
An Incremental Stuttering Re�nement Proof of a ConcurrentProgram in ACL2Rob SumnersComputer Engineering Research CenterThe University of Texas at Austinrobert.sumners@amd.comAbstractWe present an incremental re�nement proof in ACL2 which demonstrates the reduction ofthe observable behaviors of a concurrent program to those of a much simpler program. Inparticular, we document the proof of correctness of a concurrent program which implementsthe operations of a double-ended queue in the application of a work-stealing algorithm. Thedemonstration is carried out by proving a re�nement from the implementation to a speci�cationvia an intermediate model. We document the use of the intermediate model in dividing theveri�cation problem into more manageable steps which in turn allow for more e�ective proofreductions in ACL2. In both steps, the more abstract system is allowed �nite stuttering andthis is important in correlating re�nement proof with progress in the more concrete system.1 IntroductionConcurrent program development is an error-prone enterprise. It is di�cult for a human programmerto keep track of the various possible states a concurrent program can reach. Thus, an \innocent"change may easily introduce a bug which is hard to detect and/or diagnose since the change wasmade with an inaccurate mental picture of the program's behavior. It is because of the complexity ofbug detection and diagnosis and the ease of bug introduction in concurrent programs, that high-levelabstractions are often developed which provide a simpler, safer programming model (e.g. databasetransactions). In some cases, e�ciency is a concern and a low-level concurrent implementation isneeded to solve a particular problem. In those cases it is paramount that the programmer carefullydocuments and/or proves the correctness of his/her algorithm.Arora, Plaxton, and Blumhofe[2] developed a program for maintaining a deque viewed andmanipulated by an arbitrary number of concurrent processes which is used in a process schedulerbased on work stealing. The optimality of the scheduler relies on the assumption that the programsmanipulating the deque are wait-free but make progress. Plaxton, Blumhofe, and Ray presenteda proof of the program's correctness[3] at an ACL2 meeting. Their proof was complicated by thevarious cases they had to consider in order to cover the possible program states which could bereached. This problem therefore appeared to be an excellent candidate for formalization in ACL2.This paper documents our solution to this problem.The proof of correctness we present is carried out by showing that the visible behaviors of theconcurrent deque implementation correspond to the visible behaviors of a much simpler speci�ca-tion program whose correctness is hopefully apparent. Exhibiting a correspondence between twoprograms is a common approach to analysis which re
ects the principle that it is often easier tospecify correctness using a program rather than using formulas.In this work, our notion of correspondence is well-founded re�nement which is a reformulationof re�nement upto stuttering that is amenable to proof with ACL2. It is derived directly from1

the work of Namjoshi[8] and Manolios[6, 5] on Well-Founded Equivalence Bisimulations (WEBs).This reformulation signi�cantly decreases the amount of ACL2 proof e�ort required from the userin proofs involving stuttering. Additionally, the notion of correspondence we use is compositionaland thus allows a re�nement to be proved in incremental stages. We demonstrate this by breakingthe re�nement proof for the concurrent deque into four separate re�nements which can be chainedtogether to provide the �nal result.In Section 3, we will present a precise de�nition of well-founded re�nement and our argumentwhy the allowance of �nite stuttering in re�nements is appropriate and correct for reasoning abouta program at di�erent levels of abstraction. We will then detail in Section 4 the re�nement proofswhich were carried out including the proof reductions which improved the e�ciency of the interactionwith ACL2. But �rst, we present the concurrent deque program which is the target of our formalveri�cation e�ort.2 Concurrent DequeThe name \deque" stands for double-ended queue and is a data structure which stores a sequence ofelements and supports pushing and popping from both ends of the sequence { or equivalently viewedas a double-ended stack. The program we will analyze is the concurrent deque program presentedin Figure 3 and is named cdeq. The program cdeq is composed of a single owner program and anarbitrary �xed number of thief programs; where each program has access to a common deque. Theowner program can push or pop items on the bottom of the deque, while the thief programs canonly pop items from the top of the deque. Items are never pushed onto the top of the deque, sothe name \deque" is a misnomer. The owner program and each thief program has a local store ofvariables. The local variables of a program are only accessed and updated by that program. Someadditional variables which de�ne the common deque are shared amongst all programs.It is common in ACL2 modeling of systems or processes with non-terminating behavior to de�neand reason about the systems as step functions. For the purpose of this paper, a step functionis a binary function which takes a current state and input value and returns the next state. Thefunction cdeq in Figure 3 is a step function de�ning the asynchronous composition of the ownerprogram with each thief program; at each step, either the owner takes a step or a thief takes astep. The structure of the state and input parameters of cdeq are speci�ed in Figure 1. Figure 2depicts the structure of the deque in memory { the elements of the deque are stored in the indices[AGE:top; :::; BOT � 1] where BOT > AGE:top. The deque is empty if AGE:top � BOT andnon-empty otherwise.In Figures 3 and 5 we use an assignment-style notation for functions which transform states. Foreach of these functions, the signature is broken into inputs and states. For instance, owner(push;D)(o; S)takes two inputs push and D and two states o and S. As a convention, we use uppercase variablenames for variables which are shared and lowercase names for variables which are local. For instance,in the body of owner, MEM is short for S:mem (since S is bound to shared in cdeq) and dtm isshort for o:dtm. Each of the functions return an updated version of each of its state arguments,where the assignment field value updates the field in the corresponding state with value.The functions owner and thief de�ne the local step functions. Each local owner or thief steptransforms the state variables depending on the current value of loc by performing the correspondingassignments and then updating the loc variable to its next value. The program steps were de�ned[2] to correspond to operations which could be performed atomically for a particular concurrentmicroarchitecture. For instance, the steps at owner loc 14 and thief loc 8 correspond to a commoncompare-and-swap operation which is often atomic. It should also be noted that the (RETURN itm)and (return nil) steps in owner and thief are respectively shorthand for loc; RET; ret; CLK 0; itm; itm;CLK + 1 and loc; ret 0; nil.As we mentioned before, every thief attempts to pop from the top of the deque. The steps in2

cdeq state { a record of:shared { a record storing the shared variables:MEM { a natural-addressed vector of data valuesRET { the last non-nil value popped from the dequeCLK { an auxiliary label used to tag each pop uniquelyBOT { the address of the bottom of the deque in MEMAGE { a pair of numbers:tag { used to uniquely identify ages with same toptop { the address of the top of the deque in MEMowner { a record storing the owner's local variables:loc { the current program locationdtm { stores the value to be pushed onto the dequebot { a local copy of the BOT addressold { a local copy of the AGE addressnew { a modi�cation of olditm { a local copy of the data value to be returnedret { a local return value which is essentially ignoredthieves { a natural-addressed vector of records, where each record storesthe local variables of a thief (same as the owner, without dtm)cdeq input { a record of:N { selects which program (owner or thief) takes the next stepP { boolean input for owner to select push or popD { data value for owner to pushFigure 1: Structure of cdeq state and input parameters
0

DEQUEMEM

BOTAGE.top

Figure 2: Deque Layout in Memory
3

loc owner(push;D)(o; S) loc thief()(f; S)0 if push then 1 old AGEdtm D 2 bot BOT19 bot BOT 3 if bot � old:top then20 MEM [bot] dtm 4 return nil21 bot bot+ 1 5 itm MEM [old:top]22 BOT bot 6 new oldelse ;; pop 7 new:top new:top+ 11 bot BOT 8 if old = AGE then2 if bot = 0 then new;AGE AGE; new3 return nil 9 if old = new then4 bot bot� 1 10 RETURN itm5 BOT bot 11 return nil6 itm MEM [bot]7 old AGE cdeq(in)(st)8 if bot > old:top then if in:N then9 RETURN itm thieves[in:N]; shared 10 BOT 0 thief ()(thieves[in:N]; shared)11 new:tag; new:top old:tag; 0 else12 new:tag new:tag + 1 owner; shared 13 if bot = old:top then owner (in:P; in:D)(owner; shared)14 if old = AGE thennew;AGE AGE; new15 if old = new then16 RETURN itm17 AGE new18 return nil Figure 3: Concurrent Deque Program | cdeq

4

the thief function carry out this operation. First, the current AGE and BOT are read into thelocal variables old and bot. Next, the thief checks to see if the deque is empty and returns nil if itis. Otherwise, the thief will grab the itm stored at the top of the deque and then increment a localcopy of AGE stored in new. At 8, the thief will perform a compare-and-swap which has the resultof incrementing AGE:top if the AGE has not changed since it was stored in old at 1. The main ideaof the thief is the point that either a thief \succeeds" in popping the deque { i.e. AGE = old at 8{ or some other process must have changed the AGE of the deque and thereby \succeeded" in theirpop. The correctness of the concurrent program only relies on some process succeeding in poppingelements from the deque; it doesn't matter which process succeeds. Notice at 9 that new is equalto old if and only if AGE was equal to old at 8 and so the test at 9 and the related returns at 10and 11 should be clear.The owner function de�nes steps for implementing a push onto the bottom of the deque, locs19-22, and for implementing a pop from the bottom of the deque, locs 1-18. Pushes onto the bottomof the deque and pops from the bottom of the deque when the deque has more than one element areindependent of pops from the top of the deque and the steps taken in owner are straightforward,locs 1-9 and 19-22. When the deque has a single element and the owner wants to pop, then theowner contends with the thieves for that element. This case is handled in locs 10-18. Furthermore,when the owner detects an empty deque, it will reset the deque to BOT = AGE:top = 0. When theowner performs this reset of the deque to 0, it increments the AGE:tag to ensure that no stale thiefwith old:top = 0 falsely matches old = AGE at 8 in the thief function.The function cdeq is the main step function which de�nes the asynchronous composition of theowner with some arbitrary but �xed number of thieves. A given step is de�ned by the selection ofa process using in:N (either an integer indexing a thief or nil denoting the owner) and then theupdate of the local state of that process and the shared state using either the thief step functionor owner step function.We translated the functions in Figure 3 into ACL2 functions. The functions in Figure 4 de�nethe translation of the thief function. The function c-thf-s returns the updated values for theshared variables for any thief step and c-thf-f does the same for the local variables. In thesefunctions and many others, we used de�nitions from a book about records in ACL2. In this context,a record is actually an association list where the entries have been ordered based on a total orderingof the keys. The keys in our case are either symbols or integers and the total ordering on keys is< on integers, symbol-< on symbols, and an arbitrary selection of integers ordered before symbols.The records book exports the functions (g a r) | get �eld a of record r | and (s a v r) | set�eld a of record r with value v | along-with several rewrite rules which simplify terms consistingof record sets and gets. These rewrite rules are provided in appendix A.The macros >s and >f used in Figure 4 translate into a sequence of record updates. For instance,(>f :loc 2 :old (age s)) translates to (s :loc 2 (s :old (age s) f)). We also use recordsfor the vectors MEM and thieves from Figure 3. For instance, the term (<- (mem s) (top (oldf))) from Figure 4 translates to (g (top (old f)) (mem s)). The use of these record de�nitionsand associated rewrite rules was of paramount importance in improving the readability of proofoutput from ACL2 (using symbols for keys) while requiring only a few rewrite rules for reducingterms involving record operations. The macros age, new, old, bot, itm, mem, clk expand into recordaccesses of the form (g :age ..), (g :new ..), etc.Our goal in analyzing the concurrent deque program in Figure 3 is to show that its observablebehaviors coincide with the observable behaviors of a much simpler program. Before we considerthis simpler program, we �rst need to de�ne what is observable from any given state and justify thisde�nition. For most programs, the answer to the question \what is observable?" is determined bypartitioning the variables into inputs, outputs, and internals, where the output variables are usuallyconsidered the observable values1. In our case, we want to preserve three variables: the dtm variable1For some contexts, it is necessary to preserve the behaviors de�ned on input variables and output variables, inwhich case both sets of variables should be considered observable.5

(defun c-thf-s (f s)(case (loc f)(8 (if (equal (age s) (old f))(>s :age (new f))s))(10 (>s :ret (itm f) :clk (1+ (clk s))))(t s)))(defun c-thf-f (f s)(case (loc f)(0 (>f :loc 1)) ;; we can ignore this no-op step(1 (>f :loc 2 :old (age s)))(2 (>f :loc 3 :bot (bot s)))(3 (>f :loc (if (> (bot f) (top (old f))) 5 4)))(4 (>f :loc 0 :ret nil))(5 (>f :loc 6 :itm (val (<- (mem s) (top (old f))))))(6 (>f :loc 7 :new (old f)))(7 (>f :loc 8 :new (top+1 (new f))))(8 (>f :loc 9 :new (if (equal (age s) (old f))(age s) (new f))))(9 (>f :loc (if (equal (old f) (new f)) 10 11)))(10 (>f :loc 0 :ret (itm f)))(11 (>f :loc 0 :ret nil))(t (>f :loc 0))))Figure 4: ACL2 de�nition of Thief function

6

of the owner state, the RET shared variable which is only updated on global RETURNs, and theCLK variable which is incremented at every pop in order to distinguish global returns of the samevalue. The idea is that if we want to verify that the concurrent deque can be viewed ideally as adeque, then we are interested in the values which are pushed onto and popped o� of the deque. Theobservation of a state is de�ned by a function label which takes a state and returns its observablevalue:label(st) = list(RET ,CLK,owner:dtm)We now de�ne a simple program which captures the legal observable behaviors of the concurrentdeque. This simple program is given in Figure 5. The thief states have been reduced to a singlevalue which is non-nil if the value should be RETURNed or nil if the thief should pop the value o�the top of the deque. This is exactly what is done in spec when in:N is non-nil except for the casesteal-last which corresponds to the state where the deque has a single element which the ownerhas popped but hasn't returned. In this case, a thief can \steal" this last value before the ownercan return it. Since we don't care who pops the values o� the deque, this is acceptable behavior aslong as an element is only popped once. This is ensured by setting owner:itm to nil which in turnensures that the owner will not return the element and no other thief can steal the element. Theowner state is reduced to a record with three �elds loc, itm, and dtm. The variable owner:loc goesfrom 'IDLE to 'POP or 'PUSH and then back to 'IDLE. The functions performed at each of theselocs is hopefully clear. When owner:loc is POP, it is worth noting that owner:itm is RETURNedif and only if it is non-nil. As we mentioned before, uppercase variables refer to shared variablesand in the function spec, the variables DEQ and RET are really st:shared:deq and st:shared:ret.The functions drop-top, get-bot, push-bot, drop-bot, and get-bot are de�ned on normal ACL2true-lists as follows:(defun val (x) (or x 0))(defun first-val (d) (and (consp d) (val (first d))))(defun get-top (d)(if (endp (rest d)) (first-val d)(get-top (rest d))))(defun drop-top (d)(if (endp (rest d)) ()(cons (first d) (drop-top (rest d)))))(defun get-bot (d) (first-val d))(defun drop-bot (d) (rest d))(defun push-bot (x d) (cons x d))3 Stuttering Re�nementProofs about functions in ACL2 assume axioms about the ACL2 primitives such as: (equal (car(cons x y)) x). At the ACL2 level we treat functions such as cons, equal, and car as atomicoperations which satisfy the axioms we assume. Under the hood, the actual de�nition for thesefunctions may be several pages of code which requires thousands of machine steps to perform the7

spec(in)(st)if in:N thenif thieves[in:N]RET thieves[in:N]CLK CLK + 1thieves[in:N] nilelse if steal-last(DEQ; owner; in)thieves[in:N] owner:itmowner:itm nilelsethieves[in:N] get-top(DEQ)DEQ drop-top(DEQ)elsecase owner:locPUSH:DEQ push-bot(owner:dtm;DEQ)owner:loc 'IDLEPOP:RET or(owner:itm;RET)CLK CLK + 1owner:itm nilowner:loc 'IDLEIDLE:if in:push thenowner:dtm in:Downer:loc 'PUSHelseowner:itm get-bot(DEQ)DEQ drop-bot(DEQ)owner:loc 'POP;; NOTE : steal-last(DEQ;�;�) implies DEQ is emptyFigure 5: Speci�cation Program | spec
8

necessary operation2. At the ACL2 level, we do not particularly care how cons, car, and equal areimplemented under the hood as long as they eventually return values which are consistent with theaxioms we assume. Thus, a speci�cation of the implementation for each of the ACL2 primitives inan underlying Lisp environment would consist of (a) each primitive eventually returns a value, and(b) these values are consistent with the axioms of ACL2. Actually, this is invariably incomplete sinceunlike the nice applicative world of ACL2, low-level machine code has side e�ects and only workscorrectly in certain well-formed contexts. For instance, if we executed the code for cons in a contextwhere the pointer to the next available cons-cell erroneously pointed to an existing (cons x y),then the setting of the car �eld of this cons-cell may have the side e�ect of invalidating the axiom(equal (car (cons x y)) x). We therefore adjust the above speci�cation of a Lisp environmentby adding that (a) and (b) only have to hold in \well-formed" contexts and then add the condition:(c) the property \well-formed" persists in the execution of each primitive. This concept of a well-formed context or state which persists is often termed an invariant and is central to many ACL2proofs about nonterminating systems. We will use the unary predicate inv to de�ne the set of\well-formed" program states.The various notions of re�nement we de�ne are simply formalizations of statements (a), (b), and(c) in the context of nonterminating programs de�ned by step functions. Intuitively, showing thatan implementation is a re�nement of a speci�cation ensures that the observed behaviors or tracesof the implementation are consistent with those of the speci�cation. In order to be more precise,we need to de�ne some terms. A sequence X is a total function mapping the natural numbers toACL2 objects. We will use the notation Xi as shorthand for X(i). For a given unary function inv,a run R of inv is simply a sequence where R0 is understood as the initial state of the run and iswell-formed { inv(R0) is T { and the remaining Ri de�ne an in�nite sequence of inputs. For a givenbinary function step, a sequence B is termed a behavior of hstep; invi if there exists a run R ofinv such that B0 = R0, and for all i > 0, Bi = step(Ri; Bi�1). For a given unary function label,a sequence T is termed a trace of hstep; label; invi if there exists a behavior B of hstep; invi suchthat for all i, Ti = label(Bi). A function impl is a trace re�nement of a function spec with respectto hlabel; invi if every trace of himpl; label; invi is also a trace of hspec; label; (lambda(x)T)i. Inpractice it is di�cult to prove (mechanically or otherwise) a trace re�nement directly since it involvesreasoning about the existence of in�nite sequences. A common method of attacking this problem isto de�ne a unary function rep { which maps impl states to their corresponding or representativespec states { and a binary function pick { which takes an impl state and input and returns a\matching" spec input { and proving the following single-step theorems:(defthm labels-equal->>;; we could add assumption of (inv st) here but it's rarely needed.(equal (label (rep st)) (label st)))(defthm inv-persists->>(implies (inv st)(inv (impl in st))))(defthm rep-matches->>(implies (inv st)(equal (rep (impl in st))(spec (pick in st) (rep st)))))The theorem rep-matches->> is a standard commutative theorem which commonly arises inproofs relating the behaviors of two programs or systems[7]. The combination of labels-equal->>2cons in Gnu Common Lisp is implemented with the C function make cons which in the course of allocating a newcons, may adjust several counters, allocate a new \page", and/or perform a garbage collection cycle.9

and rep-matches->> imply that impl is a trace re�nement of spec with respect to hlabel; invi.Unfortunately, with trace re�nement we cannot allow the implementation to make moves which areinternal or invisible to the speci�cation. Notice that condition (a) does not require that a valueis returned immediately, but instead eventually. This distinction is important in order to allowthe speci�cation and implementation to be de�ned at di�erent levels of action granularity. Theimplementation often needs to be de�ned with �ner-grain actions due to restrictions imposed by theenvironment in which the implementation is de�ned. At the same time the speci�cation often needsto be de�ned with coarser-grain actions for the purpose of clarity and conciseness.3Intuitively, we would like to weaken trace re�nement by allowing for �nite stuttering and in orderto de�ne this, we introduce the notion of sequence compression. The marker M of a sequence Xis another sequence where M0 = 0 and for all i � 0, Mi+1 is de�ned to be the least integer j suchthat (j > Mi and Xj 6= XMi) if such an integer exists and Mi + 1 otherwise. The compression C ofa sequence X is then the sequence de�ned by Ci = XMi . Now we weaken trace re�nement to allowfor �nite stuttering. A function impl is a stuttering re�nement of a function spec with respect tohlabel; invi if every compression of a trace of himpl; label; invi is also a compression of a trace ofhspec; label; (lambda(x)T)i. Similar to the simpli�cation of trace re�nement before, we would liketo �nd a set of single-step theorems which imply a stuttering re�nement. This very simpli�cationwas de�ned by Namjoshi[8] and Manolios[6] in the context of bisimulation and for this paper istermed well-founded re�nement (or simply re�nement) and is denoted (impl >> spec). The idea isto de�ne the functions rep and pick as before, but also de�ne a unary function rank which mapsimpl states to e0-ordinals. Intuitively rank de�nes a well-founded measure which decreases to thenext point at which spec can match the step of impl. The theorems required to prove a well-foundedre�nement are given in Figure 6. We also added the theorem well-founded->> which ensures thatthe rank function returns an e0-ordinal (required for well-foundedness w.r.t. e0-ord-<) boundedby an !-stack of depth (rank-depth) { i.e. !!:::!| {z }(rank-depth).Theorem 1 If impl is a well-founded re�nement of spec w.r.t. hlabel; invi then impl is a stut-tering re�nement of spec w.r.t. hlabel; invi.As we mentioned before, well-founded re�nement is compositional. We used bounded-ordpinstead of e0-ordinalp in well-founded->> in order to facilitate the de�nition of an ordinal pairingof two rank functions where e0-ord-< on the pair coincides with the lexicographic ordering on thetwo ranks. In order to prove that we can take two re�nements (impl >> intr) and (intr >> spec)and compose them to conclude (impl >> spec), we need the lexicographic ordering since impl maystutter in between any stuttering steps of intr. Assume we have a re�nement (impl >> intr)with witness functions rep1, rank1, inv1, and rank-depth1; and a re�nement (intr >> spec) withwitness functions rep2, rank2, inv2, and rank-depth2. Then we can prove the re�nement (impl>> spec) with witness functions rep, rank, inv, and rank-depth de�ned by:(defun rank (st)(ord-pair (rank2 (rep1 st))(rank1 st)(rank-depth1)))(defun rank-depth ()(+ 2 (rank-depth1) (rank-depth2)))3The distinction here between \coarse-grain" and \�ne-grain" is mainly for the purpose of presentation and some-what arbitrary since you could imagine cases, for instance, where you implement stack operations with array operationsand vice-versa. 10

(defthm labels-equal->>(equal (label (rep st)) (label st)))(defthm well-founded->>(bounded-ordp (rank st) (rank-depth)))(defthm inv-persists->>(implies (inv st)(inv (impl in st))))(defthm rep-matches->>(implies (and (inv st)(not (equal (rep (impl in st))(spec (pick in st) (rep st)))))(and (equal (rep (impl in st))(rep st))(e0-ord-< (rank (impl in st))(rank st)))))Figure 6: Requisite Theorems for Proving Re�nement(defun rep (st)(rep2 (rep1 st)))(defun inv (st)(and (inv1 st) (inv2 (rep1 st))))(defun pick (in st)(pick2 (pick1 in st) (rep1 st)))As we have stated it to this point, a re�nement implies that the compressed traces of impl are asubset of the compressed traces of spec. But, in some cases we want to show that the compressedtraces of impl are the same as the compressed traces of spec. We term this strong re�nementand note that a su�cient condition for strong re�nement is achieved when the function pick isthe identity function on its �rst parameter in.4 Often, strong re�nements are preferable since theyensure equivalence of the observed behaviors of the two systems. This is important because anerroneous behavior in the spec can be mapped back to an erroneous behavior in the impl whichmay not be the case if impl was simply a re�nement of spec. We will use (impl <-> spec) to denotestrong re�nement.4 Re�nement Proof DetailsIn this section we outline the de�nitions and intermediate re�nement steps performed in showingthat (cdeq >> spec) where the relevant functions cdeq, spec, and label were de�ned in Section 2.We will also detail the steps taken to simplify the proof requirements and some of the ACL2 featureswhich were found to be helpful.We found the re�nement (cdeq >> spec) prohibitively complex to prove directly and decided totake the approach of trying to �nd an intermediate system intr which was far simpler than cdeq4A more general criterion can be devised for strong re�nement, but the simpler requirement that pick is theidentity function is su�cient for the presentation in this paper.11

SHARED OWNER THIEF 0 THIEF 1 THIEF N

CDEQ

SHARED OWNER THIEF 0 THIEF 1 THIEF N

INTR

)RANK = (+

REP

IN

IN

PICK
rep-shr rep-onr rep-thf

Figure 7: Component-wise de�nition of rep and rankbut preserved the observed behaviors of cdeq. Thus, our goal was to de�ne a system intr suchthat we could prove (cdeq <-> intr). This would allow us to work with intr from then on withoutconsideration of cdeq.In analyzing possible goals for de�ning intr, we recognized the need to preserve the composi-tional structure of cdeq in intr. This would allow the proof of rep-matches->> to be reduced toproving local \matching" theorems for each component; one theorem for the owner and one theo-rem which could be used for each thief. The local matching theorems would show, in e�ect, thatthe each component of cdeq was a re�nement of the corresponding component of intr. The proofof rep-matches->> should then follow directly from the local theorems. This proof reduction canbe achieved by enforcing the following requirements: (1) rep is de�ned component-wise, (2) ranksimply adds the ranks of each component, (3) pick is the identity function, and (4) intr mustupdate the component selected by in:N . Now, the proof of rep-matches->> simply splits on thecomponent selected by in:N and since the other components (and their local rep and rank values)remain unchanged, the composite state of cdeq stutters i� the selected component stutters and thecomposite state of cdeq is matched by the composite state of intr i� the selected component ismatched. This reduction lets us de�ne and verify intr component-by-component and also is in-linewith another goal of proving (cdeq <-> intr). In other words, prove (cdeq-owner <-> intr-owner)and (cdeq-thief <-> intr-thief) and then derive (cdeq <-> intr).Another goal we set for the intermediate model was to translate some of the shared variables incdeq to simpler, coarser de�nitions in intr. First we translated the MEM -based deque in cdeq tothe list-based deque used in spec. This translation is performed by the function mend which walksthe indices from bot to top and conses the elements in MEM at each step.(defun mend (bot top mem)(and (integerp bot)(integerp top)(> bot top)(cons (<- mem (1- bot))(mend (1- bot) top mem))))Next, we wanted to translate the AGE shared variable to a simple CTR which is incrementedany time the thief (and sometimes the owner) pops from the top of the deque. Unfortunately, aconsistent value for such a CTR variable cannot be determined by the value of the AGE variablesince the owner may set AGE:top to 0 at any point. The solution is then to add an \auxiliary"CTR variable to cdeq which increments every time the AGE variable is updated. This introductionof auxiliary variables is common and \safe" as long as their values do not a�ect the actual variables12

of the program. As mentioned in [1], re�nement maps often require the use of auxiliary variablesto augment the state of a program with information about its history and its future. Rather thanassume the safety of auxiliary variables, we decided to de�ne another system cdeq+ which consistsof cdeq along with several auxiliary variables we needed to de�ne the correspondence between cdeqand intr. We now de�ne intr and at the same time augment cdeq+ as needed and in the end we willprove (cdeq+ <-> intr) and (cdeq+ <-> cdeq). The proof of (cdeq+ <-> cdeq) is straightforwardand simply involves the removal of the auxiliary variables in cdeq+ and requires no stuttering (i.e.rank is de�ned to be 0 and inv is de�ned to be T). Thus, cdeq+ now has an additional sharedauxiliary variable XCTR { all auxiliary variables will begin with x or X { which corresponds to theCTR shared variable in intr. This completes the translation of the cdeq shared variables which isde�ned by the following function rep-shr.(defun rep-shr (sh);; the macro >_ translates to a sequence of;; updates to an empty record, i.e. ()(>_ :deq (mend (bot sh)(top (age sh))(mem sh)):ctr (xctr sh):ret (ret sh):clk (clk sh)))The translation of the local owner and thief states follow a similar approach and as such we onlydocument the thief. We want to de�ne the intr thief to hide as many steps of the cdeq+ thiefas possible while still preserving the cdeq+ thief's behavior. Since we cannot hide updates to theshared variables, the goal is then to hide or stutter on \local" steps of the cdeq+ thief. In Figure 3,locs 3; 4; 6; 7; 9; 11 are clearly \local" since they do not involve any shared (uppercase) variables. Itis also clear that locs 8 and 10 are \global" since a shared variable is updated. This leaves locs 1; 2; 5and in order to determine which of these steps can be hidden, we need to consider the behavior ofthe cdeq+ thief. At 1, the thief copies AGE to the local old. The value in old not only determinesthe item in MEM which may be returned, but more importantly it is used at loc 8 to determineif the thief \succeeded". Thus, loc 1 clearly cannot be hidden. At loc 2, the thief copies the BOTpointer to a local bot variable. The value in bot is only used at loc 3 to determine if the deque isempty. Since the value of BOT may change between locs 1 and 2, we cannot hide the step at loc 2.The step at loc 5 copies the item in MEM [old:top] to the local variable itm. At �rst glance it mayappear that we cannot hide this step as well. But since we only RETURN itm if old = AGE, weknow that the top of the deque has not moved and in the intr thief, we can grab this value earlywhich in turn allows us to hide the step at loc 5. In summary, we have determined for the momentthat the intr thief only needs to match the steps at locs 1; 2; 8; 10 in the cdeq+ thief. Given thesesteps and the translation of the shared variables described above, we derived the intr thief de�nedin Figure 8. The function rep-thf which maps a cdeq+ thief state to an intr thief state is nowstraightforward: map xitm to itm, xctr to ctr, and cdeq+ thief loc to intr thief loc as depicted inFigure 8. The function rank-thf which de�nes the local stuttering measure for the cdeq+ thief is(essentially) 12� loc.The derivation of the de�nition of the intr owner from the cdeq+ owner followed a similarstrategy of hiding \local" steps in the re�nement. Referring to the de�nition of the owner functionin Figure 3, the intr owner must match the steps at locs 0; 5; 7; 9; 14; 16; 17; 22. We will not delveinto the de�nition of the intr owner here but the interested reader can examine the de�nition ofthe intr step function provided in appendix B.In order to facilitate the proof of (cdeq+ <-> intr), we decided to simplify the proof requirementsinto more direct steps. We �rst note that the theorems labels-equal->> and well-founded->>were easy to prove in each re�nement proof we performed and so we will ignore them for the sake of13

loc cdeq+-thf()(f; S) loc intr-thf()(f; S)0 skip 01 old AGE 0 ctr CTRxctr XCTR2 bot BOT 1 itm get-top(DEQ)xitm and(BOT > AGE:top;MEM [AGE:top])3 if bot � old:top then 24 return nil 05 itm MEM [old:top] 2 ;; the following test passes i� DEQ6 new old 2 ;; was non-empty and we \succeed"7 new:top new:top+ 1 28 if old = AGE then 2 if and(itm; ctr = CTR)new;AGE AGE; new DEQ drop-top(DEQ)XCTR XCTR+ 1 CTR CTR+ 19 if old = new then 0 j 310 RETURN itm 3 RETURN itm11 return nil 0Figure 8: Comparing cdeq+ thief with intr thiefpresentation. The form of the theorem rep-matches->> is not conducive to ACL2 proof since thecase analysis ACL2 performs is derived from whether or not intr can match the step of cdeq+. Inorder to better direct ACL2 to the desired result, we de�ned a predicate commit which takes a stateand an input and returns nil if and only if cdeq+ stutters. Using commit we can split the theoremrep-matches->> into three theorems which are easier to prove. We also de�ned a predicate suffwhich replaces inv in rep-matches->> and introduces the additional proof requirement that invimplies suff. The introduction of commit and suff results in splitting rep-matches->> into thefollowing four theorems:(defthm >>-stutter1(implies (and (suff st in)(not (commit st in)))(equal (rep (cdeq+ in st))(rep st)))(defthm >>-stutter2(implies (and (suff st in)(not (commit st in)))(e0-ord-< (rank (cdeq+ in st))(rank st)))(defthm >>-match(implies (and (suff st in)(commit st in))(equal (rep (cdeq+ in st))(intr (pick in st) (rep st)))))14

(defthm >>-invariant-sufficient(implies (inv st) (suff st in))In most cases, the de�nition of inv is far more detailed and constraining (since it must persist)than needed in order to prove rep-matches->>. The predicate suff instead can be used to de�nethe minimal assumptions required for proving rep-matches->> and further provides a starting pointfor the de�nition of inv. In fact, once the proper de�nitions for rep, rank, commit, suff, and pickwere determined and some simple theorems about the variable translations were proven (e.g. (equal(get-top (mend bot top mem)) (val (<- mem top)))), the above theorems went through ACL2with minimal assistance. In each of these theorems, ACL2 performed the necessary case-split (i.e.which process was selected, what is the current location, etc.) and simpli�ed each case to T. Indeed,the di�culty of proving each re�nement step correlated directly with the di�culty in coming upwith the correct de�nitions for the witnessing functions and in proving inv-persists->>.Subtle details would be exposed only during attempts at proving that the invariant persisted.For example, when the cdeq+ thief is at loc 8, it is su�cient to assume:(equal (equal (age s) (old f))(= (xctr f) (xctr s)))when proving the theorems above. But in the invariant, we have to strengthen this to (where age<<is the lexicographic ordering of a pair of numbers):(if (equal (age s) (old f))(= (xctr f) (xctr s))(and (age<< (old f) (age s))(< (xctr f) (xctr s))))and in addition, this condition has to hold from thief locs 2 through 8. While the de�nitions ofrank, rep, commit, and suff for (cdeq+ <-> intr) were intuitive, the de�nition of inv was detailedand unintuitive. This makes the use of ACL2 that much more important since it lifts the analysisburden of a human peer from the understanding of the details of the de�nitions and proofs to theunderstanding of \what" was proven with an implicit trust that ACL2 is sound.Where the nature of the re�nement from cdeq+ to intr was clear (i.e. hide \local" steps), there�nement from intr+ to spec is a little more subtle. In particular, notice that in the intr thieffunction that it is possible for the thief to fail to pop the top of the DEQ (i.e. when ctr 6= CTRat 2) even when the DEQ is non-empty. It was one of our goals in analyzing the concurrent dequeto show that when the deque is non-empty, progress is made in popping items from the top of thedeque. In order to ensure this, we de�ned spec such that thief steps cannot fail to pop the top ofthe deque. Thus, when a thief fails in intr+, intr+ stutters and the rank for intr+ states mustdecrease. Thus, there can only be a �nite number of thief failures in-between two thief successes.The rank function for intr+ is de�ned as follows:(defun rank (st)(if (consp (deq (shr st)))(cons (cons (rank-onr (onr st))(miss-count (tvs st) (max-thf)(ctr (shr st))))(rank-tvs-non-empty (max-thf) (tvs st)))(cons (rank-onr (onr st))(rank-tvs-empty (max-thf) (tvs st)))))When the deque is non-empty, the rank is a triple consisting of the owner's local rank, theexpression (miss-count (tvs st) (max-thf) (ctr (shr st))) which counts up the number of15

thieves whose local ctr value di�ers from the global CTR value, and �nally a summation of localranks for each thief. Intuitively, any step the owner takes will either decrease its local rank or bematched by spec. When a thief takes a step, either the step is matched by spec, or the thief'slocal rank has decreased and its ctr hasn't changed, or the thief's local ctr has changed, but it isnow equal to CTR. Thus, eventually every thief reaches the point where ctr = CTR and this canonly change if one of the processes succeeded in popping the top of the deque. Unfortunately, thisrank does not decrease if the DEQ is empty (since CTR may not change) and this is why the rankfunction changes to a di�erent measure when the deque is empty.The remaining de�nitions and proofs of the requisite theorems for (intr+ >> spec) were easy todeduce from either intuition or failed ACL2 proofs. While some of the de�nitions were subtle, therelative simplicity of intr+ in comparison to cdeq+ signi�cantly reduced the complexity of proving(intr+ >> spec) in comparison to (cdeq+ <-> intr). It is worth noting that spec uses an extrainput �eld to determine if a thief can steal the last item from the owner. We added this extra inputto spec in order to simplify the behavior of the thief steps, but this additional nondeterminism alsomeant that we could not prove (intr+ <-> spec). Since we use the spec function as the de�nitionof \correct" behavior, we valued simplicity in the de�nition of spec more than the preservation ofequivalence with cdeq.5 SummaryIn summary, we proved the following chain of re�nements:cdeq <-> cdeq+ <-> intr <-> intr+ >> specwhere cdeq+ and intr+ are simply cdeq and intr, respectively, with some additional auxiliaryvariables needed to complete the next step in the chain. The re�nement steps (cdeq+ <-> intr)and (intr+ >> spec) allowed �nite stuttering in cdeq+ and intr+ respectively which was importantto enable systems at di�erent levels of abstraction to be compared while ensuring progress. Themost di�cult step of these proofs was the de�nition of and persistence proof for the invariant forcdeq+. Although the invariant was detailed, once it was de�ned correctly ACL2 was able to verifyit in very reasonable time. The longest proof time we encountered with ACL2 was for the theoremthf-inv-onr-thm which took ACL2 about two minutes to prove (without printing).(defthm thf-inv-onr-thm ;; in (cdeq+ <-> intr) refinement(implies (and (inv-shr s)(inv-onr o s)(assume-thf f s)) ;; implied by (inv-thf f s)(inv-onr o (c+-thf-s f s))))This theorem states that the owner's invariant is preserved when a thief updates the sharedvariables. The main problem with interactively proving theorems of this nature is the turnaroundtime between submission and failure. This theorem, for instance, case splits into 1663 subgoals.On the one hand, it is desirable to inhibit the proof output of ACL2 in order to get a reasonableruntime on theorems with this many subgoals. On the other hand, when the theorem fails we needto examine the cases which failed and this, in turn, requires viewing the proof output. One solutionto this quagmire is for the user to be extremely careful and diligent in the de�nition of the invariantand hope that the proof simply goes through. We do not recommend this approach because it iseasy to add too many unnecesary details which complicate the user's de�nition task and ACL2'sproof task. The approach we we took in cases such as this was to use the ACL2 proof checker. Forintance, we used the following iterative ACL2 interaction cycle in order to �nd the proper de�nitionof inv-onr: 16

ACL2 !>(set-inhibit-output-lst '(proof-tree prove))(PROOF-TREE PROVE)... additional definitions, theorems begin interaction cycle ...ACL2 !>(defun inv-onr (o s) ...)ACL2 !>(verify (implies (and (inv-shr s)(inv-onr o s)(assume-thf f s))(inv-onr o (c+-thf-s f s))))->: bash***** Now entering the theorem prover *****... subgoals which failed simplification ...->: (repeat prove)... stops on first goal (if any) which failed the full prover we examine this goal to determine why it failed ...->: exitACL2 !> :uACL2 !> (defun inv-onr (o s) ... update the invariant ...)ACL2 !> (verify (implies (and (inv-shr s) repeat verify attempt ...It is also useful to de�ne proof-checker macros which allow you to use a single command toperform a series of repetitive proof checker tasks. The interested reader should consult the ACL2documentation of the proof checker and the special form define-pc-macro.Overall, ACL2 was indeed a valuable tool in this proof e�ort. While it is possible to do proofs ofcorrectness for concurrent programs by hand, the case analysis required may obfuscate human erroror omission. Mechanical veri�cation enforces a rigorous de�nition and proof which will likely covercases that may otherwise be missed. In fact, an e�ective interaction with ACL2 was actually usefulin iteratively re�ning the persistent invariant de�nitions. It seems unlikely that these invariantswould have been as complete if it were not for ACL2's stubborness in accepting their correctness.We conclude with a brief comparison between the proof of correctness presented in [3] andthe proof presented here. The proof presented in [3] involves demonstrating that any interleavingbehavior of the concurrent deque program can be transformed into a corresponding synchronousbehavior (i.e. one where every process performs pushes and pops atomically). This transformationis carried out by permuting small sequences of program steps, termed bursts, of di�erent processesuntil the behavior is synchronous. These permutations are presented through a series of sixteencongruences, beginning with the identity relation and concluding with a relation tieing every behaviorto a synchronous behavior. For instance, assume we have two program bursts B1;B2 of processesP1 and P2, and each burst only modi�ed local variables, then we could permute B1 and B2 withouta�ecting the resulting behavior since we end up in the same resulting state.The basic statement of correctness in [3] is elegant, but the analysis is tedious. An inherentbene�t of mechanized proof, when it is practical, is that the burden of \belief" is lifted from thedetails of a proof to the understanding of the proof statement and a belief in the mechanized checker.Beyond this point, it is inherently more di�cult to mechanically reason about behaviors or sequencesof steps than it is to reason about single steps. All of the ACL2 theorems presented in this paperinvolve no more than a single step of at most two separate programs. In addition, the statement ofstuttering re�nement is clear and its application requires only an understanding of the spec programand the label function. This does necessitate the reader to mentally exercise the spec program todetermine if it truly de�nes legal behaviors, and this, in turn, drives the need for the simplest spec17

possible. An additional bene�t of the approach presented in this paper is the ability to demonstrateprogress. The behavioral correspondence proved in [3] does not ensure progress to the next pop-topwhen the deque is non-empty. Indeed, stating this property would have further complicated thede�nition of a legal synchronous behavior. In our case, it is simply a result of proving a stutteringre�nement and the observation that a thief must pop the deque when it is non-empty in the specprogram.5.1 AcknowledgementsWe wish to thank Sandip Ray, Greg Plaxton, and Robert Blumhofe for posing the initial challengeof verifying their program and Sandip, in particular, for checking that the work presented here mettheir veri�cation goals. We also want to acknowledge input received from Pete Manolios, J Moore,and Matt Kaufmann when an earlier version of this work was presented to them. We especially wantto thank Pete for pushing the search for "the simplest speci�cation program" and pointing out anerror in an earlier version of the labeling function, and Matt Kaufmann who helped tremendously byanswering questions about the proof checker and providing signi�cant improvements to the recordsbook which was used extensively in this work.References[1] M. Abadi and L. Lamport. The existence of re�nement mappings. Theoretical Computer Science,82(2):253-284, May 1991.[2] N. Arora, R. Blumhofe, and C. Plaxton. Thread Scheduling for multiprogrammed multiproces-sors. In Proceedings of the 10th Annual ACM Symposium on Parallel Algorithms and Architec-tures, June 1998.[3] R. Blumofe, C. Plaxton, and S. Ray. Veri�cation of a Concurrent Deque Implementation. TheUniversity of Texas at Austin, Department of Computer Sciences. Technical Report TR-99-11.June 1999.[4] T. Henzinger, S. Qadeer, and S. Rajamani. Assume-guarantee re�nement between di�erenttime scales. Proceedings of the 11th International Conference on Computer-aided Veri�cation,Lecture Notes in Computer Science 1633, Springer-Verlag, 1999.[5] P. Manolios. Correctness of Pipelined Machines, In W. Hunt, and S. Johnson, editors, FormalMethods in Computer-Aided Design, FMCAD 2000, LNCS. Springer-Verlag, 2000.[6] P. Manolios, K. Namjoshi, R. Sumners. Linking theorem proving and model checking usingwell-founded bisimulation. In N. Halbwachs and D. Peled, editors, Computer-Aided Veri�cation,volume 1633 of LNCS, Springer-Verlag, 1999.[7] J. Moore. A Mechanically Checked Proof of a Multiprocessor Result via a Uniprocessor View.Formal Methods in System Design, 14(2), March, 1999, pp. 213-22[8] K. Namjoshi. A Simple characterization of stuttering bisimulation. In Foundations of SoftwareTechnology and Theoretical Computer Science, volume 1346 of LNCS, 1997.
18

A Rewrite rules for record operations;; (g a r) -- record get --;; returns the value stored in field a in record x;; (s a v r) -- record set --;; returns a record with the value v stored in field a;; and all other fields with the values in r(defthm g-same-s(implies (force (fieldp a))(equal (g a (s a v r))v)))(defthm g-diff-s(implies (and (force (fieldp a))(force (fieldp b))(not (equal a b)))(equal (g a (s b v r))(g a r))))(defthm s-same-g(implies (force (fieldp a))(equal (s a (g a r) r)r)))(defthm s-same-s(implies (force (fieldp a))(equal (s a y (s a x r))(s a y r))))(defthm s-diff-s(implies (and (force (fieldp a))(force (fieldp b))(not (equal a b)))(equal (s b y (s a x r))(s a x (s b y r)))):rule-classes ((:rewrite :loop-stopper ((b a s)))))B De�nition of intermediate system(defun i-thf-s (f s)(case (loc f)(2 (if (and (itm f)(= (ctr f) (ctr s)))(>s :deq (drop-top (deq s)):ctr (1+ (ctr s)))s))(3 (>s :ret (itm f) :clk (1+ (clk s))))(t s))) 19

(defun i-thf-f (f s)(case (loc f);; popTop(0 (>f :loc 1 :ctr (ctr s)))(1 (>f :loc 2 :itm (get-top (deq s))))(2 (>f :loc (if (and (itm f)(= (ctr s) (ctr f)))3 0)))(t (>f :loc 0))))(defun i-onr-s (o s)(case (loc o)(1 (>s :deq (drop-bot (deq s))))(3 (if (or (= (ctr o) (ctr s))(and (atom (deq s))(implies (itm o) (ctr o))(not (xzero o))))(>s :ctr (1+ (ctr s)))s))(4 (>s :ret (itm o) :clk (1+ (clk s))))(5 (>s :deq (push-bot (dtm o) (deq s))))(t s))) ;;locations in cdeq owner(defun i-onr-o (p d o s) ;; bot = 0 | bot > 0(case (loc o) ;; -------------------(0 (if p (>o :loc 5 :dtm d) ;; 0 | 0(>o :loc 1))) ;; |;; popBottom(1 (>o :loc 2 ;; 1 | 5:itm (get-bot (deq s)) ;; |:ctr (and (one-eltp (deq s)) ;; |(ctr s)))) ;; |(2 (let ((o (>o :loc 3))) ;; 2 | 7(cond ((or (not (itm o)) ;; |(consp (deq s)) ;; |(= (ctr o) (ctr s))) ;; |o) ;; |((not (ctr o)) (>o :ctr (ctr s))) ;; |(t (>o :itm nil))))) ;; |(3 (>o :loc (if (and (itm o) ;; 3 | 8,14,17(implies (ctr o) ;; |(= (ctr o) ;; |(ctr s)))) ;; |4 0) ;; |:xzero (implies (itm o) (ctr o)) ;; |:ctr nil)) ;; |;; (4 (>o :loc 0)) ;; | 9,16;; pushBottom(5 (>o :loc 0 :xzero nil)) ;; 22 | 22(t (>o :loc 0)))) 20

(DEFUN intr (st in)(let* ((ndx (thf (ndx in)))(dtm (dtm in))(psh (psh in))(tvs (tvs st))(shr (shr st))(onr (onr st))(thf (<- tvs ndx)))(if (ndx in)(>st :tvs (-> tvs ndx (i-thf-f thf shr)):shr (i-thf-s thf shr))(>st :onr (i-onr-o psh dtm onr shr):shr (i-onr-s onr shr)))))

21

