. We discuss the ba-
sic issues surrounding partial functions in ACL2 and illustrate theorems
that can be proved about such functions.

1 Example Results

We describe a macro named defpun for introducing “partial functions” into
ACL2. We put quotation marks around “partial functions” for technical reasons:
ACL2 is a logic of total functions. If f is a function symbol of one argument then
(f 0), say, denotes some value. The question is whether the axioms specify what
that value is. By “partial function” we mean a function whose value is specified
on a subset of ACL2 objects. ACL2 provides the encapsulation mechanism [2]
for introducing constrained functions. Our defpun macro expands into various
encapsulations and can be thought of as a convenient way to introduce certain
kinds of constrained functions.

Like defun, defpun adds an axiom equating a call of a new function symbol
to some term, usually involving recursive calls. Like defun, our macro preserves
the consistency of the logic. It works by recognizing several special cases and
dealing with each in a special way. The main challenge in using encapsulate
to introduce a new function symbol is to generate a witness function satisfying
the desired axiom. In some cases the user supplies hints as to how to establish
consistency.

Here are several examples of partially defined functions admitted under our
macro. Each falls into a different special case. After these examples we will
present a more thorough discussion of the issues and techniques.

(defpun offset (n)
(declare (xargs :witness fix))
(if (equal n 0)
0
(+ 1 (offset (- n 1)))))

The event above adds the axiom that (offset n) is equal to (if (equal n
0) 0 (+ 1 (offset (- n 1)))). Observe that if you tried to add this axiom

with defun it would fail because no termination proof is possible. Indeed, what
is the value of (offset -3)7

Here is a partial function that is uniquely defined on a specified domain. The
“g” in :gdomain stands for “guarded” and insures that the equation is closed

on the domain. We discuss this issue later.
(defpun quot (i j)
(declare (xargs :gdomain (and (rationalp i)
(rationalp j)
(<0 3N
:measure (quotm i j)))
(if (<=10) 0 (+ 1 (quot (- i j) §NN

The axiom added is that (quot i j) is equal to (if (<= i 0) 0 (+ 1 (quot
(- i j) 3))), provided i and j are rational and j is positive. From this axiom
one can deduce that (quot 27 9) is 3 and (quot 22/7 1/3) is 10. But one
cannot deduce values for (quot 27 0) or (quot 1 -1).

Here is a famous function that has terminated on all the examples ever tried
[7] but that has not yet been proved to terminate for all natural numbers.

(defpun 3n+1 (n)

(if (<= n 1)
n
(3n+1 (if (evenp n)
(/ n2)

(+ (* 3 n) 1)))))

The special case recognized for the admission of this equation is that it is tail-
recursive. A neat observation of this paper is that it is always possible in ACL2
to exhibit a witness for any function “defined” tail recursively.

An important application of this principle is illustrated by machine inter-
preters. Suppose that haltedp recognizes “halted states” in some machine model
and that stepl is the state transition function. Then the following function is
admissible.

(defpun stepw (s)
(if (haltedp s)
s
(stepw (stepl s))))

Observe that (stepw s) “runs state s to termination” if a halted state can
be reached by repeated stepls. The value of (stepw s) on states that do not
terminate is undefined by this axiom.

With stepw one can state and prove “code correctness” theorems in ACL2
without defining or reasoning about “clocks.”

In addition, one can define the equivalence relation

(defun == (a b) (equal (stepw a) (stepw b)))

which holds between two terminating states precisely when they terminate in the
same state. The states before and after the execution of a primitive instruction

are related by this equivalence. One can arrange for ACL2 to use these equiv-
alences as rewrite rules to run programs symbolically without using a clock to
control the expansion. More interestingly, one can prove theorems establishing
such an equivalence between a state poised to execute a subroutine call and some
state eventually produced by that call. Such a theorem can be used in subse-
quent proofs precisely as though the subroutine call was a primitive instruction
that completed in one step.

This paper focuses on defpun. Our main objective is to make it accessible to
the community by discussing the issues related to partial functions and by illus-
trating some of their logical consequences. The most important issue is logical
consistency: defpun must not render the logic inconsistent. Another important
issue is uniqueness, or at least uniqueness on some domain of interest: does the
axiom describe one function or many? In our discussion of these issues, we intro-
duce many partial functions and use ACL2 to prove theorems about them and
the equations that constrain them. We believe this is a good way to drive home
the “logical consequences” of certain definitions.

We basically ignore some important pragmatic issues in this paper, such as
the details of the implementation of defpun, how ACL2 is configured to make it
prove theorems about such functions, and the role of execution or computation
on explicit values. We expect defpun and its pragmatic consequences will evolve
as the ACL2 community explores the logical consequences. The current definition
of defpun and all of the results cited in this paper are available from the Web
pages of the authors [4, 6].

2 Consistency

ACL2 has a definitional principle for a good reason: it is easy to render a logic
inconsistent by adding axioms purporting to define nonexistent functions. Con-
sider g below. Intuitively, it returns a list of n nils.

(defun g (n)
(if (equal n 0) nil (coms nil (g (- n 1)))))

The defun is inadmissible because no termination proof is possible. Defining
this function in Lisp and executing (g 3) would produce (nil nil nil). Ex-
ecuting (g -3) or (g 1/2) would produce a nonterminating computation and,
ultimately, a stack overflow.

So much for the computational use of this equation. What about the logical
use? Suppose we add the equation as an axiom.!

(defaxiom g-axiom
(equal (g n)
(if (equal n 0) nil (cons nil (g (- n 1)))))
:rule-classes :definition)

! Before this axiom can be added, we must declare g to be a function symbol of one
argument, with defstub. We omit such details in this paper.

The :rule-classes tells the system to use the equality as it would a function
definition.

Among the nice consequences of this axiom is the following theorem, where
natp recognizes natural numbers.

(defthm len-of-g
(implies (natp n)
(equal (len (g n)) mn)))

Unfortunately, another consequence of g-axiom is the theorem nil! That is,
the logic is inconsistent after the addition of the axiom. (Nil can be proved
by first proving the lemma that, for all negative integers n, (len (g n)) is
greater than any natural number k. This lemma can be proved by induction
on k. Instantiation of this lemma, replacing k by (len (g -1)) and n by -1
contradicts the irreflexivity of the less than relation.)

Too keen a fixation on ACL2’s definitional principle leads to the conclusion
that we get into trouble when we add axioms describing nonterminating recur-
sions. But the truth is that we get into logical trouble only if no functions satisfy
the axioms we add.

Not all nonterminating recurrences are unsatisfiable. Clearly, no harm would
come in adding the axiom shown below.

(defaxiom undef-def
(equal (undef x) (undef x))
:rule-classes nil)

If nil could be proved after adding this axiom, it could be proved before, by
first defining undef to be, say, car, proving the theorem

(defthm undef-def
(equal (undef x) (undef x))
:rule-classes nil)

and using that theorem whenever the previously added axiom was needed in the
proof of nil.

ACL2’s encapsulation mechanism allows the addition of axioms constrain-
ing new function symbols provided one can show that such functions exist by
exhibiting witnesses in ACL2. Here is how undef-def could be added.

(encapsulate (((undef *) => x)) ; Declare the signature of undef,
(local (defun undef (x) (car x))) ; provide a witness, and
(defthm undef-def ; prove that the witness has the
(equal (undef x) (undef x)) ; desired property.

:rule-classes nil))
Indeed, this is the macro expansion of the form

(defpun undef (x)
(declare (xargs :witness car))
(undef x)
:rule-classes nil)

We have seen two extremes here: g-axiom overconstrains the new symbol so no
function satisfies it, while undef-def is effectively unconstrained: any function
of one argument satisfies its axiom.

This paper explores the middle ground. We address ourselves to such ques-
tions as, When is it safe to add an axiom describing a nonterminating recur-
rence?, How many functions satisfy the axiom introduced?, and What properties
of the new function symbol can be derived from the axiom with ACL27

3 Witnessing Equations

Reflection on how we derived a contradiction from the axiom for g—namely
its role in the construction of an infinite list—may suggest that the following
equation will also lead to a contradiction.

(defaxiom h-axiom
(equal (h n)
(if (equal n 0) 0 (+ 1 (h (- n 1)))))
:rule-classes :definition)

When n is a natural number, (h n) is n. But the recursion does not terminate
otherwise and appears to be building an infinite sum of 1s. Perhaps we can prove
that for all negative numbers n, (h n) is greater than any natural number k, in
strict analogy with our lemma about g?

However, h-axiom is satisfiable and can be witnessed by the function fix,
which is the identity function on the ACL2 numbers and is otherwise 0. Thus,
the following partial function is admissible.

(defpun h (n)
(declare (xargs :witness fix))
(if (equal n 0) 0 (+ 1 (h (- n 1)))))

The axiom added by this event is named h-def. From h-def it is possible to
prove

(defthm h-is-id-on-naturals
(implies (natp n)
(equal (h n) n)))

by natural number induction on n.

So the function described by h-def is the identity function on the naturals.
But is it necessarily the identity function on all of the ACL2 numbers? The
answer is no. Consider the following function, which is obviously not the identity
function.

(defun h22/7 (n)
(if (natp n)
n
(+ 22/7 n)))

It is possible to prove

(defthm h22/7-satisfies-h-def
(equal (h22/7 n)
(if (equal n 0) 0 (+ 1 (h22/7 (- n 1))))))

which establishes that the function h22/7 satisfies the equation “defining” h.
Thus, at least two functions satisfy h-def. In fact, an infinite number of functions
satisfy h-def.

As the theorem h-is-id-on-naturals shows, h-def is uniquely defined on
the naturals. But on the negative integers, any function that adds a numeric
constant to its argument satisfies h-def. The rationals offer a more interesting
domain. Consider hv below.

(defun hv (x)
(if (integerp x)
X
(if (rationalp x)
(+ (floor x 1) (arbitrary-constant (mod x 1)))
(fix x))))

This is the identity on integers and complex numbers. But each non-integer
rational is mapped to its integer part plus an arbitrary constant determined by
its fractional part. Hv satisfies h-def.

What have we learned from h-def? First, recurrences that appear to build
infinite objects may be satisfiable. The key to the satisfiability of h-def is that
the negative numbers exist. The recursive call of h can yield successively smaller
values to counteract the addition by 1. The analogous construction with cons
does not offer this option because we do not have “negative lists.”

Second, an equation may be viewed as a computational rule, but such a view
may not suggest the functions that satisfy the equation. Such a view of h-def
suggests the value must be a positive integer: the function either returns 0 or one
more than the value of a recursive call. But this reasoning is inductive. In fact,
we have seen that the function “might” return a negative or fractional value. By
that we mean there are functions satisfying this equation with such behavior.
Any theorem derived from such a “partial definition” must be true of all such
functions.

Third, a satisfiable partial definitional equation may define a unique function
or a family of functions and the family may be infinite.

Here is a nonterminating equation that defines a unique function.

(defpun z (x)
(declare (xargs :witness (lambda (x) 0)))
(if (zip x) ; x is not an integer or is 0.
0
(* (z (- x 1))
(z (+x1))N))

Normal evaluation is nonterminating. But we can prove

(defthm z-is-0 (equal (z x) 0)).

Here is a nonterminating equation that is satisfied by exactly three functions.

(defpun three (x)
(declare (xargs :witness (lambda (x) 1)))
(if (equal x nil)
(let ((i (three x)))
(if (and (integerp i) (<=1 i) (<= 1i 3))
i
1))
1)
:rule-classes nil)

As we have seen, g-axiom (above) is satisfied by no functions and h-def
(above) is satisfied by an infinite number of functions.

4 Domains

We have seen that g-axiom is inconsistent.

(defaxiom g-axiom
(equal (g n)
(if (equal n 0) nil (cons nil (g (- n 1)))))
:rule-classes :definition)

We next consider how to restrict this equality with a hypothesis to insure that
at least one function satisfies the equation.

Below is a formula that looks like g-axiom but has a hypothesis restricting n
to be a natural number. We have changed the name of the partial function from

“g” (which does not exist) to gnat.

(defaxiom gnat-def
(implies (natp n)
(equal (gnat n)
(if (equal n 0)
nil
(cons nil (gnat (- n 1))))))
:rule-classes :definition)

Here is a function that satisfies this formula.

(defun gnat (n)
(declare (xargs :measure (if (natp n) n 0)))
(if (natp n)
(if (equal n 0)
nil
(cons nil (gnat (- n 1))))
’undef))

The body of gnat is an IF-expression that first tests if n is a natural number.
The true clause of that IF is the expression on the right hand side of the desired
equality. The false clause is the arbitrarily chosen constant ’undef. The measure
used to admit this defun also tests if n is a natural number. After gnat is
admitted, gnat-def can be proved. Put another way, we can use encapsulate
to constrain a symbol gnat to have the gnat-def property, using the defun above
as the witness for that constraint. That encapsulate is the macro expansion of
our defpun macro on the following.

(defpun gnat (n)

(declare (xargs :domain (natp n) :measure n))

(if (equal n 0)

nil
(cons nil (gnat (- n 1)))))

Observe that in this use of defpun the :domain expression is the hypothesis
restricting the equality of (gnat n) with its body. The required :measure ex-
pression must produce an ordinal that decreases in all recursive calls whenever
the :domain expression holds.

This implements two features frequently requested by ACL2 users. The first
request is “Give us a way to define a function on a specified domain without
specifying its value off that domain.” The second request is “Permit the measure
to assume that the arguments are in the specified domain.”

The axiom added by a :domain-restricted defpun specifies nothing about the
function off the given domain and the user is responsible for inventing a measure
that ACL2 can prove decreases on the domain in question. As illustrated by
the inconsistency of g and the consistency of gnat, the domain is crucial to the
existence of a satisfying function for the axiom.

But is there a “natural” definition of the domain for a given equation? A
closely related question is whether the function satisfying a :domain-restricted
axiom is unique. If the domain is not t, the answer is no: any function that
satisfies the axiom on the domain can be extended so as to assign arbitrary
values off the domain. Each such extension satisfies the axiom, so in general there
are an infinite number of functions that satisfy a :domain-restricted axiom. But
perhaps all the satisfying functions agree on the specified domain.

To explore the questions of what is the “natural domain” and when is the
function unique on the specified domain, we consider another version of g. Per-
haps surprisingly, we can restrict this equation to a domain that includes some
negative integers and still find solutions to the equation.

(defpun gsev (n)
(declare (xargs :domain (and (integerp n) (<= -7 n))
:measure (+ 8 n)))
(if (equal n 0)
nil
(cons nil (gsev (- n 1)))))

Observe that the only difference between the equations of gnat and gsev (aside
from the names of the two functions) is the domain.

Consideration of gsev and the admission argument for the witness function
shows that we can widen the domain of “g” to include any finite number of
negative integers and still produce a model. In every case, the value of the new
function is unspecified outside the given domain, as desired. In what sense then
is there a “natural” domain for this equation?

Consider (gsev -7). Since -7 is in the domain, (gsev -7) is specified by
the axiom and is, in fact, (cons nil (gsev -8)). We do not know what (gsev
-8) is, since -8 is outside the domain. But because ACL2 is a logic of total
functions, (gsev -8) is something. Imagine that it is @.? Then the values of
gsev are shown in the Figure 1.

x|(gsev x)
-7((nil .)
-6[(nil nil . «)

(nil nil nil nil nil nil nil . @)
nil

(nil)

(nil nil)

Fig. 1. Selected values of gsev

Observe that some of the values of gsev on its domain are dependent upon
its unspecified value off its domain. The :domain specified for gsev is not closed
under the recurrence in gsev-def. Consequently, the infinite number of functions
satisfying the axioms do not agree even on the specified domain. For each way
of choosing (gsev -8) there is a different function on the specified domain that
satisfies the axiom.

Defpun addresses this concern by supporting another sense of domain, spec-
ified with the keyword :gdomain, which is an alternative to :domain. The “g”
stands for “guarded” and we call the expression the “guarded domain expres-
sion.” When a guarded domain expression is provided, defpun makes that ex-
pression the :guard of the witness function and generates the proof obligation
of proving that the guards are satisfied. If this proof is successful, then we know
the recursion is closed on the guarded domain. A consequence of this fact, when
combined with measure theorems for the domain, is that the constrained func-
tion is equal to the witness on the guarded domain. This often means that the
function is unique on the guarded domain.

? In the witness used to admit gsev-def, « is *undef, but that choice of constant was
arbitrary and any analogous function satisfies gsev-def.

10

In the defpun for gnat we could have used :gdomain instead of :domain.
That is, the recursion is closed on the naturals. Had we used :gdomain, the
macro expansion would have been as shown below.

(encapsulate
nil
(defun the-gnat (n)
(declare (xargs :measure (if (natp n) n 0)
:guard (natp n)
:verify-guards nil))
(if (natp n)
(if (equal n 0)
nil
(cons nil (the-gnat (- n 1))))
’undef))
(encapsulate ((gnat (n) t))
(local (defun gnat (n) (the-gnat n)))
(defthm gnat-def
(implies (natp n)
(equal (gnat n)
(if (equal n 0)
nil
(cons nil (gnat (- n 1))))))
:rule-classes :definition))
(defthm gnat-is-unique
(implies (natp n)
(equal (gnat n) (the-gnat n))))
(in-theory (disable gnat-is-unique))
(verify-guards the-gnat))

Observe that the witness function (the-gnat) is defined non-locally, has (natp
n) as its :guard and has its guards verified. Observe that the constrained func-
tion (gnat) is not specified off the domain and is shown to be uniquely defined
on the domain.

There are three rough edges around this implementation of defpun. First, to
generate the body of the-gnat we have to explore the untranslated body in the
defpun, substituting the-gnat for gnat. This means our handling of macros in
the body of a partial function is incomplete. We have built in certain common
ones like cond and let. Second, one cannot use guarded domains unless all the
functions in the constraint have had their guards verified. Technically speaking,
guard verification enforces more than we need to ensure closure of the domain.
Finally, to verify the guards of the witness, the user may need to provide some
lemmas about the witness and we have provided no means in defpun to provide
these lemmas. A workaround we use is to define the witness and prove the desired
lemmas before the defpun. When the defpun is executed, its definition of the
witness is redundant.

11

5 Tail Recursion

Recall g, the nonexistent function whose “defining axiom” is inconsistent, and
h, whose defining axiom is consistent. The former applies cons to the value of
the recursive call, while the latter applies +. We see that the satisfiability of the
equation is affected by how the equation uses the value of the recursion. Consider
then the class of equations where no function is applied to the recursion, i.e.,
the class of tail recursive equations. Undef is a pathological example of a tail
recursive function and we have seen that it is satisfiable. Can a tail recursive
axiom be inconsistent?

The answer is no. It is always possible to produce a witness for a tail recursive
equation. Suppose test, base, and st are arbitrary functions of one argument.
Then, exploiting the first-order power of ACL2, we can provide a witness to the
axiom generic-tail-recursive-f.

(defaxiom generic-tail-recursive-f
(equal (f x)
(if (test x) (base x) (f (st x))))
:rule-classes nil)

To construct a suitable witness £, first define stn to compute (st™ x).
(defun stn (x n) (if (zp n) x (stn (st x) (1- mn))))

Then let (fch x) be an n such that (test (stn x n)), if such an n exists ((fch
x) is not unspecified otherwise). The technical expression of this in ACL2 is
(defchoose fch (n) (x) (test (stn x n))).Fch need not return the small-
est such n, just any n that is sufficient. Next, define

(defun fn (x n)
(declare (xargs :measure (nfix n)))
(if (or (zp n) (test x))
(base x)
(fn (st x) (1- n))))

which applies st n times or until test is true, whichever occurs first, and finishes
by applying base. It should be fairly obvious that the following function satisfies
generic-tail-recursive-f.

(defun £ (x)
(if (test (stn x (fch x)))
(fn x (fch x))
nil))

We have just given an outline of an encapsulation that exports generic-
-tail-recursive-f as the only constraint on a new function symbol f. Test,
base, and st are unconstrained. The defpun macro is defined to recognize tail
recursive equations and to generate a functional instantiation that exploits ge-
neric-tail-recursive-f to produce a witness to the desired tail recursive
equation. We exhibited several tail recursive uses of defpun in Section 1. For

12

the details of the admission process, include defpun.lispin your ACL2, execute
a simple example of a tail recursive function, and use :pe to inspect the generated
encapsulate.

Here is a tail recursive version of factorial admitted as a partial function.

(defpun trfact (n a)
(if (equal n 0)
a
(trfact (- n 1) (*x n a))))

Such an axiom might be produced by the mechanical translation of an imperative
program into its “functional” semantics. Its value off the natural numbers is
unspecified by the axiom. We can prove

(defthm trfact-is-fact-on-nats
(implies (and (natp n)
(acl2-numberp a))
(equal (trfact n a) (* a (fact n)))))

where (fact n) is the usual ACL2 factorial function.

As noted in Section 1, perhaps the most important use of tail recursive func-
tions is the traditional ACL2 “state machine interpreters.” Let step, in the TIVM
package, be the step function for the toy Java Virtual Machine described in [5],
which is based on Cohen’s formalization [1] of Sun Microsystem’s JVM [3].

It is not necessary to understand the TJVM work to understand our use of
partial functions in it. But to give you a feel for the machine, we discuss it briefly.
A TJVM state is a triple consisting of a call stack, a heap, and a class table.
We construct such states with make-state. The call stack is a push down stack
of frames, each frame corresponding to the activation of some method. A frame
contains a program counter, the byte code for the method in the frame, a variable
binding environment for the formal and local variables of the method, and a stack
on which the method pushes operands and results during its computation. The
heap is a map from heap addresses, called references, to instance objects, which
themselves are maps from classes and fields to values (which may be references).
The class table is a map from class names to field names for the instances of
that class and method declarations describing the methods of the class.

Here is a recursive Java method implementing factorial.

public static int fact(int n){
if (n>0)
{return n*fact(n-1);}
else return 1;

}

Below we show the compilation of the fact method. In the left column is the
byte code for our TJVM. On the right is the JVM code generated by Sun Mi-
crosystems’ Java compiler.

13

("fact" (n)

(load n) ; 0 iload. 0
(ifle 8) ;1 ifle 12
(load n) ; 2 iload 0
(load n) ; 3 iload. 0
(push 1) ; 4 iconst_1
(sub) ; 5 isub
(invokestatic "Math" "fact" 1) ; 6 invokestatic ...
(mul) ;7 imul
(xreturn) ; 8 ireturn
(push 1) ; 9 icomst_1
(xreturn)) ; 10 ireturn

We are here imagining that the "fact" method is in the "Math" class. Of special
interest is the semantics of the Java byte code instruction invokestatic (and
its cousin, invokevirtual, which is formalized in TJVM but not used in this
example). When the invokestatic instruction is executed by step, the state
is changed to one in which an additional method activation frame is pushed on
the TJVM call stack, poised to continue execution with the first byte code of
the appropriate method body, in the appropriate variable environment. When
an xreturn instruction is executed, that frame is popped off the call stack and
certain results are transferred to the operand stack of the next lower frame. This
concludes our brief discussion of the TJVM.

In the TJVM package, we can introduce the partial function stepw shown
below.

(defpun stepw (s)
(if (haltedp s)
s
(stepw (step s))))

Here, (haltedp s) is defined to be (equal s (step s)). We say a state, s,
halts if there is an n such that (haltedp (step™ s)).If s does not halt, then
the value of (stepw s) is unspecified. Just to drive home this fact, we make
some obvious observations. We do not know (stepw s) is a state. If it is a state,
we do not know that it is halted or whether it is related in any sense to s. In
particular, (stepw s) may be a state that is halted but that contains a different
system of programs than s.
The following equivalence relation is especially interesting.

(defun == (a b) (equal (stepw a) (stepw b)))

A trivial theorem we can prove is (== s (step s)): s is related by == to
the result of stepping it once, i.e., to the result of executing the next primitive
instruction.

Here is another theorem, illustrating the trivial theorem above for the par-
ticular case when the next instruction is of the form (load war).

14

(defthm ==-load
(implies
(and (equal (next-instruction call-stack)
‘(load ,var)))
(== (make-state call-stack
heap
class-table)
(make-state
(push
(make-frame
(+ 1 (pc (top call-stack)))
(locals (top call-stack))
(push (binding var
(locals (top call-stack)))
(stack (top call-stack)))

(program (top call-stack)))
(pop call-stack))

heap

class-table)))

:rule-classes nil)

This theorem exhibits the state change caused by load: it increments the pro-
gram counter by 1 and pushes the value of the given variable onto the stack.
Such theorems can be used to make ACL2 drive a symbolic computation for-
ward, over an arbitrary number of known instructions. We do not discuss in this
paper how we control ACL2’s rewriter.

Here is another theorem.

(defthm ==-invokestatic-fact
(implies
(and (equal (next-instruction call-stack)
’ (invokestatic "Math" "fact" 1))
(Math-class-loadedp class-table)
(equal n (top (stack (top call-stack))))
(natp n))
(== (make-state call-stack heap class-table)
(make-state
(push
(make-frame (+ 1 (pc (top call-stack)))
(locals (top call-stack))
(push (fact n)
(pop (stack (top call-stack))))
(program (top call-stack)))
(pop call-stack))
heap
class-table))))

15

This theorem shows how to step over an invokestatic instruction that calls
the "fact" method in our "Math" class: increment the program counter by 1,
pop the argument n off the stack, and push (fact n) in its place.

This theorem is exactly analogous to ==-1load above. It allows "fact" to
be treated like a primitive instruction. Furthermore, no “clocks” or instruction
counting is required to either state or prove this theorem.

A clocked interpreter for the TJVM is still useful because it can be used to
prove theorems about the number of instructions a given computation takes, a
state produced in a given number of instructions, and particular intermediate
states in an infinite TJVM computation path. The clocked interpreter for the
TJVM is defined below.

(defun stepn (s n)
(if (zp n) s (stepn (step s) (- n 1))))

For example, proving (not (haltedp (stepn s n))) establishes that s never
halts, a theorem that cannot be stated in terms of ==.
There are nice lemmas relating stepn to ==. One is

(defthm ==-stepn
(== (stepn s n) s))

which allows a clocked theorem to be lifted to an unclocked theorem. For exam-
ple, if we know that executing a certain state a certain number of instructions
produces a desirable result state, then we know that result state is == to the
initial state. Another theorem is called the “Y” theorem because it relates two
states whose traces have a common suffix.

(defthm ==-Y
(implies (== (stepn s1 n)
(stepn s2 m))
== s1 s2))
:rule-classes nil)

The Y theorem implies that if the paths from s1 and s2 intersect, then (== s1
s2), even if they are both nonterminating.

6 Conclusion

We have shown several ways to use encapsulate to introduce functions into
ACL2 that are partially defined by their axioms. The three basic methods are
(i) exhibit a witness, (ii) show that the definition terminates on a specified
domain by exhibiting a domain expression and a measure, or (iii) use a tail
recursive definition. In the case of termination on a given domain, one may be
able to choose a domain on which the recursion is closed. All three methods are
implemented in our defpun macro, the sources of which are available on the Web
[4, 6].

16

Partial definitions may be satisfied by functions that are not obviously sug-
gested by the computational (i.e., induction-based) interpretation of the equa-
tion. We have offered examples of such witness functions and hope that by con-
templating these examples ACL2 users will be able to create suitable witnesses
for partial definitions of interest.

Partial definitions may define unique functions but more often define families
of functions. When termination and closure is proved on a specified domain, our
macro can be used to automatically prove the uniqueness of the partial function
on the domain.

Computation of partial functions on explicit constants is not addressed in
this paper. The uniqueness result for closed domain-restricted functions offers
one method of using computation to evaluate such partial functions. The ACL2
community is exploring the idea of associating computation rules with definitions
(sometimes called the “defexec idea”) and we imagine this idea will eventually
allow defpun to install computational methods for some functions.

We have demonstrated a variety of theorems about partial functions. All
the theorems mentioned have been proved with ACL2 and most exploit proof
techniques familiar to experienced users. We have not shown how we proved these
theorems. But the lemmas and hints used are available on the Web. Knowing
that it is possible to prove theorems about partial functions will enable users to
learn how to do it when it is necessary.

References

[1] R. M. Cohen. The defensive Java Virtual Machine specification, version 0.53.
Technical report, Electronic Data Systems Corp, Austin Technical Services Center,
98 San Jacinto Blvd, Suite 500, Austin, TX 78701, 1997.

[2] M. Kaufmann and J S. Moore. Structured theory development for a mechanized
logic. Journal of Automated Reasoning, 2000. To appear.

[3] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

[4] P. Manolios. Homepage of Panagiotis Manolios, 2000. See URL http://www.cs.-
utexas.edu/users/pete.

[6] J S. Moore. Proving theorems about Java-like byte code. In E.-R. Olderog and
B. Steffen, editors, Correct System Design — Recent Insights and Advances, pages
139-162. LNCS 1710, 1999.

[6] J S. Moore. Homepage of J Strother Moore, 2000. See URL http://www.cs.-
utexas.edu/users/moore.

[7] G.J. Wirsching. The Dynamical System Generated by the 3n+1 Function, volume
1681 of Lecture Notes in Mathematics. Springer-Verlag, 1998.

