
Flat Domains and Recursive

Equations in ACL2

by

John Cowles

University of Wyoming

1

ACL2 is a logic of total functions.

• Some recursive equations have no

satisfying ACL2 functions:

No ACL2 function g satisfies this

recursive equation

(equal (g x)

(if (equal x 0)

nil

(cons nil (g (- x 1))))).

Theory of flat domains is a rival logic of total

functions.

• Every recursive equation has at least one

satisfying function.

2

Flat Domains

From the fix-point theory of program

semantics.

A flat domain is a structure

< S,v,⊥ >

, where

• S is a set,

• ⊥ ∈ S, and

• v is the partial order defined by

x v y ⇐⇒ x = ⊥ ∨ x = y.

3

Graphical representation of a flat domain:

⊥

tt t

L
L
L
LL

�
�
�
��

tt

b
b
b

b
b
b
b
b

"
"
"
"
"
"
"
"

· · ·· · ·
S − {⊥}

• Graphical representation of the < relation

defined by

x < y ⇐⇒ x v y ∧ x 6= y.

• The “flat part” is depicted by the vertices

labeled with S − {⊥}.

4

Extend the partial order, v, componentwise

to

• tuples from S × S × · · · × S by

< x1, . . . , xn > v < y1, . . . , yn >

⇐⇒ x1 v y1 ∧ · · · ∧ xn v yn

• functions f, g : S × · · · × S → S by

f v g ⇐⇒ (∀~x ∈ Sn)[f(~x) v g(~x)]

5

Flat Domains

Use total functions to model partial

functions.

• Interpret

f(~x) = ⊥

as meaning

f(~x) is undefined.

• Interpret, for functions f and g,

f v g
as meaning

whenever f(~x) is defined,

◦ g(~x) is also defined, and

◦ f(~x) = g(~x).

6

Least Upper Bounds of Chains

Every chain of functions on S,

f0 v f1 v · · · v fi v · · · ,
has an unique least upper bound, tfi.

• tfi is a function on S,

• for all j, fj v tfi and

• if f is any function such that for all i,
fi v f , then tfi v f ,

• define tfi(~x) by cases:

Case 1. ∀i(fi(~x) = ⊥).
Let tfi(~x) = ⊥.

Case 2. ∃j(fj(~x) 6= ⊥).
Let tfi(~x) = fj(~x).

7

Flat Domains

Recursive Equations

Let F be a function variable and

let τ [F] be a term built by compositions

involving F and other functions.

A recursive equation is of the form

F (~x) = τ [F](~x).

A solution for such an equation is a function

f such that for all ~x,

f(~x) = τ [f](~x).

Such a solution f is called a fixed point of

the term τ [F](~x).

8

Flat Domains

The Kleene Construction

A term τ [F] is monotonic:

• Whenever f and g are functions such that

f v g, then τ [f] v τ [g].

Kleene’s construction:

• When τ [F] is monotonic,

F (~x) = τ [F](~x)

always has a solution.

9

Flat Domains

The Kleene Construction

Kleene’s construction:

• Use the term τ [F] to recursively define a
chain of functions,

f0(~x) = ⊥
fi+1(~x) = τ [fi](~x).

• Since τ [F] is monotonic,

f0 v f1 v · · · v fi v · · ·

• Then,

tfi = τ [tfi].

That is, tfi is a solution for the recursive
equation F (~x) = τ [F](~x).

9-a

Turn ACL2 data into a flat domain

Impose a partial order, $<=$, on ACL2 data:

• specify a “least element”, ($bottom$),
strictly less than any other ACL2 datum

(defstub

$bottom$ () => *)

• no other distinct data items are related:

(defun

$<=$ (x y)

(or (equal x ($bottom$))

(equal x y)))

• ($bottom$) plays the part of ⊥ and
$<=$ plays the part of v.

10

Chains of functions in ACL2

Formalize a chain of functions

f0 v f1 v · · · v fi v · · · .

• Treat the index as an additional argument

to the function, so fi(x) becomes (f i x)

in ACL2.

• The $<=$-chain of functions is consistently

axiomatized by

(implies (and (integerp i)

(>= i 0))

($<=$ (f i x)

(f (+ 1 i) x))).

11

Chains of functions in ACL2

Formalize the least upper bound, tfi, of

f0 v f1 v · · · v fi v · · · .

• Use defchoose to pick the appropriate

“index” required in the definition of the

least upper bound.

• ACL2 verifies this formal least upper

bound is, in fact, the least upper bound

of the chain.

12

Which ACL2 terms are monotonic?

Recall:

To ensure that Kleene’s construction always

produces

• a solution for the recursive equation

F (~x) = τ [F](~x),

• the term τ [F] must be monotonic:

f v g ⇒ τ [f] v τ [g].

13

Which ACL2 terms are monotonic?

Tail Recursion. Let test, base, and st be
arbitrary unary functions.

Consider a term τ [F] of the form

(if (test x)

(base x)

(F (st x)))).

Such tail recursive terms are always
monotonic.

• This means that tail recursive equations
always have solutions.

• Another explanation for Pete & J’s result
that any tail recursive equation is
satisfiable by some ACL2 function.

14

Such tail recursive terms are always

monotonic:

Let f and g be functions such that

($<=$ (f x)(g x)), [i.e., f v g].

Case 1. (test x) is not NIL.

τ [f](x) = (base x) = τ [g](x).

So τ [f] v τ [g].

Case 2. (test x) is NIL

Since ∀y[(f y) v (g y)],

τ [f](x) = (f (st x))

v (g (st x))

= τ [g](x).

Thus τ [f] v τ [g].

14-a

Which ACL2 terms are monotonic?

Primitive Recursion. Let test, base, and st

be arbitrary unary functions.

Let h be a binary function.

Consider a term τ [F] of the form

(if (test x)

(base x)

(h x (F (st x)))))

Often such terms are not monotonic.

Such terms are monotonic

if h always preserves v in its second input:

y1 v y2 ⇒ (h x y1) v (h x y2)

15

Such primitive recursive terms are monotonic
if h always preserves v in its second input:

Let f and g be functions such that
($<=$ (f x)(g x)), [i.e., f v g].

Case 1. (test x) is not NIL.
τ [f](x) = (base x) = τ [g](x).
So τ [f] v τ [g].

Case 2. (test x) is NIL

Since ∀y[(f y) v (g y)],

(f (st x)) v (g (st x)).

Since h always preserves v in its second
input,

τ [f](x) = (h x (f (st x)))

v (h x (g (st x)))

= τ [g](x).

Thus τ [f] v τ [g].

15-a

Such primitive recursive terms are monotonic
if h always preserves v in its second input:

y1 v y2 ⇒ (h x y1) v (h x y2)

From Consistently Adding Primitive Recursive
Definitions in ACL2,

(equal (F x)

(if (test x)

(base x)

(h x (F (st x))))).

A sufficient (but not necessary)
condition on h for the existence of F is
that h have a right fixed point.

That is, there is some c such that
(h x c) = c.

Restate in the terminology of flat domains:

A sufficient (but not necessary) condition on
h for a primitive recursive term, τ [F], to be
monotonic is that h have a right fixed point.

15-b

Use: Such primitive recursive terms are
monotonic

if h always preserves v in its second
input:

y1 v y2 ⇒ (h x y1) v (h x y2)

To Prove: A sufficient (but not necessary)
condition on h for a primitive recursive
term, τ [F], to be monotonic is that h have
a right fixed point, c.

Proof. Use the right fixed point c to build a
flat domain:

• Use c for ⊥ and

• vc for v where

x vc y ⇐⇒ x = c ∨ x = y.

• Then

y1 vc y2 ⇒ (h x y1) vc (h x y2)

15-c

Which ACL2 terms are monotonic?

Nested Recursion. Let test, base, and st be

arbitrary unary functions.

Consider a term τ [F] of the form

(if (test x)

(base x)

(F (F (st x))))

Often such terms are not monotonic.

Such terms are monotonic

if F always preserves v:

y1 v y2 ⇒ (F y1) v (F y2)

That is, restrict the variable F to range only

over functions that always preserve v.

16

Nested Recursion and Kleene’s

Construction

Recall Kleene’s construction:

• Use the term τ [F] to recursively define a
chain of functions,

f0(x) = ⊥
fi+1(x) = τ [fi](x).

• Since τ [F] is monotonic,

f0 v f1 v · · · v fi v · · ·

• To ensure τ [F] is monotonic, the function
variable F should range only over
functions that always preserve v.

• That is, each fi should always preserve v.

16-a

Nested Recursion and Kleene’s

Construction

To ensure that each fi always preserves v:

• Clearly, f0, defined by f0(x) = ⊥, always

preserves v.

• Require: Whenever f always preserves v,

then τ [f] is also a function that always

preserves v.

16-b

Nested Recursion and Kleene’s

Construction

Requirement. Whenever f always preserves
v, then τ [f] is also a function that always
preserves v.

Orthodox Solution. Functions, that always
preserve v, are closed under composition.

• Restrict τ [F] to compositions involving
F and functions that always preserve v.

• So test, base, st, and if should all be
functions that always preserve v

(if (test x)

(base x)

(F (F (st x))))

• Problem. ACL2’s if does not
preserve v.

16-c

Nested Recursion and Kleene’s

Construction

Problem. ACL2’s if does not preserve v.

• Assume ⊥ 6= NIL.

• Then ⊥ < NIL, but

• (if ⊥ 0 1) = 0 6v 1 = (if NIL 0 1)

Solution. Replace ACL2’s if with a

sequential version, sq-if, that always

preserves v.

(sq-if ⊥ b c) = ⊥
(sq-if NIL b c) = c

(sq-if a b c) = b if a 6= ⊥ ∧ a 6= NIL

16-d

Nested Recursion and Kleene’s

Construction

Requirement. Whenever f always preserves

v, then τ [f] is also a function that always

preserves v.

Non-Orthodox Solution. Replace ACL2’s

if with the sequential version, sq-if, and

Make sure test is strict.

• A function is strict iff the function

returns ⊥ whenever any of its inputs is

⊥.

• Every strict function always preserves

v.

• The function sq-if is not strict.

16-e

Nested Recursion and Kleene’s

Construction

Non-Orthodox Solution. When test is

strict, the term

(sq-if (test x)

(base x)

(F (F (st x))))

always produces a strict function,

whenever F is replaced by any unary

function f.

Every strict function always preserves v.

16-f

Primitive heuristics for ensuring terms

are monotonic

For subterms, τ [F], of the form

(if (test x)

(then x)

(else x))

• If F appears in (test x), then replace if

by sq-if.

• If F is nested more than one deep in any

of (test x), (then x), or (else x), then

replace if by sq-if and ensure that

(test x) is strict.

17

Primitive heuristics for ensuring terms

are monotonic

• If F appears in (then x) or (else x) then,

other function applications appearing in

(then x) or (else x),

1. need not be applications of functions

that always preserve v, if they contain

no applications of F;

2. should be applications of functions

that always preserve v, if they contain

any application of F.

Example. (h (F (st x)))

st need not preserve v
h should preserve v

17-a

Zero Function. Construct an ACL2 function

Z satisfying the equation

(equal (Z x)

(if (equal x 0)

0

(* (Z (- x 1))(Z (+ x 1))))).

• The two recursive calls of Z are

contained inside the call to *.

• The heuristics suggest that * is the

only function required to preserve v.

• Unfortunately, * does not preserve v
with respect to the usual ACL2 version

of ⊥, ($bottom$).

18

• A strict version of * would require

(equal (* ($bottom$) x) ($bottom$))

(equal (* x ($bottom$)) ($bottom$)).

Fortunately, the above two equations do

hold if ($bottom$) is replaced by 0,

(equal (* 0 x) 0)

(equal (* x 0) 0).

Therefore, the entire construction can be

carried out using 0 in place of ($bottom$).

This example illustrates that any convenient

ACL2 object can be used to play the role of

($bottom$).

18-a

Ackermann’s Function. Construct an ACL2

function f satisfying

(equal (f x1 x2)

(if (equal x1 0)

(+ x2 1)

(if (equal x2 0)

(f (- x1 1) 1)

(f (- x1 1)

(f x1

(- x2 1)))))).

The heuristics suggest it should be

possible to find f that satisfies:

19

(equal (f x1 x2)

(if (equal x1 0)

(+ x2 1)

(SQ-IF (LT-ST-EQUAL x2 0)

(f (- x1 1) 1)

(f (- x1 1)

(f x1

(- x2 1)))))).

• Here SQ-IF is the monotonic sequential
version of if,

• LT-ST-EQUAL is a left-strict version of equal

satisfying

(equal (LT-ST-EQUAL ’undef$ y)

’undef$).

• Here ’undef$ is used in place of
($bottom$).

19-a

The heuristics are too primitive. No such

ACL2 function was proved to exist. But,

experimentation shows it is possible to define

an ACL2 function f satisfying

(equal (f x1 x2)

(if (equal x1 0)

(LT-ST-+ x2 1)

(sq-if (lt-st-equal x2 0)

(f (- x1 1) 1)

(f (- x1 1)

(f x1

(- x2 1)))))).

• Here LT-ST-+ is a left-strict version of

(binary) + satisfying

(equal (LT-ST-+ ’undef$ y) ’undef$).

19-b

Of course any function f satisfying this last

equation may not satisfy the original

equation. However, ACL2 can verify the

following, showing that any such f can fail to

satisfy the original equation only when the

second input is ’undef$:

(implies (not (equal x2 ’undef$))

(equal (f x1 x2)

(if (equal x1 0)

(+ x2 1)

(if (equal x2 0)

(f (- x1 1) 1)

(f (- x1 1)

(f x1

(- x2 1)))

)))).

19-c

