
Molecular Computation Models in ACL2: a

Simulation of Lipton’s Experiment Solving SAT.∗

F.J. Mart́ın-Mateos, J.A. Alonso, M.J. Pérez-Jiménez and F. Sancho-Caparrini
http://www.cs.us.es/{~fmartin,~jalonso,~marper,~fsancho}

Dpto. de Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla

February 28, 2002

Abstract

In this paper we present an ACL2 formalization of a molecular computing model: Adle-
man’s restricted model [2]. This is a first step to formalize unconventional models of compu-
tation in ACL2. As an application of this model, an implementation of Lipton’s experiment
solving SAT [7] is described, based on the formalization given in [6]. We use ACL2 to make a
formal proof of the completeness and soundness properties of the function implementing the
experiment.

1 Introduction

At the beginning of the fifties the analogy between some mathematical procedures and biological
processes starts to be established. L.M. Adleman [1] proved this relation in 1994, showing that
it was possible to use biological processes to solve difficult mathematical problems: he designed
a biological experiment based on DNA manipulation to solve instances of the Hamiltonian path
problem, a well known NP-complete problem. This experiment can be considered as a first step
to build a prototype of a molecular computer.

In 1995, R.J. Lipton [7] solved an instance of the satisfiability problem of propositional logic,
using the method of Adleman. Lipton’s experiment is interesting because the initial test tube does
not depend on the propositional formula, but on the number of its variables. In this way, the
experiment is a molecular solution to every instance of the satisfiability problem with a fixed set
of variables and hence, it provides a molecular algorithm.

Adleman and Lipton’s experiments are the starting point of molecular computation and reveals
its huge advantage in parallelism with respect to the conventional electronic computers. In 1995
[2] the first formal models of molecular computing appeared, based on a set of basic biochemical
operations. In 1996, D. Beaver [3] proved that these models are computationally complete, in the
sense that every computation of a Turing machine can also be achieve by a molecular machine.

In this paper we present an ACL2 formalization of a molecular computing model: Adleman’s
restricted model. This is a first step to formalize unconventional models of computation in ACL2.
The functions implementing the main operations in Adleman’s model are disabled after proving
its properties. So, the subsequent development is generic in that the specific operations are not
important, but the necessary properties of these operations are important.

In [6] a formalization of Lipton’s experiment is given as an iterative algorithm based on the
elemental operations of Adleman’s restricted model. We define recursive functions implementing

∗This work has been supported by MCyT: Project TIC2000-1368-CO3-02

1

this formalization and we prove the completeness and soundness theorems of these functions. A
transcription of these proofs is provided in this paper.

Finally we focus on two remarks of our implementation. First, a function providing the initial
test tube for Lipton’s experiment is provided and second, a final test is incorporated to the Lipton’s
experiment to decide the satisfiability of a propositional formula. We also show the completeness
and soundness theorems in both cases and explain the ideas we have followed to prove them.

2 Adleman’s restricted model

In [2] some abstract models for molecular computing are described. The first model proposed
works with test tubes with a set of DNA molecules (i.e. a multiset of finite sequences over the
alphabet {A,C, G, T}). Nevertheless, it may be preferable to use molecules other than DNA, using
an alphabet Σ which is not necessarily {A,C, G, T}. Further, though DNA has a natural structure
which allows to order the occurrence of elements and hence deal with sequences, this may not be
true for other types of molecules. Then, the members of a tube will be multisets of elements from
Σ. In the sequel, we consider an alphabet Σ and call aggregate a multiset of elements from this
alphabet.

The above considerations are the basis of the restricted model of molecular computation. This
model works on test tubes with a multiset of aggregates (i.e. a multiset of multisets of elements
from Σ). On these tubes, the following operations can be performed:

• Separate(T, x): Given a tube T and an element x ∈ Σ, produces two new tubes, +(T, x)
and −(T, x), where +(T, x) is the tube consisting of every aggregate of T which contains the
element x and −(T, x) is the tube consisting of every aggregate of T which does not contain
the element x:

+(T, x) = {γ ∈ T : x ∈ γ}
−(T, x) = {γ ∈ T : x /∈ γ}

• Merge(T1, T2): Given tubes T1 and T2, produces the new tube T1 ∪T2, which is the multiset
union of the multisets T1 and T2.

• Detect(T): Given a tube T , decides if T contains at least one aggregate; that is, returns
“yes” if T contains at least one aggregate and returns “no” if it contains none.

These operations are performed in the laboratory in the following way. If a Merge of tubes
is required, this is accomplished by pouring the contents of one of the tubes into the other. If a
Separate or a Detect operation is required on a tube then some technical operations (magnetic
bead system, polymerase chain reaction, get electrophoresis, ...) are performed on it. This model
is called “restricted” in the sense that the molecules themselves do not change in the course of a
computation.

To formalize the restricted model in ACL2, we use lists to represent multisets. Then, a test
tube is represented as a list of aggregates and an aggregate is represented as a list of elements from
Σ. So, the functions associated with the molecular operations work on lists.

We consider two functions, separate+ and separate-, associated with the Separate operation.
The first one returning the value +(T, x) and the second one the value −(T, x). The Merge
operation is associated with the function tube-merge. Finally, we consider the function detect
associated with the Detect operation.

The definition of these functions is not as much interesting as their properties. The proof of
the properties of any algorithm built on the restricted model must be independent of the imple-
mentation of the operations. This will ensure us the properties of this algorithm even when it is

2

evaluated in a molecular laboratory. Therefore, we use an encapsulate to assume the properties
of these functions, providing the adequate witness functions. The properties and the associated
events are the following:

• member-separate+ : γ ∈ +(T, x) ↔ (x ∈ γ) ∧ (γ ∈ T)

(defthm member-separate+
(iff (member aggr (separate+ tube X))

(and (member X aggr)
(member aggr tube))))

• member-separate- : γ ∈ −(T, x) ↔ (x /∈ γ) ∧ (γ ∈ T)

(defthm member-separate-
(iff (member aggr (separate- tube X))

(and (not (member X aggr))
(member aggr tube))))

• member-tube-merge : γ ∈ T1 ∪ T2 ↔ (γ ∈ T1) ∨ (γ ∈ T2)

(defthm member-tube-merge
(iff (member aggr (tube-merge tube1 tube2))

(or (member aggr tube1)
(member aggr tube2))))

• member-detect : Detect(T) ↔ ∃e ∈ T

(defthm member-detect
(and (implies (member e tube)

(detect tube))
(implies (detect tube)

(member (car tube) tube))))

If we want to test any algorithm build on the restricted model, we must provide functions
implementing the basic operations and prove the encapsulated properties for them.

3 Lipton’s experiment

Adleman’s Experiment [1] solved an instance of the Hamiltonian path problem over a directed
graph with two designated vertices, by implementing a brute force procedure in a laboratory of
molecular biology. To solve the problem, an initial test tube with DNA molecules encoding all
the paths in the graph was built. This tube was subjected to some operations based on DNA
manipulation, and every aggregate encoding a path which was not a valid solution of the problem
was removed.

Lipton shows in [7] how to solve an instance of the satisfiability problem for Propositional
Logic, using the ideas of Adleman. To achieve this, he described every relevant assignment of a
propositional formula by means of paths on a directed graph associated with the variable set of the
formula. Specifically, given a propositional formula in conjunctive normal form, F = c1 ∧ . . . ∧ cp,
with ci = li,1 ∨ . . . ∨ li,ri , and the set of variables V ar(F) = {x1, . . . , xn}, the associated directed
graph Gn = (Vn, En) is defined as follows:

3

. . . .a a a a a a a

x x x x x

xxxxx

1 2 3 n+1nn-1

1
1

1
0

2

2 3

3 n-1

n-1 n

n
1 1 1 1

0000

4

Figure 1: Directed graph associated with a propositional formula with n variables

Vn = {xj
i : 1 ≤ i ≤ n, 0 ≤ j ≤ 1} ∪ {ai : 1 ≤ i ≤ n + 1}

En = {(ai, x
j
i), (x

j
i , ai+1) : 1 ≤ i ≤ n, 0 ≤ j ≤ 1}

This graph, shown in figure 1, verifies the following properties:

• There are 2n paths from a1 to an+1.

• There exists a natural bijection between the above set of paths and the relevant assignments
of F , according to the following criteria: given γ = a1x

j1
1 a2x

j2
2 . . . xjn

n an+1, a path from a1 to
an+1, then the assignment γ̂ is associated with it, such as γ̂(xi) = ji, 1 ≤ i ≤ n.

The initial test tube contains DNA molecules codifying the paths from a1 to an+1, and so every
relevant assignment of F . With the alphabet Σ = {ai, x

j
i , an+1 : 1 ≤ i ≤ n, 0 ≤ j ≤ 1}, the initial

test tube considered is the following:

T0 = {{a1, x
j1
1 , a2, x

j2
2 , . . . , xjn

n , an+1} : 1 ≤ i ≤ n, ji ∈ {0, 1}}
Lipton’s experiment can be described as follows: for each clause in the initial formula, every

aggregate representing an assignment falsifying this clause is removed. The way to work with
clauses is the following: for each literal in the clause, every aggregate representing an assignment
in which this literal is true is preserved, and the remaining aggregates are removed. This experiment
has been formalized in [6], where it has been expressed as an algorithm based on the elemental
operations of Adleman’s restricted model:

Input: T0 (as described above)
For i ← 1 to p do

Ti,0 ← ∅;
T ′′i,0 ← Ti−1;
For j ← 1 to ri do

T ′i,j ← +(T ′′i,j−1, l
1
i,j)

T ′′i,j ← −(T ′′i,j−1, l
1
i,j)

Ti,j ← Ti,j−1 ∪ T ′i,j
Ti ← Ti,ri

Detect(Tp)

Where, for each literal li,j in the initial formula:

l1i,j =
{

x1
m if li,j = xm

x0
m if li,j = ¬xm

4

The number of molecular operations needed to execute this procedure to a formula with k
literals is O(k) (k separations, k merges and 1 detect). Also, the number of tubes used is:

1 +
p∑

i=1

(3 + 3 · ri) = 1 + 3p + 3k ∈ O(k)

The properties we want to prove about this algorithm are the following:

1. Soundness: ∀γ ∈ Tp, (γ̂(F) = 1)

2. Completeness: ∀γ ∈ T0, (γ̂(F) = 1 ⇒ γ ∈ Tp)

where γ̂(F) is the truth value of F in the assignment γ̂ (The truth value of a CNF formula is
extended as usual).

Next, we present our implementation of Lipton’s experiment in ACL2. First of all we must
notice that the above algorithm depends on the initial test tube (T0) and the propositional formula
(F), by means of the l1i,j . Then, we have developed a function with two arguments, the formula
and the tube. In fact, we have defined two functions, one for each loop. The function dealing
with the external loop works recursively on the number of clauses of F , and the other one works
recursively on the number of literals of the selected clause.

To formalize the algorithm we need to obtain the values l1i,j from the literals li,j . Also, to
express the properties we want to prove, we need to calculate the truth value of a formula in an
assignment. This brings us to formalize some concepts about propositional logic.

3.1 Propositional logic

First, we deal with the syntax. The propositional variables (or simply variables) are any ACL2
symbolp except nil. A positive literal (positive-literal-p) is any propositional variable. A
negative literal (negative-literal-p) is a list with two elements, the first one is the symbol -
and the second one is any propositional variable. A literal (literal-p) is any positive or negative
literal. A clause (clause-p) is a list of literals. A CNF formula (cnf-formula-p) is a list of
clauses.

With respect to the semantic, we use the symbols 0 and 1 as truth values (false and true
respectively). The function opposite-value, returns the opposite of a given truth value. To
represent assignments, we use association lists. In these lists a propositional variable can have
associated any value; if this value is 1, the variable is interpreted as true, if the value is not 1 or
the variable is not in the association list, then it is interpreted as false. The function that returns
the truth value of a propositional variable in an assignment is prop-variable-value.

The truth value of a literal in an assignment (literal-value) depends on its sign. The truth
value of a positive literal is the value of its variable. The truth value of a negative literal is the
opposite of the value of its variable. The truth value of a clause (clause-value) is true if some of
its literals is true, and false otherwise. The truth value of a CNF formula (cnf-formula-value)
is false if some of its clauses is false, and true otherwise.

3.2 Implementing the experiment

In this section, we present the functions implementing the loops of Lipton’s experiment. This
implementation does not use the Detect operation, it returns the last tube in the external loop (Tp).
Also, the initial test tube must be provided as an argument. In section 4 we show implementations
without these limitations and discuss how we have proved their properties.

First of all we need a function that builds the element l1i,j from the literal li,j . To represent the
elements l1i,j we use pairs: the element x0

i is represented with the pair (xi . 0) and the element
x1

i with the pair (xi . 1).

5

(defun l-element (label L)
(cond ((negative-literal-p L)

(cons (second L) (opposite-value label)))
(t (cons L label))))

Next, we define a function implementing the internal loop. Its inputs are a main tube, T ′′i , an
accumulator tube, Ti, and a clause. The aggregates in the main tube containing the element l1i,1
are merged with the accumulator tube in a new one. The aggregates in the main tube that do not
contain the element l1i,1 are poured in a new main tube. The new main and accumulator tubes are
used in the recursive call on the rest of the literals:

(defun sat-lipton-clause (C tube acc)
(cond ((endp C) acc)

(t (let* ((tube+ (separate+ tube (l-element 1 (car C))))
(tube- (separate- tube (l-element 1 (car C))))
(n-acc (tube-merge acc tube+)))

(sat-lipton-clause (cdr C) tube- n-acc)))))

The main function deals with the external loop. Its inputs are a tube and a CNF formula. This
function applies the internal loop on this tube, an initially empty accumulator tube and the first
clause of the formula. The result of this process is used as initial tube in the recursive call on the
rest of clauses:

(defun sat-lipton-cnf-formula (F tube)
(cond ((endp F) tube)

(t (let ((n-tube (sat-lipton-clause (car F) tube nil)))
(sat-lipton-cnf-formula (cdr F) n-tube)))))

The figure in the following page shows the behaviour of these functions and its relation with
the algorithm associated with Lipton’s experiment.

We have proved the following basic but important properties about the algorithm:

• ∀j = 0, . . . , ri(γ ∈ Ti,j ⇒ γ ∈ Ti,ri)

(defthm member-clause-accumulator
(implies (member aggr acc)

(member aggr (sat-lipton-clause C tube acc))))

• ∀j = 0, . . . , ri(γ ∈ Ti,ri ⇒ γ ∈ Ti,j ∨ γ ∈ T ′′i,j)

(defthm member-clause
(implies (member aggr (sat-lipton-clause C tube acc))

(or (member aggr tube)
(member aggr acc))))

• ∀i = 1, . . . , p(γ ∈ Ti ⇒ γ ∈ Ti−1)

(defthm member-clause-accumulator-nil
(implies (member aggr (sat-lipton-clause C tube nil))

(member aggr tube)))

• γ ∈ Tp ⇒ γ ∈ T0

(defthm member-cnf-formula
(implies (member aggr (sat-lipton-cnf-formula F tube))

(member aggr tube)))

6

(defconst *example* ’((p q) ((- q) p)))

(sat-lipton *example*)

; (SAT-LIPTON-CNF-FORMULA ’((P Q) ((- Q) P))

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 0) ((A) . 3)) T0

; (((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 0) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3))))

;

; => (SAT-LIPTON-CLAUSE ’(P Q)

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 0) ((A) . 3)) T ′′1,0

; (((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 0) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3)))

; ()) T1,0

;

; => (SAT-LIPTON-CLAUSE ’(Q)

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 0) ((A) . 3)) T ′′1,1

; (((A) . 1) (Q . 1) ((A) . 2) (P . 0) ((A) . 3)))

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3)) T1,1

; (((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3))))

;

; => (SAT-LIPTON-CLAUSE ()

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 0) ((A) . 3))) T ′′1,2

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 0) ((A) . 3)))) T1,2

;

; (SAT-LIPTON-CNF-FORMULA ’(((- Q) P))

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3)) T1

; (((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 0) ((A) . 3))))

;

; => (SAT-LIPTON-CLAUSE ’((- Q) P)

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3)) T ′′2,0

; (((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 0) ((A) . 3)))

; ()) T2,0

;

; => (SAT-LIPTON-CLAUSE ’(P)

; ’((((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3)) T ′′2,1

; (((A) . 1) (Q . 1) ((A) . 2) (P . 0) ((A) . 3)))

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3)))) T2,1

;

; => (SAT-LIPTON-CLAUSE ()

; ’((((A) . 1) (Q . 1) ((A) . 2) (P . 0) ((A) . 3))) T ′′2,2

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3))

; (((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3)))) T2,2

;

; (SAT-LIPTON-CNF-FORMULA ()

; ’((((A) . 1) (Q . 0) ((A) . 2) (P . 1) ((A) . 3)) T2

; (((A) . 1) (Q . 1) ((A) . 2) (P . 1) ((A) . 3))))

7

3.3 Aggregates and properties

The soundness and completeness properties of the algorithm have two hidden assumptions:

1. F is a CNF formula (cnf-formula-p).

2. γ is an aggregate with the form: {a1, x
j1
1 , a2, x

j2
2 , . . . , xjn

n , an+1} with 1 ≤ i ≤ n and j ∈ {0, 1}

We do not have formalized any property about the aggregates. Instead, we have checked that
the following property is enough to characterize them: for each variable xi in the original formula,
there must exist one and only one xj

i in the aggregate. Therefore, the elements ai in the aggregates
are not necessary. Nevertheless, we have to consider them to reflect the original experiment. To
formalize this property we must clarify the representation of aggregates. Some aggregates on the
variable set {X, Y, Z} are:

; (((A) . 1) (X . 1) ((A) . 2) (Y . 0) ((A) . 3) (Z . 0) ((A) . 4))
; (((A) . 1) (X . 0) ((A) . 2) (Y . 0) ((A) . 3) (Z . 1) ((A) . 4))
; (((A) . 1) (X . 1) ((A) . 2) (Y . 1) ((A) . 3) (Z . 0) ((A) . 4))

We have chosen the pairs ((A) . i) to represent the elements ai. We use (A) instead of A
to avoid problems if the symbol A occurs as a variable in the original formula. It is important to
notice that the representation chosen can also be used to represent the assignment associated with
the aggregate, because (A) is not a valid propositional variable in our formalization.

We have defined three functions checking the above property. The first one (variable-
-aggregate-p) checks the property with respect to a propositional variable, the second one
(clause-aggregate-p) with respect to the variable set of a clause and the third one (cnf-formula-
-aggregate-p) with respect to the variable set of a CNF formula. The functions literal-
-variable, clause-variables and cnf-formula-variables are used to obtain, respectively, the
variable of a literal, the variable set of a clause and the variable set of a CNF formula. In the
sequel, when we say that γ is an aggregate w.r.t. a literal, a clause or a formula, we mean that γ
is an aggregate with respect to its variable or its variable set.

Finally we establish the relationship between the aggregates and the relevant assignments of
the original formula:

• xi ∈ γ ↔ γ̂(x) = i

(defthm variable-aggregate-p-valor-member
(implies (and (prop-variable-p X)

(variable-aggregate-p aggr X))
(iff (member (cons X V) aggr)

(equal (prop-variable-value X aggr) V))))

3.4 Completeness property

The completeness property is the following:

∀γ ∈ T0(γ̂(F) = 1 ⇒ γ ∈ Tp)

We must add conditions establishing that F is a CNF formula and γ is an aggregate w.r.t. F .
Next, we show the formalization of this theorem in ACL2, where aggr is γ, tube is T0 and F is F :

8

Theorem 3.1 Completeness of sat-lipton-cnf-formula.

γ ∈ T0

F is a CNF formula
γ is an aggregate w.r.t. F
γ̂(F) = 1




⇒ γ ∈ Tp

ACL2 theorem:
(defthm completeness-sat-lipton-cnf-formula

(implies (and (member aggr tube)
(cnf-formula-p F)
(cnf-formula-aggregate-p aggr F)
(equal (cnf-formula-value F aggr) 1))

(member aggr (sat-lipton-cnf-formula F tube)))

The function sat-lipton-cnf-formula implements the external loop of Lipton’s experiment
by calling the function sat-lipton-clause. So, we must prove a similar result about this last
function. Finally, it is also necessary to establish another lemma about the function separate+
and the literals. These lemmas are necessaries to prove the completeness theorem, so they precede
it in the ACL2 book.

Lemma 3.1 Completeness of separate+.

γ ∈ T
L is a literal
γ is an aggregate w.r.t. L
γ̂(L) = 1




⇒ γ ∈ +(T, L1)

ACL2 theorem:
(defthm completeness-separate+

(implies (and (member aggr tube)
(literal-p L)
(variable-aggregate-p aggr (literal-variable L))
(equal (literal-value L aggr) 1))

(member aggr (separate+ tube (l-element 1 L)))))

Lemma 3.2 Completeness of sat-lipton-clause.

γ ∈ T ′′i,0
Ci is a clause
γ is an aggregate w.r.t. Ci

γ̂(Ci) = 1




⇒ γ ∈ Ti,ri

ACL2 theorem:
(defthm completeness-sat-lipton-clause

(implies (and (member aggr tube)
(clause-p C)
(clause-aggregate-p aggr C)
(equal (clause-value C aggr) 1))

(member aggr (sat-lipton-clause C tube acc)))

9

3.5 Soundness property

The soundness property is the following:

∀γ ∈ Tp(γ̂(F) = 1)

As in the completeness property, we must add conditions establishing that F is a CNF formula
and γ is an aggregate w.r.t. F . The formalization in ACL2 is the following, where aggr is γ, tube
is T0 and F is F :

Theorem 3.2 Soundness of sat-lipton-cnf-formula.

F is a CNF formula
γ is an aggregate w.r.t. F
γ ∈ Tp



 ⇒ γ̂(F) = 1

ACL2 theorem:
(defthm soundness-sat-lipton-cnf-formula

(implies (and (cnf-formula-p F)
(cnf-formula-aggregate-p aggr F)
(member aggr (sat-lipton-cnf-formula F tube)))

(equal (cnf-formula-value F aggr) 1))

Analogously to the completeness case, we also need lemmas showing similar properties about
sat-lipton-clause with respect to clauses and separate+ with respect to literals. These lemmas
precede the main theorem in the ACL2 book:

Lemma 3.3 Soundness of separate+:

L is a literal
γ is an aggregate w.r.t. L
γ ∈ +(T, L1)



 ⇒ γ̂(L) = 1

ACL2 theorem:
(defthm soundness-separate+

(implies (and (literal-p L)
(variable-aggregate-p aggr (literal-variable L))
(member aggr (separate+ tube (l-element 1 L))))

(equal (literal-value L aggr) 1)))

Lemma 3.4 Soundness of sat-lipton-clause:

Ci is a clause
γ is an aggregate w.r.t. Ci

γ ∈ Ti,ri

γ is not in the accumulator




⇒ γ̂(Ci) = 1

ACL2 theorem:
(defthm soundness-sat-lipton-clause

(implies (and (clause-p C)
(clause-aggregate-p aggr C)
(not (member aggr acc))
(member aggr (sat-lipton-clause C tube acc)))

(equal (clause-value C aggr) 1))

10

4 Completing the experiment

The functions developed in the previous section are not completely satisfactory. There are two
points we do not have considered yet. The first one is the initial test tube: the function sat-
-lipton-cnf-formula must receive a complete initial test tube to ensure the satisfiability of a
formula. The second one is the value returned by sat-lipton-cnf-formula: since we do not have
used the Detect function, the result is not a boolean value. Next, we present our solution to these
questions.

4.1 Building an initial test tube

To build the initial test tube we process the list representing the variable set of the CNF formula,
{x1, ..., xn}. From this list we build lists representing every aggregate {a1, x

j1
1 , a2, x

j2
2 , ..., xjn

n , an+1},
where ji ∈ {0, 1}. This is done recursively on the initial list by the function build-tube, using an
index to add the adequate mark ai. Then, the initial test tube for a CNF formula F is the result
of building a tube with the variable set of F , using 1 as an initial index for marks.

(defun build-initial-tube (F)
(build-tube (cnf-formula-variables F) 1))

Now, we obtain a satisfiability check function for propositional logic, using the result of the
above function as the initial test tube in the function implementing the experiment:

(defun sat-lipton (formula-fnc)
(sat-lipton-cnf-formula F (build-initial-tube F)))

Of course, we must prove the appropriate completeness and soundness theorems to ensure that
the last function checks the satisfiability of a CNF formula F . We can use the completeness and
soundness theorems about sat-lipton-cnf-formula to achieve this, previously proving that the
elements of the initial test tube are aggregates w.r.t. F . This property about build-initial-tube
is the following:

(defthm build-initial-tube-cnf-formula-aggregates
(implies (and (cnf-formula-p F)

(member aggr (build-initial-tube F)))
(cnf-formula-aggregate-p aggr F)))

In this theorem the function build-initial-tube is expanded (if it is not disabled) obtaining
a too much specific term involving the function build-tube. We have proved a similar theorem
about build-tube, using the term (build-tube Xs i) instead of (build-initial-tube F). Of
course, we must add new hypothesis about Xs with respect to the formula F:

H1) Xs contains the variable set of F: (subsetp (cnf-formula-variables F) Xs)

H2) Xs does not have repeated elements: (no-duplicatesp Xs)

H3) The term (a) is not in Xs : (not (member ’(a) Xs))

This more general theorem is:

(defthm build-tube-cnf-formula-aggregates
(implies (and (subsetp (cnf-formula-variables F) Xs)

(no-duplicatesp Xs)
(not (member ’(a) Xs))
(cnf-formula-p F)
(member aggr (build-tube Xs i)))

(cnf-formula-aggregate-p aggr F)))

11

Finally, an instance of this result provides the proof of the property about build-initial-tube.
In this instance i is replaced by 1 and Xs is replaced by (cnf-formula-variables F). To prove
the instance we also must prove instances of the new hypothesis:

• Instance of H1: (subsetp (cnf-formula-variables F) (cnf-formula-variables F))

This property is true because subsetp is reflexive.

• Instance of H2: (no-duplicatesp (cnf-formula-variables F))

This property is easily proved providing similar results about clause-variables and union-
-equal (when the arguments do not have repeated elements).

• Instance of H3: (not (member ’(a) (cnf-formula-variables F)))

This holds because F is a CNF formula in our formalization of propositional logic in which
(a) is not a propositional variable.

Finally we prove the completeness and soundness theorems of sat-lipton:

(defthm completeness-sat-lipton
(implies (and (cnf-formula-p F)

(member aggr (build-initial-tube F))
(equal (cnf-formula-value F aggr) 1))

(member aggr (sat-lipton F))))

(defthm soundness-sat-lipton
(implies (and (cnf-formula-p F)

(member aggr (sat-lipton F)))
(equal (cnf-formula-value F aggr) 1)))

4.2 A satisfiability checker

The other point to consider is the use of Detect operation as the last step in Lipton’s experiment.
Using it we have defined a function that decides if a CNF propositional formula is satisfiable or
not:

(defun sat-lipton-p (F)
(detect (sat-lipton F)))

On the other hand, it is noticed that the completeness theorems showed before are not satisfac-
tory in the sense that they do not involve an assignment, but an aggregate of the test tube. This
differs from the sat-lipton-p completeness theorem:

(defthm completeness-sat-lipton-p
(implies (and (cnf-formula-p F)

(equal (cnf-formula-value F assig) 1))
(sat-lipton-p F)))

To prove this theorem we have used the completeness theorem of sat-lipton, building an
aggregate aggr from the assignment, with the following properties:

• (member aggr (build-initial-tube F))

• (equal (cnf-formula-value F aggr) 1)

12

Then, by the completeness theorem, aggr belongs to (sat-lipton F) and hence this is not empty,
therefore (detect (sat-lipton F)) is true.

Finally the soundness theorem of sat-lipton-p is easily proved showing an assignment in
which the initial formula is true. The first aggregate in the returned tube of sat-lipton can be
used for this purpose:

(defthm soundness-sat-lipton-p
(implies (and (cnf-formula-p F)

(sat-lipton-p F))
(equal (cnf-formula-value F (car (sat-lipton F))) 1)))

5 Conclusions and further work

In this work we have presented a formalization of Adleman’s restricted model, one of the first
molecular computing models. This formalization has been done in a generic framework in which
the concrete implementation of its operations is not important, but only their properties. Using
this formalization we have defined functions simulating Lipton’s experiment solving SAT. Finally,
the completeness and soundness properties of these functions have been proved.

The formalization of unconventional models of computation is a suitable way of working with
them when we do not have real models (e.g. we do not have a laboratory implementing molecular
computing models). This formalization brings us the possibility of simulate real experiments or
develop new ones. With ACL2 we also can prove properties about these experiments. In this way,
we actually work on the formalization of membrane computing models [8], [4], [5].

References

[1] Leonard M. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266:1021–1024, 11, 1994.

[2] Leonard M. Adleman. On constructing a molecular computer. In R.J. Lipton and E.B. Baum,
editors, DNA Based Computers, number 27 in DIMACS Series, pages 1–21. American Mathe-
matical Society, 1996.

[3] Donald Beaver. A universal molecular computer. In R.J. Lipton and E.B. Baum, editors, DNA
Based Computers, number 27 in DIMACS Series, pages 29–36. American Mathematical Society,
1996.

[4] M. J. Pérez Jiménez and F. Sancho. A formalization of transition P–systems. Fundamenta
Informaticae, 49 (1-3):261–272, 2002.

[5] M. J. Pérez Jiménez and F. Sancho. Verifying a P–system generating squares. Romanian
Journal of Information, Science and Technology, 5 (2-3), 2002, to appear.

[6] M. J. Pérez Jiménez, F. Sancho, C. Graciani, and A. Romero. Soluciones moleculares del
problema SAT (in spanish). In A. Nepomuceno and all, editors, Lógica, Lenguaje e Información,
JOLL’2000, pages 243–252. Ed. Kronos, 2000.

[7] Richard J. Lipton. DNA solution of hard computational problems. Science, 268:542–545, 28,
1995.

[8] Gheorghe Paun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

13

