Implementation in ACL2 of Well-Founded
Polynomial Orderings

I. Medina-Bulo*, F. Palomo-Lozano*, and J. A. Alonso-Jiménez?

*Dept. de Lenguajes y Sistemas Informaticos (Univ. de Cadiz)
Escuela Superior de Ingenierfa de Cadiz. C/ Chile, s/n. 11003 Cadiz. Spain.
{inmaculada.medina, francisco.palomo }@uca.es
"Dept. de Ciencias de la Computacién e Inteligencia Artificial (Univ. de Sevilla)
Facultad de Matemaéticas. Avda. Reina Mercedes, s/n. 41012 Sevilla. Spain.

jose-antonio.alonso@cs.us.es

Abstract

This paper presents how the development of a polynomial ordering and
the verification of its properties can be fit in the framework of AcCL2.
The key result is the well-foundedness of a polynomial ordering, which
is proved by a proper ordinal embedding. Normalized polynomials
have been formalized to achieve this. The motivation for this work
is to serve as a basis for proving the termination of certain reduction
relations on polynomials in Acr2.

1 Motivation

The abstract notion of reduction can be modeled by using a unary function,
red, which tries to simplify its argument with respect to a given strict partial
order <. If the element cannot be simplified it is said to be #rreducible or
“in normal form” and red returns it unchanged. Otherwise, the element is
reducible. The characteristic property of such a function is:

red(p) #p = red(p) <p.

In this context, red is called a reduction function. This framework can be
translated into AcL2 [4, 5] by encapsulating three functions: the reduction
function, the order and an ordinal measure.

The (unbounded) exponentiation of the reduction function red is recur-
sively defined by the following function, red*.

red*(p) — 3 P red(p) = p
) {red*wed(p)), red(p) # .

Unfortunately, this function is not guaranteed to terminate. However,
termination can be assured whenever < is well-founded. This is what would
precisely enable ACL2 to admit red™ under its definitional principle.

Therefore we are mainly interested in reduction functions related to well-
founded orders. In fact, our main concern is the formalization of certain
reduction functions on polynomials arising in Buchberger’s algorithm for
Grobner bases computation. Thus, we must develop a well-order < on poly-
nomials. The goal of this work is to explore different alternatives to achieve
this.

In Sect. 2 the process of obtaining a normalized representation for poly-
nomials from an unnormalized representation is explained. The reason for
this is twofold. First, a previous work by the authors on polynomials in
which an unnormalized representation was employed [6] can be reused. Fi-
nally, and more importantly, a normalized representation makes the rest of
the work considerably easier.

As we have explained above, in order to accommodate polynomials to our
notion of reduction, the monomial ordering must be extended to polynomials.
This is done in Sect. 3. We will see that the underlying monomial embedding
into ep-ordinals must be taken with great care.

2 Normalized Polynomials on Top of an Unnormal-
ized Layer

In a normalized representation for polynomials [3, 10|, a unique represen-
tation is associated with each polynomial. A polynomial is said to be in
normal form if it satisfies the following conditions:

1. Its monomials are in strictly decreasing order.

2. It does not contain a null monomial.

Using this approach, which predates Computer Algebra Systems, very
efficient algorithms can be obtained. These algorithms operate on normalized
polynomials and return normalized polynomials.

The main advantage of this method from the verification point of view
stems from the fact that the semantic equivalence between polynomials be-
comes syntactic equality. It is not difficult to implement operations using
this representation. However, problems appear when trying to prove such
“elemental” properties like associativity of addition.

This led us to use another representation, less efficient from an algorith-
mic perspective, but more appropriate to verify the properties. We think
that this is a paradigm of the trade-off between algorithmic efficiency and
verification simplicity: it is clear that in an unnormalized setting, addition
is just concatenation of the monomial lists, whose associativity is trivial to
prove in ACL2.

On the other hand, an unnormalized representation presents some draw-
backs. The major disadvantage from the verification standpoint is that
equality becomes semantic, that is, it has to operate with the equivalence
classes induced by the normalization process. This problem can be overcome
in ACL2 by using equivalences and congruences.

Surprisingly, normalized and unnormalized representations have some-
thing in common: both of them use the notion of “monomial ordering” (a
strict total order on terms lifted to monomials). This order is used in differ-
ent places depending on the representation. In a normalized representation
the order is taken into account in each operation. However, an unnormalized
representation will use the order in the semantic equivalence predicate.

This observation allows us to build normalized polynomials (package
NPOL) on top of a layer of unnormalized polynomials (package UPOL) pre-
sented by the authors in [6]. Let nfp stands for the predicate that checks
whether an object is a list of non-null monomials in strictly decreasing order
and nf the normalization function:

(in-package "NPOL")

(defun polynomialp (p)
(and (UPOL::polynomialp p) (UPOL::nfp p)))

(defun + (p @
(UPOL: :nf (UPOL::+ p q)))

(defun * (p q)
(UPOL: :nf (UPOL::* p q)))

(defun - (p)
(UPOL: :nf (UPOL::- p)))

(defun null ()
(UPOL: :null))

(defun identity ()
(UPOL: :identity))

Notice that the polynomials returned by the functions UPOL: :null and
UPOL: :identity are already in normal form. The core ring properties for
these normalizing operations follows:

(defthm |p + q = q + pl
(equal (+ p @) (+ q p)))

(defthm |(p + q) + T =p + (g + 1)}
(equal (+ (+ pqg) r) (+p (+ qm))))

(defthm |p * q = q * pl
(equal (x p @) (*x q p)))

(defthm |(p * q) * r = p * (q * 1)
(equal (*x (* pqg) r) (xp (*x qr))))

(defthm |lp * (@ + 1) = (p *x q + (p *)l
(equal (* p (+ qr)) (+ (*x pq) (*x pr))))

(defthm |p + (- p) = O]
(equal (+ p (- p)) (null)))

(defthm |0 + p= p|
(implies (polynomialp p)
(equal (+ (null) p) p)))
(defthm |1 * p = pl
(implies (polynomialp p)
(equal (* (identity) p) p)))

Most of these NPOL theorems are proved by disabling UPOL operations
and using the UPOL counterpart of the theorem and the following properties:

(in-package "UPOL")

(defthm [nfp(p) <=> nf(p) = pl
(iff (nfp p) (equal (nf p) p)))

(defcong = equal (nf p) 1)

The last form is a congruence theorem where = represents the semantic
equivalence between unnormalized polynomials. It states that if the first
argument of nf is replaced by an equivalent element, with respect to =, then
the result is syntactically the same, i.e. equal. In fact, it produces the
following form when expanded:

(defthm =-implies-equal-nf-1
(implies (= p p-equiv)
(equal (nf p) (nf p-equiv)))
:rule-classes :congruence)

Nevertheless, the proof of some theorems such as associativity and dis-
tributivity is much more difficult to obtain. We have found that they require
the following extra properties and congruences:

(defthm |p + nf(q) = p + ql
(= (+p (af Q) +p PN

(defthm |p * nf(q) = p * ql
(= (xp (af @) (*x p Q)

(defcong =
(defcong

+pa 2
(* pq 2)

The theorem |p * nf(q) = p * gl and the congruence of * with respect
to = were very hard to prove. They were not present in our previous work
on unnormalized polynomials, but they are required to extend them to a
normalized representation.

In addition, the last two congruences were proved by using reversed ver-
sions of |p + nf(q) = p + ql and |p * nf(q) = p * ql|. Unfortunately,
reversing these rules produces infinite rewriting:

+pq — (+p (0f @) — (+p (@f (uf ©)) — ---
(xpq — (xp (uf @) — (xp (f (uf Q)) — ---

In order to avoid this, we introduced syntactic restrictions to the ap-
plicability of the reversed rules. A term (+ p q) or (* p q) will only be
rewritten by these rules if the term q is not of the form (nf x). Syntactic
restrictions can be imposed to a rule by means of syntaxp. A macro can
help to improve the readability of the restricted rules.

(defmacro not-nf-syntaxp (p)
‘(syntaxp (not (and (consp ,p) (eq (first ,p) ’nf)))))

(defthm |p + q = p + nf(q)|
(implies (not-nf-syntaxp q)
= Gpq (+p @ PN

(defthm |p * q = p * nf(q)|
(implies (not-nf-syntaxp q)
(= (xpq (xp (@f 9)))))

Once this was done, congruences with respect to the first argument were
established by using commutativity explicitly.

Henceforth we will assume NPOL as the current package and we will use
normalized polynomials. This package also imports common symbols from
the ACL2 and COMMON-LISP packages.

3 Lifting the Order from Monomials to Polynomials

Polynomials are constructed from monomials. Each monomial has a coeffi-
cient and a term. Let X = {x1,...,z,} be a finite set of variables with an
ordering relation <x = {(zj,z;) : 1 <i < j <n}. A term on X is a finite
power product of the form z{'---z¢, e; € N. Once variables have been in-
dexed, terms can be represented by lists of natural numbers, i.e. z7*---z&
is represented by (eq,...,en,).

Taking into account exponent lists, the obvious choice is to set up a

lexicographical ordering on these sequences of natural numbers:
(al,...,an) < <bl,...,bn> = (ai < b A\NVj <iaj = bj).

In [6] this relation is shown to be a strict total order on terms in ACL2.
In addition, this order was proved to be well-founded and admissible. The
“monomial ordering” is just the translation of the term ordering into mono-
mials where monomials are compared according to their terms. Therefore
the monomial ordering inherits its properties from the term ordering.

3.1 Induced Polynomial Ordering

Monomial orderings can be lifted to normalized polynomials in a straight-
forward way. The following predicate compares two polynomials as lists of
monomials by using MON: :=T (the equality between the underlying terms of
two monomials) and MON: :< (the monomial ordering).

(defun < (p q)
(cond ((or (endp p) (endp q))
(not (endp q))
((MON::=T (first p) (first q))
(< (rest p) (rest q)))
(t
(MON::< (first p) (first q9))))))

It is proved that this relation satisfies the properties of a strict partial
order (irreflexivity and transitivity).

(defthm |p < pl
(not (< p pP)))

(defthm |p < 9 & q <r =>p < r|
(implies (and (< p q) (<K q 1)) (K p 1))

3.2 Ordinal Type

Terms are embedded into the ordinals with the function term->e0-ordinal .

(defun term->e0-ordinal (a)
(if (endp a)
0
(cons (cons (len a) (first a))
(term->e0-ordinal (rest a)))))

This function maps every list of natural numbers to its corresponding
€p-ordinal. It is proved that this is an order-preserving morphism which
follows the pattern below.

n
<61, L ’€n> N wwn+e1 4 ww—i—en _ wan_”l—kei.
=1

There are other possible embeddings. However, we have found that this
embedding presents the advantage of providing a small ordinal type, making
this representation easier to handle.

The translation of monomials into eg-ordinals is accomplished by the
function monomial->e0-ordinal which simply applies term->e0O-ordinal
to the underlying term. Now, we can proceed to embed polynomials in
€p-ordinals by using the following function.

(defun polynomial->e0-ordinal (p)
(if (endp p)
0
(cons (monomial->e0-ordinal (first p))
(polynomial->e0-ordinal (rest p)))))

Let p = (mq,...,mg) a polynomial, and m; = {(e;1,...,€in), 1 <i <k
its monomials. If p is given in a normalized representation then:

mp <y <pgmp = Meo(mk) <eo <eo Mﬁo(ml)’

where <js= MON::<, M., = monomial->e0-ordinal and <.,= e0-ord-<.
This follows from the theorem stating that <,s is a well-founded relation.
Thus, the function polynomial->e0-ordinal implements this mapping:

3.3 Well-Foundedness

The first step to prove the well-foundedness of the polynomial ordering is
proving that the polynomial ordinal embedding is correct.

(defthm correctness-of-polynomial->e0-ordinal
(implies (polynomialp p)
(e0-ordinalp (polynomial->e0-ordinal p))))

We were amazed when our first attempt failed. In fact, this is not a
theorem in the current context: if monomial->e0-ordinalp happens to re-
turn 0, polynomial->e0-ordinalp does not construct a proper ep-ordinal in
Cantor’s Normal Form. One possible solution is to increment the ordinals
associated to each term by 1:

(defun term->e0-ordinal (a)
(if (endp a)
1 ; formerly O
(cons (cons (len a) (first a))
(term->e0-ordinal (rest a)))))

Obviously, this shift does not change the well-foundedness of the mono-
mial ordering. With this slight modification, ordinals are assigned to poly-
nomials according to:
n—j+

k 1
nw® teij
(my,...,mg) — E wri=1¥ +1
=1

It is interesting to remark that the proof attempt fails again. However,
the conjecture is not false any more. Inspection of the proof script reveals
that AcL2 should use the antisymmetric property of e0-ord-<:

(defthm |a <e0 b => “(b <e0 a) |
(implies (e0-ord-< a b)
(not (e0-ord-< b a))))

Once this property is proven, the correctness theorem is automatically
proved. Then, the well-foundedness of the polynomial ordering can be es-
tablished.

(defthm well-foundedness-of-<
(and (implies (polynomialp p)
(e0-ordinalp (polynomial->e0-ordinal p)))
(implies (and (polynomialp p) (polynomialp q)
&p)
(e0-ord-< (polynomial->e0O-ordinal p)
(polynomial->e0-ordinal q))))
:rule-classes :well-founded-relation)

Alternatively, we might prefer to leave term->e0-ordinal unchanged
and modify polynomial->e0-ordinal accordingly. This latter possibility
has the advantage of separating two concerns: the development of monomial
orderings and the development of induced polynomial orderings.

(defun polynomial->e0-ordinal (p)
(if (endp p)
0
(cons (ordinal-increment (monomial->eQ-ordinal (first p)))
(polynomial->e0-ordinal (rest p)))))

(defun ordinal-increment (a)
(if (consp a)
(if (and (atom (rest a)) (integerp (rest a)))
(cons (first a) (+ (rest a) 1))
(cons (first a) (ordinal-increment (rest a))))
(if (and (integerp a) (<= 0 a))

(+ a 1)

a)))

As we can see, the ordinal produced by monomial->e0-ordinal is now
incremented by the function ordinal-increment. It is proved that the in-
crement of an ordinal is also an ordinal and that it cannot produce 0.

(defthm |e0-ordinalp(a) => e0-ordinalp(ordinal-increment(a)) |
(implies (e0-ordinalp a)
(e0-ordinalp (ordinal-increment a))))

(defthm |~ (ordinal-increment(a) = 0) |
(not (equal (ordinal-increment a) 0)))

The key property about ordinal-increment states that if an ordinal
is less than another, their relative order does not change when they are
incremented. Although the proof of this theorem is rather complex, ACL2
can prove it on its own.

(defthm |a <e0 b => a + 1 <e0 b + 1|
(implies (and (e0-ordinalp a) (eO-ordinalp b)
(e0-ord-< a b))
(e0-ord-< (ordinal-increment a)
(ordinal-increment b))))

Once these theorems are proved we proceed as before: first, the correct-
ness of the polynomial ordinal embedding must be stated; then the well-
foundedness of the polynomial ordering follows.

A final remark about ordinal-increment. It can be shown that there
are no ordinals between an ordinal and its increment.

(defthm |~“(a <e0 b & b <e0 a + 1)|
(implies (and (eO-ordinalp a) (eO-ordinalp b))
(not (and (e0-ord-< a b)
(e0-ord-< b (ordinal-increment a)))))
:rule-classes nil)

4 Conclusions and Future Work

A polynomial ordering has been developed and its well-foundedness has been
proved. This has been carried out by the only way allowed by ACL2: a proper
embedding of polynomials into the ey-ordinals. The development is generic,
in the sense that the construction of an induced polynomial ordering can
be made independent of the particular underlying monomial ordering. This
also proves that if the ordinal type of a monomial ordering is less than ¢,
then the induced polynomial ordering is also less than eg.

We adapted our previous development on polynomials to suit the needs of
our current work. Several new events have been added and others have been
modified. An example is the theorem |p * nf(q) = p * ql. Another case

10

is the embedding of terms into the eg-ordinals which was slightly modified
before being lifted to polynomials.

This particular term ordering is, basically, a lexicographical ordering on
the set of sequences of natural numbers. The term ordering is translated to
monomials in a straightforward manner by comparing monomials according
to their terms (coefficients are not taken into account).

The motivation for this work is to build up a solid basis for proving the
termination of reduction relations on polynomials in ACL2.

Equational reasoning and rewriting in a general setting [1] is covered in
J. L. Ruiz Reina’s PhD Thesis |7, 8|. With respect to this point, our approach
is more ad hoc: we are interested in very special reductions. Therefore we
plan to introduce polynomial reduction relations as subsets of the polynomial
ordering. This is akin to the approach taken by L. Théry [9] in CoQ [2] and
by the Computer Algebra community [3, 10].

The main application of these reductions on polynomials is the formal-
ization of the notions related to Buchberger’s algorithm for Grobner bases
computation.

References

[1] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge
University Press (1998)

[2] Dowek, G., Felty, A., Herbelin, H., Huet, G., Murty, C., Parent, C.,
Paulin-Mohring, C., Werner, B.: The C0Q Proof Assistant Reference
Manual. INRIA. Technical Report 0203 (1999)

[3] Geddes, K. O., Czapor, S. R., Labahn, G.: Algorithms for Computer
Algebra. Kluwer Academic Publishers (1992)

[4] Kaufmann, M., Manolios, P., Moore, J S.: Computer-Aided Reason-
ing: An Approach. Kluwer Academic Publishers (2000)

[5] Kaufmann, M., Manolios, P., Moore, J S.: Computer-Aided Reason-
ing: AcL2 Case Studies. Kluwer Academic Publishers (2000)

[6] Medina-Bulo, I., Alonso-Jiménez, J. A., Palomo-Lozano, F.: Au-
tomatic Verification of Polynomial Rings Fundamental Properties in

AcL2. The University of Texas at Austin, Department of Computer
Sciences. Technical Report 0029 (2000)

11

[7] Ruiz-Reina, J. L., Alonso-Jiménez, J. A., Hidalgo-Doblado, M. J.,
Martin-Mateos, F. J.: Formalizing Rewriting in the AcL2 Theorem
Prover. LNCS 1930 (2000)

[8] Ruiz-Reina, J. L.: Una Teoria Computacional acerca de la Logica
Ecuacional. Formalizacion en AcL2 de la Loégica Ecuacional y De-
mostracién Automatica de sus Propiedades. University of Sevilla. PhD
Thesis. (2001)

[9] Théry, L.: A Machine-Checked Implementation of Buchberger’s Algo-
rithm. J. Automated Reasoning 26 (2001)

[10] Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer-
Verlag (1996)

12

