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Abstract

We present an incremental refinement proof in ACL2 which demonstrates the reduction of
the observable behaviors of a concurrent program to those of a much simpler program. In
particular, we document the proof of correctness of a concurrent program which implements
the operations of a double-ended queue in the application of a work-stealing algorithm. The
demonstration is carried out by proving a refinement from the implementation to a specification
via an intermediate model. We document the use of the intermediate model in dividing the
verification problem into more manageable steps which in turn allow for more effective proof
reductions in ACL2. In both steps, the more abstract system is allowed finite stuttering and
this is important in correlating refinement proof with progress in the more concrete system.

1 Introduction

Concurrent program development is an error-prone enterprise. It is difficult for a human programmer
to keep track of the various possible states a concurrent program can reach. Thus, an “innocent”
change may easily introduce a bug which is hard to detect and/or diagnose since the change was
made with an inaccurate mental picture of the program’s behavior. It is because of the complexity of
bug detection and diagnosis and the ease of bug introduction in concurrent programs, that high-level
abstractions are often developed which provide a simpler, safer programming model (e.g. database
transactions). In some cases, efficiency is a concern and a low-level concurrent implementation is
needed to solve a particular problem. In those cases it is paramount that the programmer carefully
documents and/or proves the correctness of his/her algorithm.

Arora, Plaxton, and Blumbhofe[2] developed a program for maintaining a deque viewed and
manipulated by an arbitrary number of concurrent processes which is used in a process scheduler
based on work stealing. The optimality of the scheduler relies on the assumption that the programs
manipulating the deque are wait-free but make progress. Plaxton, Blumhofe, and Ray presented
a proof of the program’s correctness[3] at an ACL2 meeting. Their proof was complicated by the
various cases they had to consider in order to cover the possible program states which could be
reached. This problem therefore appeared to be an excellent candidate for formalization in ACL2.
This paper documents our solution to this problem.

The proof of correctness we present is carried out by showing that the visible behaviors of the
concurrent deque implementation correspond to the visible behaviors of a much simpler specifica-
tion program whose correctness is hopefully apparent. Exhibiting a correspondence between two
programs is a common approach to analysis which reflects the principle that it is often easier to
specify correctness using a program rather than using formulas.

In this work, our notion of correspondence is well-founded refinement which is a reformulation
of refinement upto stuttering that is amenable to proof with ACL2. It is derived directly from



the work of Namjoshi[8] and Manolios[6, 5] on Well-Founded Equivalence Bisimulations (WEBs).
This reformulation significantly decreases the amount of ACL2 proof effort required from the user
in proofs involving stuttering. Additionally, the notion of correspondence we use is compositional
and thus allows a refinement to be proved in incremental stages. We demonstrate this by breaking
the refinement proof for the concurrent deque into four separate refinements which can be chained
together to provide the final result.

In Section 3, we will present a precise definition of well-founded refinement and our argument
why the allowance of finite stuttering in refinements is appropriate and correct for reasoning about
a program at different levels of abstraction. We will then detail in Section 4 the refinement proofs
which were carried out including the proof reductions which improved the efficiency of the interaction
with ACL2. But first, we present the concurrent deque program which is the target of our formal
verification effort.

2 Concurrent Deque

The name “deque” stands for double-ended queue and is a data structure which stores a sequence of
elements and supports pushing and popping from both ends of the sequence — or equivalently viewed
as a double-ended stack. The program we will analyze is the concurrent deque program presented
in Figure 3 and is named cdeq. The program cdeq is composed of a single owner program and an
arbitrary fixed number of thief programs; where each program has access to a common deque. The
owner program can push or pop items on the bottom of the deque, while the thief programs can
only pop items from the top of the deque. Items are never pushed onto the top of the deque, so
the name “deque” is a misnomer. The owner program and each thief program has a local store of
variables. The local variables of a program are only accessed and updated by that program. Some
additional variables which define the common deque are shared amongst all programs.

It is common in ACL2 modeling of systems or processes with non-terminating behavior to define
and reason about the systems as step functions. For the purpose of this paper, a step function
is a binary function which takes a current state and input value and returns the next state. The
function cdeq in Figure 3 is a step function defining the asynchronous composition of the owner
program with each thief program; at each step, either the owner takes a step or a thief takes a
step. The structure of the state and input parameters of cdeq are specified in Figure 1. Figure 2
depicts the structure of the deque in memory — the elements of the deque are stored in the indices
[AGE top, ..., BOT — 1] where BOT > AGE.top. The deque is empty if AGE.top > BOT and
non-empty otherwise.

In Figures 3 and 5 we use an assignment-style notation for functions which transform states. For
each of these functions, the signature is broken into inputs and states. For instance, owner(push, D)(o, S)
takes two inputs push and D and two states o and S. As a convention, we use uppercase variable
names for variables which are shared and lowercase names for variables which are local. For instance,
in the body of owner, M EM is short for S.mem (since S is bound to shared in cdeq) and dim is
short for o.dtm. Each of the functions return an updated version of each of its state arguments,
where the assignment field < value updates the field in the corresponding state with value.

The functions owner and thief define the local step functions. Each local owner or thief step
transforms the state variables depending on the current value of loc by performing the corresponding
assignments and then updating the [oc variable to its next value. The program steps were defined
[2] to correspond to operations which could be performed atomically for a particular concurrent
microarchitecture. For instance, the steps at owner loc 14 and thief loc 8 correspond to a common
compare-and-swap operation which is often atomic. It should also be noted that the (RETURN itm)
and (return nil) steps in owner and thief are respectively shorthand for loc, RET,ret, CLK <+
0,itm,itm,CLK + 1 and loc, ret < 0,nil.

As we mentioned before, every thief attempts to pop from the top of the deque. The steps in



cdeq state — a record of:
shared — a record storing the shared variables:
MEM — a natural-addressed vector of data values
RET - the last non-nil value popped from the deque
CLK — an auxiliary label used to tag each pop uniquely
BOT — the address of the bottom of the deque in M EM
AGE — a pair of numbers:
tag — used to uniquely identify ages with same top
top — the address of the top of the deque in M EM
owner — a record storing the owner’s local variables:
loc — the current program location
dtm — stores the value to be pushed onto the deque
bot — a local copy of the BOT address
old — a local copy of the AGE address
new — a modification of old
itm — a local copy of the data value to be returned
ret — a local return value which is essentially ignored
thieves — a natural-addressed vector of records, where each record stores
the local variables of a thief (same as the owner, without dtm)

cdeq input — a record of:
N — selects which program (owner or thief) takes the next step

P — boolean input for owner to select push or pop
D — data value for owner to push

Figure 1: Structure of cdeq state and input parameters
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Figure 2: Deque Layout in Memory
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if push then
dtm < D
bot + BOT
MEMT bot] < dtm
bot < bot + 1
BOT <+ bot
else ;; pop
bot +— BOT
if bot = 0 then
return nil 9
bot «+ bot — 1 10
BOT <+ bot 11
itm < M EM bot]
old +— AGE
if bot > old.top then
RETURN itm
BOT + 0
new.tag, new.top < old.tag,(
new.tag < new.tag + 1
if bot = old.top then
if old = AGE then
new, AGE + AGE,new
if old = new then
RETURN itm
AGE + new
return nil
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thief()(f,S)

old +— AGE

bot «+— BOT

if bot < old.top then
return nil

itm < M EMold.top]

new < old

new.top < new.top + 1

if old = AGE then
new, AGE +— AGE,new

if old = new then
RETURN itm

return nil

cdeq(in)(st)
if in.N then
thieves[in.N], shared <
thief ()(thieves[in.N], shared)
else
owner, shared +
owner (in.P,in.D)(owner, shared)

Figure 3: Concurrent Deque Program — cdeq



the thief function carry out this operation. First, the current AGE and BOT are read into the
local variables old and bot. Next, the thief checks to see if the deque is empty and returns nil if it
is. Otherwise, the thief will grab the itm stored at the top of the deque and then increment a local
copy of AGE stored in new. At 8, the thief will perform a compare-and-swap which has the result
of incrementing AGE.top if the AGE has not changed since it was stored in old at 1. The main idea
of the thief is the point that either a thief “succeeds” in popping the deque —i.e. AGE = old at 8
— or some other process must have changed the AGE of the deque and thereby “succeeded” in their
pop. The correctness of the concurrent program only relies on some process succeeding in popping
elements from the deque; it doesn’t matter which process succeeds. Notice at 9 that new is equal
to old if and only if AGE was equal to old at 8 and so the test at 9 and the related returns at 10
and 11 should be clear.

The owner function defines steps for implementing a push onto the bottom of the deque, locs
19-22, and for implementing a pop from the bottom of the deque, locs 1-18. Pushes onto the bottom
of the deque and pops from the bottom of the deque when the deque has more than one element are
independent of pops from the top of the deque and the steps taken in owner are straightforward,
locs 1-9 and 19-22. When the deque has a single element and the owner wants to pop, then the
owner contends with the thieves for that element. This case is handled in locs 10-18. Furthermore,
when the owner detects an empty deque, it will reset the deque to BOT = AGE.top = 0. When the
owner performs this reset of the deque to 0, it increments the AG E.tag to ensure that no stale thief
with old.top = 0 falsely matches old = AGE at 8 in the thief function.

The function cdeq is the main step function which defines the asynchronous composition of the
owner with some arbitrary but fixed number of thieves. A given step is defined by the selection of
a process using in.N (either an integer indexing a thief or nil denoting the owner) and then the
update of the local state of that process and the shared state using either the thief step function
or owner step function.

We translated the functions in Figure 3 into ACL2 functions. The functions in Figure 4 define
the translation of the thief function. The function c-thf-s returns the updated values for the
shared variables for any thief step and c-thf-f does the same for the local variables. In these
functions and many others, we used definitions from a book about records in ACL2. In this context,
a record is actually an association list where the entries have been ordered based on a total ordering
of the keys. The keys in our case are either symbols or integers and the total ordering on keys is
< on integers, symbol-< on symbols, and an arbitrary selection of integers ordered before symbols.
The records book exports the functions (g a r) — get field a of record r — and (s a v r) — set
field a of record r with value v — along-with several rewrite rules which simplify terms consisting
of record sets and gets. These rewrite rules are provided in appendix A.

The macros >s and >f used in Figure 4 translate into a sequence of record updates. For instance,
(>f :loc 2 :0ld (age s)) translates to (s :loc 2 (s :0ld (age s) f)). We also use records
for the vectors M EM and thieves from Figure 3. For instance, the term (<- (mem s) (top (old
£))) from Figure 4 translates to (g (top (old £)) (mem s)). The use of these record definitions
and associated rewrite rules was of paramount importance in improving the readability of proof
output from ACL2 (using symbols for keys) while requiring only a few rewrite rules for reducing
terms involving record operations. The macros age, new, old, bot, itm, mem, c1k expand into record
accesses of the form (g :age ..), (g :new ..), etc.

Our goal in analyzing the concurrent deque program in Figure 3 is to show that its observable
behaviors coincide with the observable behaviors of a much simpler program. Before we consider
this simpler program, we first need to define what is observable from any given state and justify this
definition. For most programs, the answer to the question “what is observable?” is determined by
partitioning the variables into inputs, outputs, and internals, where the output variables are usually
considered the observable values'. In our case, we want to preserve three variables: the dtm variable

I For some contexts, it is necessary to preserve the behaviors defined on input variables and output variables, in
which case both sets of variables should be considered observable.



(defun c-thf-s (f s)
(case (loc f)
(if (equal (age s) (old £))

(8

(t

(>s :

s))
(10 (>s :ret (itm f) :clk (1+ (clk s))))

s)))

(defun c-thf-f (f s)
(case (loc f)

0
(1
(2
(3
(4
(5
(6
(7
(8

9
(10
(11
(t

>f
>f
>f
>f
>f
>f
>f
>f
O>f

>f
>f
>f
>f

:loc
:loc
:loc
:loc
:loc
:loc
:loc
:loc
:loc

:loc
:loc
:loc
:loc

age (new f))

1)) ;3 we can ignore this no-op step
2 :0ld (age s)))
3 :bot (bot s)))
(if (> (bot f) (top (old £))) 5 4)))
0 :ret nil))
:itm (val (<- (mem s) (top (old £))))))
:new (old £)))
:new (top+l (new £))))
:new (if (equal (age s) (old £f))
(age s) (new £))))
(if (equal (old f) (mew £f)) 10 11)))
0 :ret (itm f)))
0 :ret nil))
0))))
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Figure 4: ACL2 definition of Thief function



of the owner state, the RET shared variable which is only updated on global RETURNSs, and the
CLK variable which is incremented at every pop in order to distinguish global returns of the same
value. The idea is that if we want to verify that the concurrent deque can be viewed ideally as a
deque, then we are interested in the values which are pushed onto and popped off of the deque. The
observation of a state is defined by a function label which takes a state and returns its observable
value:

label(st) = list(RET,CLK ,owner.dtm)

We now define a simple program which captures the legal observable behaviors of the concurrent
deque. This simple program is given in Figure 5. The thief states have been reduced to a single
value which is non-nil if the value should be RETURNed or nil if the thief should pop the value off
the top of the deque. This is exactly what is done in spec when in.IV is non-nil except for the case
steal-last which corresponds to the state where the deque has a single element which the owner
has popped but hasn’t returned. In this case, a thief can “steal” this last value before the owner
can return it. Since we don’t care who pops the values off the deque, this is acceptable behavior as
long as an element is only popped once. This is ensured by setting owner.itm to nil which in turn
ensures that the owner will not return the element and no other thief can steal the element. The
owner state is reduced to a record with three fields loc, itm, and dtm. The variable owner.loc goes
from 'IDLE to '"POP or 'PUSH and then back to 'IDLE. The functions performed at each of these
locs is hopefully clear. When owner.loc is POP, it is worth noting that owner.itm is RETURNed
if and only if it is non-nil. As we mentioned before, uppercase variables refer to shared variables
and in the function spec, the variables DEQ and RET are really st.shared.deq and st.shared.ret.
The functions drop-top, get-bot, push-bot, drop-bot, and get-bot are defined on normal ACL2
true-lists as follows:

(defun val (x) (or x 0))
(defun first-val (d) (and (consp d) (val (first d))))
(defun get-top (d)
(if (endp (rest d)) (first-val d)
(get-top (rest d))))
(defun drop-top (d)
(if (endp (rest d)) O
(cons (first d) (drop-top (rest d)))))
(defun get-bot (d) (first-val d))

(defun drop-bot (d) (rest d))

(defun push-bot (x d) (coms x d))

3 Stuttering Refinement

Proofs about functions in ACL2 assume axioms about the ACL2 primitives such as: (equal (car
(cons x y)) x). At the ACL2 level we treat functions such as cons, equal, and car as atomic
operations which satisfy the axioms we assume. Under the hood, the actual definition for these
functions may be several pages of code which requires thousands of machine steps to perform the



spec(in)(st)
if in.N then
if thieves[in.N]
RET < thieves[in.N]
CLK + CLK +1
thieves[in.N] « nil
else if steal-last(DEQ, owner,in)
thieves[in.N| < owner.itm
owner.itm ¢ nil
else
thieves[in.N] «+ get-top(DEQ)
DEQ « drop-top(DEQ)
else
case owner.loc
PUSH:
DEQ + push-bot(owner.dtm, DEQ)
owner.loc < ’IDLE
POP:
RET <+ or(owner.itm, RET)
CLK + CLK +1
owner.itm < nil
owner.loc < ’IDLE
IDLE:
if in.push then
owner.dtm <« in.D
owner.loc + 'PUSH
else
owner.itm < get-bot(DEQ)
DEQ « drop-bot(DEQ)
owner.loc + 'POP

;; NOTE : steal-last(DEQ,—, —) implies DE(Q is empty

Figure 5: Specification Program — spec



necessary operation®. At the ACL2 level, we do not particularly care how cons, car, and equal are
implemented under the hood as long as they eventually return values which are consistent with the
axioms we assume. Thus, a specification of the implementation for each of the ACL2 primitives in
an underlying Lisp environment would consist of (a) each primitive eventually returns a value, and
(b) these values are consistent with the axioms of ACL2. Actually, this is invariably incomplete since
unlike the nice applicative world of ACL2, low-level machine code has side effects and only works
correctly in certain well-formed contexts. For instance, if we executed the code for cons in a context
where the pointer to the next available cons-cell erroneously pointed to an existing (cons x y),
then the setting of the car field of this cons-cell may have the side effect of invalidating the axiom
(equal (car (coms x y)) x). We therefore adjust the above specification of a Lisp environment
by adding that (a) and (b) only have to hold in “well-formed” contexts and then add the condition:
(¢) the property “well-formed” persists in the execution of each primitive. This concept of a well-
formed context or state which persists is often termed an invariant and is central to many ACL2
proofs about nonterminating systems. We will use the unary predicate inv to define the set of
“well-formed” program states.

The various notions of refinement we define are simply formalizations of statements (a), (b), and
(¢) in the context of nonterminating programs defined by step functions. Intuitively, showing that
an implementation is a refinement of a specification ensures that the observed behaviors or traces
of the implementation are consistent with those of the specification. In order to be more precise,
we need to define some terms. A sequence X is a total function mapping the natural numbers to
ACL2 objects. We will use the notation X; as shorthand for X (7). For a given unary function inv,
a run R of inv is simply a sequence where Ry is understood as the initial state of the run and is
well-formed — inv(Ryp) is T — and the remaining R; define an infinite sequence of inputs. For a given
binary function step, a sequence B is termed a behavior of (step, inv) if there exists a run R of
inv such that By = Ry, and for all i > 0, B; = step(R;, B;_1). For a given unary function label,
a sequence T is termed a trace of (step, label, inv) if there exists a behavior B of (step, inv) such
that for all i, T; = label(B;). A function impl is a trace refinement of a function spec with respect
to (label, inv) if every trace of (impl, label, inv) is also a trace of (spec, label, (lambda(x)T)). In
practice it is difficult to prove (mechanically or otherwise) a trace refinement directly since it involves
reasoning about the existence of infinite sequences. A common method of attacking this problem is
to define a unary function rep — which maps impl states to their corresponding or representative
spec states — and a binary function pick — which takes an impl state and input and returns a
“matching” spec input — and proving the following single-step theorems:

(defthm labels-equal->>
;; we could add assumption of (inv st) here but it’s rarely needed.
(equal (label (rep st)) (label st)))

(defthm inv-persists->>
(implies (inv st)
(inv (impl in st))))

(defthm rep-matches->>
(implies (inv st)
(equal (rep (impl in st))
(spec (pick in st) (rep st)))))

The theorem rep-matches->> is a standard commutative theorem which commonly arises in
proofs relating the behaviors of two programs or systems[7]. The combination of labels-equal->>

2cons in Gnu Common Lisp is implemented with the C function make_cons which in the course of allocating a new

cons, may adjust several counters, allocate a new “page”, and/or perform a garbage collection cycle.



and rep-matches->> imply that impl is a trace refinement of spec with respect to (label, inv).
Unfortunately, with trace refinement we cannot allow the implementation to make moves which are
internal or invisible to the specification. Notice that condition (a) does not require that a value
is returned immediately, but instead eventually. This distinction is important in order to allow
the specification and implementation to be defined at different levels of action granularity. The
implementation often needs to be defined with finer-grain actions due to restrictions imposed by the
environment in which the implementation is defined. At the same time the specification often needs
to be defined with coarser-grain actions for the purpose of clarity and conciseness.?

Intuitively, we would like to weaken trace refinement by allowing for finite stuttering and in order
to define this, we introduce the notion of sequence compression. The marker M of a sequence X
is another sequence where My = 0 and for all ¢ > 0, M;;, is defined to be the least integer j such
that (j > M; and X; # Xyy,) if such an integer exists and M; + 1 otherwise. The compression C of
a sequence X is then the sequence defined by C; = Xjs,. Now we weaken trace refinement to allow
for finite stuttering. A function impl is a stuttering refinement of a function spec with respect to
(label, inv) if every compression of a trace of (impl, label, inv) is also a compression of a trace of
(spec, label, (lambda(x)T)). Similar to the simplification of trace refinement before, we would like
to find a set of single-step theorems which imply a stuttering refinement. This very simplification
was defined by Namjoshi[8] and Manolios[6] in the context of bisimulation and for this paper is
termed well-founded refinement (or simply refinement) and is denoted (impl >> spec). The idea is
to define the functions rep and pick as before, but also define a unary function rank which maps
impl states to eO-ordinals. Intuitively rank defines a well-founded measure which decreases to the
next point at which spec can match the step of impl. The theorems required to prove a well-founded
refinement are given in Figure 6. We also added the theorem well-founded->> which ensures that
the rank function returns an e0-ordinal (required for well-foundedness w.r.t. e0-ord-<) bounded

~stack of depth k-depth) — i.e. w
by an w-stack of depth (rank-depth) —i.e w

(rank-depth)

Theorem 1 If impl is a well-founded refinement of spec w.r.t. (label, inv) then impl is a stut-
tering refinement of spec w.r.t. (label, inv).

As we mentioned before, well-founded refinement is compositional. We used bounded-ordp
instead of e0-ordinalp in well-founded->> in order to facilitate the definition of an ordinal pairing
of two rank functions where e0-ord-< on the pair coincides with the lexicographic ordering on the
two ranks. In order to prove that we can take two refinements (impl >> intr) and (intr >> spec)
and compose them to conclude (impl >> spec), we need the lexicographic ordering since impl may
stutter in between any stuttering steps of intr. Assume we have a refinement (impl >> intr)
with witness functions rep1, rankl, inv1, and rank-depthl; and a refinement (intr >> spec) with
witness functions rep2, rank2, inv2, and rank-depth2. Then we can prove the refinement (impl
>> spec) with witness functions rep, rank, inv, and rank-depth defined by:

(defun rank (st)
(ord-pair (rank2 (repl st))
(rankl st)
(rank-depthl)))

(defun rank-depth ()
(+ 2 (rank-depthl) (rank-depth2)))

3The distinction here between “coarse-grain” and “fine-grain” is mainly for the purpose of presentation and some-
what arbitrary since you could imagine cases, for instance, where you implement stack operations with array operations
and vice-versa.
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(defthm labels-equal->>
(equal (label (rep st)) (label st)))

(defthm well-founded->>
(bounded-ordp (rank st) (rank-depth)))

(defthm inv-persists->>
(implies (inv st)
(inv (impl in st))))

(defthm rep-matches->>
(implies (and (inv st)
(not (equal (rep (impl in st))
(spec (pick in st) (rep st)))))
(and (equal (rep (impl in st))
(rep st))
(e0-ord-< (rank (impl in st))
(rank st)))))

Figure 6: Requisite Theorems for Proving Refinement

(defun rep (st)
(rep2 (repl st)))

(defun inv (st)
(and (invl st) (inv2 (repl st))))

(defun pick (in st)
(pick2 (pickl in st) (repl st)))

As we have stated it to this point, a refinement implies that the compressed traces of impl are a
subset of the compressed traces of spec. But, in some cases we want to show that the compressed
traces of impl are the same as the compressed traces of spec. We term this strong refinement
and note that a sufficient condition for strong refinement is achieved when the function pick is
the identity function on its first parameter in.* Often, strong refinements are preferable since they
ensure equivalence of the observed behaviors of the two systems. This is important because an
erroneous behavior in the spec can be mapped back to an erroneous behavior in the impl which
may not be the case if impl was simply a refinement of spec. We will use (impl <-> spec) to denote
strong refinement.

4 Refinement Proof Details

In this section we outline the definitions and intermediate refinement steps performed in showing
that (cdeq >> spec) where the relevant functions cdeq, spec, and label were defined in Section 2.
We will also detail the steps taken to simplify the proof requirements and some of the ACL2 features
which were found to be helpful.

We found the refinement (cdeq >> spec) prohibitively complex to prove directly and decided to
take the approach of trying to find an intermediate system intr which was far simpler than cdeq

4A more general criterion can be devised for strong refinement, but the simpler requirement that pick is the
identity function is sufficient for the presentation in this paper.
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Figure 7: Component-wise definition of rep and rank

but preserved the observed behaviors of cdeq. Thus, our goal was to define a system intr such
that we could prove (cdeq <-> intr). This would allow us to work with intr from then on without
consideration of cdeq.

In analyzing possible goals for defining intr, we recognized the need to preserve the composi-
tional structure of cdeq in intr. This would allow the proof of rep-matches->> to be reduced to
proving local “matching” theorems for each component; one theorem for the owner and one theo-
rem which could be used for each thief. The local matching theorems would show, in effect, that
the each component of cdeq was a refinement of the corresponding component of intr. The proof
of rep-matches->> should then follow directly from the local theorems. This proof reduction can
be achieved by enforcing the following requirements: (1) rep is defined component-wise, (2) rank
simply adds the ranks of each component, (3) pick is the identity function, and (4) intr must
update the component selected by ¢n.N. Now, the proof of rep-matches->> simply splits on the
component selected by in.N and since the other components (and their local rep and rank values)
remain unchanged, the composite state of cdeq stutters iff the selected component stutters and the
composite state of cdeq is matched by the composite state of intr iff the selected component is
matched. This reduction lets us define and verify intr component-by-component and also is in-line
with another goal of proving (cdeq <-> intr). In other words, prove (cdeq-owner <-> intr-owner)
and (cdeq-thief <-> intr-thief) and then derive (cdeq <-> intr).

Another goal we set for the intermediate model was to translate some of the shared variables in
cdeq to simpler, coarser definitions in intr. First we translated the M EM-based deque in cdeq to
the list-based deque used in spec. This translation is performed by the function mend which walks
the indices from bot to top and conses the elements in M EM at each step.

(defun mend (bot top mem)
(and (integerp bot)
(integerp top)
(> bot top)
(cons (<- mem (1- bot))
(mend (1- bot) top mem))))

Next, we wanted to translate the AGE shared variable to a simple C'I'R which is incremented
any time the thief (and sometimes the owner) pops from the top of the deque. Unfortunately, a
consistent value for such a CTR variable cannot be determined by the value of the AGE variable
since the owner may set AGE.top to 0 at any point. The solution is then to add an “auxiliary”
CTR variable to cdeq which increments every time the AGFE variable is updated. This introduction
of auxiliary variables is common and “safe” as long as their values do not affect the actual variables
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of the program. As mentioned in [1], refinement maps often require the use of auxiliary variables
to augment the state of a program with information about its history and its future. Rather than
assume the safety of auxiliary variables, we decided to define another system cdeq+ which consists
of cdeq along with several auxiliary variables we needed to define the correspondence between cdeq
and intr. We now define intr and at the same time augment cdeq+ as needed and in the end we will
prove (cdeg+ <-> intr) and (cdeq+ <-> cdeq). The proof of (cdeg+ <-> cdeq) is straightforward
and simply involves the removal of the auxiliary variables in cdeq+ and requires no stuttering (i.e.
rank is defined to be 0 and inv is defined to be T). Thus, cdeq+ now has an additional shared
auxiliary variable XCT R — all auxiliary variables will begin with z or X — which corresponds to the
CTR shared variable in intr. This completes the translation of the cdeq shared variables which is
defined by the following function rep-shr.

(defun rep-shr (sh)
;; the macro >_ translates to a sequence of
;; updates to an empty record, i.e. ()
(>_ :deq (mend (bot sh)
(top (age sh))
(mem sh))
:ctr (xctr sh)
:ret (ret sh)
:clk (clk sh)))

The translation of the local owner and thief states follow a similar approach and as such we only
document the thief. We want to define the intr thief to hide as many steps of the cdeq+ thief
as possible while still preserving the cdeq+ thief’s behavior. Since we cannot hide updates to the
shared variables, the goal is then to hide or stutter on “local” steps of the cdeq+ thief. In Figure 3,
locs 3,4,6,7,9,11 are clearly “local” since they do not involve any shared (uppercase) variables. It
is also clear that locs 8 and 10 are “global” since a shared variable is updated. This leaves locs 1,2,5
and in order to determine which of these steps can be hidden, we need to consider the behavior of
the cdeq+ thief. At 1, the thief copies AGE to the local old. The value in old not only determines
the item in M EM which may be returned, but more importantly it is used at loc 8 to determine
if the thief “succeeded”. Thus, loc 1 clearly cannot be hidden. At loc 2, the thief copies the BOT
pointer to a local bot variable. The value in bot is only used at loc 3 to determine if the deque is
empty. Since the value of BOT may change between locs 1 and 2, we cannot hide the step at loc 2.
The step at loc 5 copies the item in M EM [old.top] to the local variable itm. At first glance it may
appear that we cannot hide this step as well. But since we only RETURN itm if old = AGE, we
know that the top of the deque has not moved and in the intr thief, we can grab this value early
which in turn allows us to hide the step at loc 5. In summary, we have determined for the moment
that the intr thief only needs to match the steps at locs 1,2,8,10 in the cdeq+ thief. Given these
steps and the translation of the shared variables described above, we derived the intr thief defined
in Figure 8. The function rep-thf which maps a cdeq+ thief state to an intr thief state is now
straightforward: map zitm to itm, zctr to ctr, and cdeq+ thief loc to intr thief loc as depicted in
Figure 8. The function rank-thf which defines the local stuttering measure for the cdeqg+ thief is
(essentially) 12 — loc.

The derivation of the definition of the intr owner from the cdeq+ owner followed a similar
strategy of hiding “local” steps in the refinement. Referring to the definition of the owner function
in Figure 3, the intr owner must match the steps at locs 0,5,7,9,14,16,17,22. We will not delve
into the definition of the intr owner here but the interested reader can examine the definition of
the intr step function provided in appendix B.

In order to facilitate the proof of (cdeq+ <=> intr), we decided to simplify the proof requirements
into more direct steps. We first note that the theorems labels-equal->> and well-founded->>
were easy to prove in each refinement proof we performed and so we will ignore them for the sake of

13



loc  cdeg+-thf()(f,S) loc  intr-thf()(f,S)

0 skip 0
1 old +— AGE 0 ctr — CTR
zctr +— XCTR
2 bot < BOT 1 itm < get-top(DEQ)

xitm + and(BOT > AGE.top,
MEM[AGE top])

3 if bot < old.top then 2
4 return nil 0
5 itm < M EM] old.top] 2 ;; the following test passes iff DEQ
6 new < old 2 ;; was non-empty and we “succeed”
7 new.top < new.top + 1 2
8 if old = AGE then 2 if and(itm, ctr = CTR)
new, AGE < AGE,new DEQ@ + drop-top(DEQ)
XCTR+ XCTR+1 CTR<+ CTR+1
9 if old = new then 0|3
10 RETURN itm 3 RETURN itm
11 return nil 0

Figure 8: Comparing cdeq+ thief with intr thief

presentation. The form of the theorem rep-matches->> is not conducive to ACL2 proof since the
case analysis ACL2 performs is derived from whether or not intr can match the step of cdeq+. In
order to better direct ACL2 to the desired result, we defined a predicate commit which takes a state
and an input and returns nil if and only if cdeq+ stutters. Using commit we can split the theorem
rep-matches->> into three theorems which are easier to prove. We also defined a predicate suff
which replaces inv in rep-matches->> and introduces the additional proof requirement that inv
implies suff. The introduction of commit and suff results in splitting rep-matches->> into the
following four theorems:

(defthm >>-stutterl
(implies (and (suff st in)
(not (commit st in)))
(equal (rep (cdeg+ in st))
(rep st)))

(defthm >>-stutter?2
(implies (and (suff st in)
(not (commit st in)))
(e0-ord-< (rank (cdeq+ in st))
(rank st)))

(defthm >>-match
(implies (and (suff st in)
(commit st in))
(equal (rep (cdeg+ in st))
(intr (pick in st) (rep st)))))
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(defthm >>-invariant-sufficient
(implies (inv st) (suff st in))

In most cases, the definition of inv is far more detailed and constraining (since it must persist)
than needed in order to prove rep-matches->>. The predicate suff instead can be used to define
the minimal assumptions required for proving rep-matches->> and further provides a starting point
for the definition of inv. In fact, once the proper definitions for rep, rank, commit, suff, and pick
were determined and some simple theorems about the variable translations were proven (e.g. (equal
(get-top (mend bot top mem)) (val (<- mem top)))), the above theorems went through ACL2
with minimal assistance. In each of these theorems, ACL2 performed the necessary case-split (i.e.
which process was selected, what is the current location, etc.) and simplified each case to T. Indeed,
the difficulty of proving each refinement step correlated directly with the difficulty in coming up
with the correct definitions for the witnessing functions and in proving inv-persists->>.

Subtle details would be exposed only during attempts at proving that the invariant persisted.
For example, when the cdeq+ thief is at loc 8, it is sufficient to assume:

(equal (equal (age s) (old £))
(= (xctr £) (xctr s)))

when proving the theorems above. But in the invariant, we have to strengthen this to (where age<<
is the lexicographic ordering of a pair of numbers):

(if (equal (age s) (old £))
(= (xctr £) (xctr s))
(and (age<< (old f) (age s))
(< (xctr £) (xctr s))))

and in addition, this condition has to hold from thief locs 2 through 8. While the definitions of
rank, rep, commit, and suff for (cdeq+ <-> intr) were intuitive, the definition of inv was detailed
and unintuitive. This makes the use of ACL2 that much more important since it lifts the analysis
burden of a human peer from the understanding of the details of the definitions and proofs to the
understanding of “what” was proven with an implicit trust that ACL2 is sound.

Where the nature of the refinement from cdeq+ to intr was clear (i.e. hide “local” steps), the
refinement from intr+ to spec is a little more subtle. In particular, notice that in the intr thief
function that it is possible for the thief to fail to pop the top of the DEQ (i.e. when ctr # CTR
at 2) even when the DE(Q is non-empty. It was one of our goals in analyzing the concurrent deque
to show that when the deque is non-empty, progress is made in popping items from the top of the
deque. In order to ensure this, we defined spec such that thief steps cannot fail to pop the top of
the deque. Thus, when a thief fails in intr+, intr+ stutters and the rank for intr+ states must
decrease. Thus, there can only be a finite number of thief failures in-between two thief successes.
The rank function for intr+ is defined as follows:

(defun rank (st)
(if (consp (deq (shr st)))
(cons (cons (rank-onr (onr st))
(miss—-count (tvs st) (max-thf)
(ctr (shr st))))
(rank-tvs-non-empty (max-thf) (tvs st)))
(cons (rank-onr (onr st))
(rank-tvs-empty (max-thf) (tvs st)))))

When the deque is non-empty, the rank is a triple consisting of the owner’s local rank, the
expression (miss-count (tvs st) (max—thf) (ctr (shr st))) which counts up the number of
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thieves whose local ctr value differs from the global CTR value, and finally a summation of local
ranks for each thief. Intuitively, any step the owner takes will either decrease its local rank or be
matched by spec. When a thief takes a step, either the step is matched by spec, or the thief’s
local rank has decreased and its ctr hasn’t changed, or the thief’s local ctr has changed, but it is
now equal to CT R. Thus, eventually every thief reaches the point where ctr = CTR and this can
only change if one of the processes succeeded in popping the top of the deque. Unfortunately, this
rank does not decrease if the DE(Q is empty (since CT' R may not change) and this is why the rank
function changes to a different measure when the deque is empty.

The remaining definitions and proofs of the requisite theorems for (intr+ >> spec) were easy to
deduce from either intuition or failed ACL2 proofs. While some of the definitions were subtle, the
relative simplicity of intr+ in comparison to cdeq+ significantly reduced the complexity of proving
(intr+ >> spec) in comparison to (cdeq+ <-> intr). It is worth noting that spec uses an extra
input field to determine if a thief can steal the last item from the owner. We added this extra input
to spec in order to simplify the behavior of the thief steps, but this additional nondeterminism also
meant that we could not prove (intr+ <-> spec). Since we use the spec function as the definition
of “correct” behavior, we valued simplicity in the definition of spec more than the preservation of
equivalence with cdeq.

5 Summary

In summary, we proved the following chain of refinements:

cdeq <-> cdeqg+ <-> intr <-> intr+ >> spec

where cdeq+ and intr+ are simply cdeq and intr, respectively, with some additional auxiliary
variables needed to complete the next step in the chain. The refinement steps (cdeq+ <-> intr)
and (intr+ >> spec) allowed finite stuttering in cdeq+ and intr+ respectively which was important
to enable systems at different levels of abstraction to be compared while ensuring progress. The
most difficult step of these proofs was the definition of and persistence proof for the invariant for
cdeq+. Although the invariant was detailed, once it was defined correctly ACL2 was able to verify
it in very reasonable time. The longest proof time we encountered with ACL2 was for the theorem
thf-inv-onr-thm which took ACL2 about two minutes to prove (without printing).

(defthm thf-inv-onr-thm ;5 in (cdeq+ <-> intr) refinement
(implies (and (inv-shr s)
(inv-onr o s)
(assume-thf f s)) ;; implied by (inv-thf f s)
(inv-onr o (c+-thf-s f s))))

This theorem states that the owner’s invariant is preserved when a thief updates the shared
variables. The main problem with interactively proving theorems of this nature is the turnaround
time between submission and failure. This theorem, for instance, case splits into 1663 subgoals.
On the one hand, it is desirable to inhibit the proof output of ACL2 in order to get a reasonable
runtime on theorems with this many subgoals. On the other hand, when the theorem fails we need
to examine the cases which failed and this, in turn, requires viewing the proof output. One solution
to this quagmire is for the user to be extremely careful and diligent in the definition of the invariant
and hope that the proof simply goes through. We do not recommend this approach because it is
easy to add too many unnecesary details which complicate the user’s definition task and ACL2’s
proof task. The approach we we took in cases such as this was to use the ACL2 proof checker. For
intance, we used the following iterative ACL2 interaction cycle in order to find the proper definition
of inv-onr:
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ACL2 !>(set-inhibit-output-1st ’ (proof-tree prove))
(PROOF-TREE PROVE)

. additional definitions, theorems ...

. begin interaction cycle ...
ACL2 !>(defun inv-onr (o s) ...)
ACL2 !>(verify (implies (and (inv-shr s)
(inv-onr o s)
(assume-thf f s))
(inv-onr o (c+-thf-s f s))))
->: bash
*xxx*x Now entering the theorem prover *xxxx
. subgoals which failed simplification ...
->: (repeat prove)
. stops on first goal (if any) which failed the full prover ...
. we examine this goal to determine why it failed ...

->: exit
ACL2 !'> :u
ACL2 !> (defun inv-onr (o s) ... update the invariant ...)

ACL2 !> (verify (implies (and (inv-shr s)
. repeat verify attempt ...

It is also useful to define proof-checker macros which allow you to use a single command to
perform a series of repetitive proof checker tasks. The interested reader should consult the ACL2
documentation of the proof checker and the special form define-pc-macro.

Overall, ACL2 was indeed a valuable tool in this proof effort. While it is possible to do proofs of
correctness for concurrent programs by hand, the case analysis required may obfuscate human error
or omission. Mechanical verification enforces a rigorous definition and proof which will likely cover
cases that may otherwise be missed. In fact, an effective interaction with ACL2 was actually useful
in iteratively refining the persistent invariant definitions. It seems unlikely that these invariants
would have been as complete if it were not for ACL2’s stubborness in accepting their correctness.

We conclude with a brief comparison between the proof of correctness presented in [3] and
the proof presented here. The proof presented in [3] involves demonstrating that any interleaving
behavior of the concurrent deque program can be transformed into a corresponding synchronous
behavior (i.e. one where every process performs pushes and pops atomically). This transformation
is carried out by permuting small sequences of program steps, termed bursts, of different processes
until the behavior is synchronous. These permutations are presented through a series of sixteen
congruences, beginning with the identity relation and concluding with a relation tieing every behavior
to a synchronous behavior. For instance, assume we have two program bursts B1; B2 of processes
P1 and P2, and each burst only modified local variables, then we could permute Bl and B2 without
affecting the resulting behavior since we end up in the same resulting state.

The basic statement of correctness in [3] is elegant, but the analysis is tedious. An inherent
benefit of mechanized proof, when it is practical, is that the burden of “belief” is lifted from the
details of a proof to the understanding of the proof statement and a belief in the mechanized checker.
Beyond this point, it is inherently more difficult to mechanically reason about behaviors or sequences
of steps than it is to reason about single steps. All of the ACL2 theorems presented in this paper
involve no more than a single step of at most two separate programs. In addition, the statement of
stuttering refinement is clear and its application requires only an understanding of the spec program
and the label function. This does necessitate the reader to mentally exercise the spec program to
determine if it truly defines legal behaviors, and this, in turn, drives the need for the simplest spec
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possible. An additional benefit of the approach presented in this paper is the ability to demonstrate
progress. The behavioral correspondence proved in [3] does not ensure progress to the next pop-top
when the deque is non-empty. Indeed, stating this property would have further complicated the
definition of a legal synchronous behavior. In our case, it is simply a result of proving a stuttering
refinement and the observation that a thief must pop the deque when it is non-empty in the spec
program.

5.1 Acknowledgements

We wish to thank Sandip Ray, Greg Plaxton, and Robert Blumhofe for posing the initial challenge
of verifying their program and Sandip, in particular, for checking that the work presented here met
their verification goals. We also want to acknowledge input received from Pete Manolios, J Moore,
and Matt Kaufmann when an earlier version of this work was presented to them. We especially want
to thank Pete for pushing the search for ”the simplest specification program” and pointing out an
error in an earlier version of the labeling function, and Matt Kaufmann who helped tremendously by
answering questions about the proof checker and providing significant improvements to the records
book which was used extensively in this work.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer Science,
82(2):253-284, May 1991.

[2] N. Arora, R. Blumhofe, and C. Plaxton. Thread Scheduling for multiprogrammed multiproces-
sors. In Proceedings of the 10th Annual ACM Symposium on Parallel Algorithms and Architec-
tures, June 1998.

[3] R. Blumofe, C. Plaxton, and S. Ray. Verification of a Concurrent Deque Implementation. The
University of Texas at Austin, Department of Computer Sciences. Technical Report TR-99-11.
June 1999.

[4] T. Henzinger, S. Qadeer, and S. Rajamani. Assume-guarantee refinement between different
time scales. Proceedings of the 11th International Conference on Computer-aided Verification,
Lecture Notes in Computer Science 1633, Springer-Verlag, 1999.

[5] P. Manolios. Correctness of Pipelined Machines, In W. Hunt, and S. Johnson, editors, Formal
Methods in Computer-Aided Design, FMCAD 2000, LNCS. Springer-Verlag, 2000.

[6] P. Manolios, K. Namjoshi, R. Sumners. Linking theorem proving and model checking using
well-founded bisimulation. In N. Halbwachs and D. Peled, editors, Computer-Aided Verification,
volume 1633 of LNCS, Springer-Verlag, 1999.

[7] J. Moore. A Mechanically Checked Proof of a Multiprocessor Result via a Uniprocessor View.
Formal Methods in System Design, 14(2), March, 1999, pp. 213-22

[8] K. Namjoshi. A Simple characterization of stuttering bisimulation. In Foundations of Software
Technology and Theoretical Computer Science, volume 1346 of LNCS, 1997.

18



A Rewrite rules for record operations

;5 (g ar) -- record get --
K returns the value stored in field a in record x
;5 (s avr) --record set —-

H returns a record with the value v stored in field a
H and all other fields with the values in r

(defthm g-same-s
(implies (force (fieldp a))
(equal (g a (s a v r))
v)))

(defthm g-diff-s
(implies (and (force (fieldp a))
(force (fieldp b))
(not (equal a b)))
(equal (g a (s bv r))
(g ar))))

(defthm s-same-g
(implies (force (fieldp a))
(equal (s a (g ar)r)
r)))

(defthm s-same-s
(implies (force (fieldp a))
(equal (s ay (s axr))
(sayr))))

(defthm s-diff-s
(implies (and (force (fieldp a))
(force (fieldp b))
(not (equal a b)))
(equal (s by (s axr))
(sax (sbyr))))
irule-classes ((:rewrite :loop-stopper ((b a s)))))

B Definition of intermediate system

(defun i-thf-s (f s)
(case (loc f)
(2 (if (and (itm f)
(= (ctr £) (ctr s)))
(>s :deq (drop-top (deq s))
:ctr (1+ (ctr s)))
s))
(3 (>s :ret (itm f) :clk (1+ (clk s))))
(t s)))
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(defun i-thf-f (f s)
(case (loc f)
;3 popTop
(0 (>f :loc 1 :ctr (ctr s)))
(1 (>f :loc 2 :itm (get-top (deq s))))
(2 (>f :loc (if (and (itm f)
(= (ctr s) (ctr £)))
30)))
(t (>f :loc 0))))

(defun i-onr-s (o s)
(case (loc o)
(1 (>s :deq (drop-bot (deq s))))
(3 (if (or (= (ctr o) (ctr s))
(and (atom (deq s))
(implies (itm o) (ctr o))
(not (xzero 0))))
(>s :ctr (1+ (ctr s)))
s))
(4 (>s :ret (itm o) :clk (1+ (clk s))))
(56 (>s :deq (push-bot (dtm o) (deq s))))
(t s)))

(defun i-onr-o (p d o s)
(case (loc o)
(0 (if p (o :loc 5 :dtm d)
(>0 :loc 1)))
;3 popBottom
(1 (o :loc 2
:itm (get-bot (deq s))
:ctr (and (one-eltp (deq s))
(ctr s))))
(2 (let ((o (>0 :loc 3)))
(cond ((or (not (itm o))
(consp (deq s))
(= (ctr o) (ctr s)))
o)

((not (ctr o)) (>o :ctr (ctr s)))

(t (o :itm nil)))))
(3 (>0 :loc (if (and (itm o)
(implies (ctr o)

(= (ctr o) ;;
(ctr s)))) ;;
4 0) HE
:xzero (implies (itm o) (ctr o)) ;;
:ctr nil)) -
;3 (4 (5o :loc 0)) -

;3 pushBottom
(5 (>0 :loc 0 :xzero nil))
(t (>0 :loc 0))))
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(DEFUN intr (st in)

(let* ((ndx (thf (ndx in)))
(dtm (dtm in))
(psh (psh in))
(tvs (tvs st))
(shr (shr st))
(onr (onr st))
(thf (<- tvs ndx)))

(if (ndx in)
(>st :tvs (-> tvs ndx (i-thf-f thf shr))
:shr (i-thf-s thf shr))
(>st :onr (i-onr-o psh dtm onr shr)
:shr (i-onr-s onr shr)))))
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