Progress Report
Term Dags Using Stobjs

Dpto. de Ciencias de la Computación e Inteligencia Artificial
UNIVERSIDAD DE SEVILLA
Introduction

- We are currently exploring the use of efficient data structures to implement operations on first-order terms
- Our idea is to use a single-threaded object (stobj) to store terms as directed acyclic graphs (dags)
 - Thus, operations never build new terms but merely update pointers
 - Application of substitutions needs no reconstruction of terms
- As a first attempt: implementation and verification of a unification algorithm on term dags
- The work is not finished yet
 - But we think that there are some interesting points that can be discussed
Representation of term dags

- $f(h(z), g(h(x), h(u))) \approx f(x, g(h(u), v))$, as a term dag:

 ![Diagram of term dags]

- **A stobj used to store term dags:**

 (defstobj terms-dag
 (dag :type (array t (1000)) :resizable t))

- **Every graph node is represented by a cell. Depending on the type of a node i, (dagi i terms-dag) stores the following:**

 - $(f . l)$: node i is the root node of a term $f(t_1, \ldots, t_n)$ where l is the list of indices corresponding to t_1, \ldots, t_n.
 - $(x . t)$: node i stores the unbound variable x.
 - n: node i stores a bound variable pointing to node n.

- **Example (before solving):**

 #((EQU 1 9) (F 2 4) (H 3) (Z . T) (G 5 7) (H 6) (X . T) (H 8) (U . T)
 (F 10 11) 6 (G 12 14) (H 13) 8 (V . T))

- **Some terminology:**

 - we can view an array index as a term
 - lists of pair of indices as a system of equations
 - lists of pairs of the form $(x . N)$ as substitutions
 - *indices systems and indices substitutions*
An unification algorithm

- The following function applies one step of \Rightarrow^dag_u, the transformation \Rightarrow_u on term dags:

\[
\text{(defun dag-transform-mm} (S U \text{terms-dag})
\text{(declare (xargs :stobjs terms-dag :mode :program))}
\text{(let* ((ecu (car S)) (R (cdr S)))}
\text{(t1 (dag-deref (car ecu) terms-dag))}
\text{(t2 (dag-deref (cdr ecu) terms-dag))}
\text{(p1 (dagi t1 terms-dag)) (p2 (dagi t2 terms-dag)))}
\text{(cond}
\text{((= t1 t2) (mv R U t terms-dag))} \quad \text{;; DELETE}
\text{((dag-variable-p p1)}
\text{([if (occur-check t t1 t2 terms-dag)} \quad \text{;; CHECK}
\text{((mv nil nil terms-dag))}
\text{(let ((terms-dag (update-dagi t1 t2 terms-dag)))} \quad \text{;; ELIMINATE}
\text{((mv R (cons (dag-symbol p1) t2) U t terms-dag))})}
\text{((dag-variable-p p2)})
\text{((mv (cons (cons t2 t1) R) U t terms-dag))} \quad \text{;; ORIENT}
\text{((not (eq (dag-symbol p1) (dag-symbol p2)))} \quad \text{;; CLASH}
\text{((mv nil nil nil terms-dag))}
\text{(t (mv-let (pair-args bool)}
\text{(pair-args (dag-args p1) (dag-args p2))}
\text{(if bool)} \quad \text{;; DECOMPOSE}
\text{((mv (append pair-args R) U t terms-dag))}
\text{(mv nil nil nil terms-dag))})\text{)))} \quad \text{;; CLASH}
\text{))}
\]

- To obtain a most general unifier of two terms
 - we store both terms as graphs in the stobj
 - and iteratively apply \Rightarrow^dag_u, starting with the indices of the input terms and with the empty substitution
 - until the system is empty or unsolvability is found

- Remarks:
 - S and U do not contain terms but pointers
 - Syntactic restrictions enforced by stobjs are naturally ensured

Ruiz-Reina et al. CCIACL2 Workshop 2002 4
Example

Unification of \(f(h(z), g(h(x), h(u))) \approx f(x, g(h(u), v)) \)
Both terms are stored in the stobj terms-dag

Starting with the following unification problem:

\[
\begin{align*}
S & = ((1 . 9)) \text{ initial indices system to be solved} \\
U & = \text{nil} \quad \text{initial computed substitution} \\
\text{terms-dag} & = \#((\text{EQU} 1 9) (F 2 4) (H 3) (Z . T) \\
 & \quad (G 5 7) (H 6) (X . T) (H 8) (U . T) \\
 & \quad (F 10 11) 6 (G 12 14) (H 13) 8 (V . T))
\end{align*}
\]

Iteratively applying dag-transform-mm, we obtain:

\[
\begin{align*}
S' & = \text{nil} \\
U' & = ((V . 7) (U . 2) (X . 2)) \\
\text{terms-dag} & = \#((\text{EQU} 1 9) (F 2 4) (H 3) (Z . T) \\
 & \quad (G 5 7) (H 6) 2 (H 8) 2 \\
 & \quad (F 10 11) 6 (G 12 14) (H 13) 8 7)
\end{align*}
\]

Following the pointers of \(U' \) in terms-dag, we obtain the following most general unifier of the input terms:

\[
\{v \mapsto h(h(z)), \ u \mapsto h(z), \ x \mapsto h(z)\}
\]
Termination properties

- The previous functions are in :program mode
 - they are not terminating in general

- Problem: the graph stored in terms-dag could contain cycles

- Sources of non-termination:
 - Traversing the graph: for example (occur-check flg x h terms-dag) may not terminate
 - Even if occur-check is never applied, iterative applications of dag-transform-mm may not terminate

- We defined conditions that ensure termination
 - Directed acyclic graphs, dag-p
 - Main properties:
 (defthm dag-p-soundness
 (implies (not (dag-p g))
 (cycle-p (one-cyclic-path g) g)))

 (defthm dag-p-completeness
 (implies (cycle-p p g) (not (dag-p g))))

- This function allows us to define:
 * (dag-p-st terms-dag)
 * (well-formed-term-dag-st terms-dag)
 * (well-formed-upl-st S U terms-dag)

- These are expensive “type” checks
Functions in logic mode

- **Occur check:**

 (defun occur-check-st (flg x h terms-dag)
 (declare (xargs :measure ... :stobjs terms-dag))
 (if (dag-p-st terms-dag)
 (body)
 'undef))

- **Iterative application of** \Rightarrow_{dag}^{u}:

 (defun dag-solve-system-st (S U bool terms-dag)
 (declare (xargs :measure ... :stobjs terms-dag))
 (if (well-formed-upl-st S U terms-dag)
 (body)
 (mv 'undef 'undef 'undef terms-dag)))

- The measure functions are not trivial

- **Now we can define a function in logic mode** (dag-mgs-st S terms-dag), such that:

 - given a unification problem stored in terms-dag
 - and an indices system

 - returns a multvalue with a boolean (solvability), a most general solution in the form of indices substitution (in case of solvability) and terms-dag
Verification of dag-mgs-st

- Key point: if the graph stored in terms-dag is a dag, we can associate with each index of the array a term represented in the standard (list/prefix) notation

- Compositional reasoning
 - We first proved the properties of \Rightarrow_u acting on the standard representation
 - Then we prove:
 If $S;U;\text{terms-dag} \Rightarrow_u^{\text{dag}} S';U';\text{terms-dag}$, then $\alpha_{\text{terms-dag}}(S;U) \Rightarrow_u^{\text{dag}} \alpha_{\text{terms-dag}}(S';U')$ where $\alpha_{\text{terms-dag}}$ transforms indices into the corresponding terms in list/prefix representation
 - One of the main proof efforts: prove that $\Rightarrow_u^{\text{dag}}$ preserves the dag-p property

- The dag-p property is essential:
 - for termination
 - for compositional reasoning (for example, structural induction on term dags)

- The main theorem we have proved:

 If (well-formed-term-dag-st terms-dag) and S_0 is an indices system, let $[U,\text{bool},\text{terms-dag}] = (\text{dag-mgs-st } S_0 \text{ terms-dag})$, $S = \alpha_{\text{terms-dag}}(S_0)$ and $\sigma = \alpha_{\text{terms-dag}}(U)$. Then:
 - S has a solution if and only if $\text{bool} \neq \text{nil}$.
 - If $\text{bool} \neq \text{nil}$, σ is a most general solution of S.
Verification of dag-mgs-st

- Main properties proved:

 (defthm dag-mgs-st-completeness
 (let ((S (tbs-as-system-st S-dag terms-dag)))
 (implies
 (and (well-formed-dag-system-st S-dag terms-dag)
 (solution sigma S))
 (second (dag-mgs-st S-dag terms-dag))))

 (defthm dag-mgs-st-soundness
 (let* ((S (tbs-as-system-st S-dag terms-dag))
 (dag-mgs-st (dag-mgs-st S-dag terms-dag))
 (unifiable (second dag-mgs-st))
 (sol (solved-as-system-st (first dag-mgs-st)
 (third dag-mgs-st))))
 (implies
 (and (well-formed-dag-system-st S-dag terms-dag)
 unifiable)
 (solution sol S))))

 (defthm dag-mgs-st-most-general-solution
 (let* ((S (tbs-as-system-st S-dag terms-dag))
 (dag-mgs-st (dag-mgs-st S-dag terms-dag))
 (sol (solved-as-system-st (first dag-mgs-st)
 (third dag-mgs-st))))
 (implies
 (and (well-formed-dag-system-st S-dag terms-dag)
 (solution sigma S))
 (subs-subst sol sigma))))
To be done

• Integrate dag-mgs-st with a function that stores terms in the stobj
 • using the new functionalities in version 2.6 (with-local-stobj and resizable arrays)

• The algorithm is still exponential
 • we think it is not difficult to refine it in order to obtain a quadratic algorithm

• Possible future work:
 • Extensions: term rewriting, automated deduction
 • Reasoning about complexity

• But our current major problem is execution.
 • The dag-p check makes execution impractical

• One standard approach that could work:
 • A counter decremented in each recursive call: the dag check can be replaced by simpler integer tests
 • Equivalence of both versions have to be proved (for well-formed term dags)
 • As for the functions traversing dags, a suitable value for the counter is the number of total nodes

• We are exploring an alternative
Execution

- Use for execution similar functions in program mode, removing the expensive checks

- To be confident about this:
 - the functions have to be called only on term dags
 - recursion have to be closed on term dags
 - we can use the prover to ensure those conditions
 - for example, we have proved:

 \[
 \begin{align*}
 \text{(defthm well-formed-upl-st-preserved-by-dag-transform-mm-st)} \\
 \quad (& \text{implies (and (well-formed-upl-st S U terms-dag)}} \\
 \quad \quad (\text{consp S)}) \\
 \quad (\text{mv-let (S1 U1 bool1 terms-dag)}} \\
 \quad \quad (\text{dag-transform-mm-st S U terms-dag)}} \\
 \quad \quad (\text{well-formed-upl-st S1 U1 terms-dag)))))
 \end{align*}
 \]

- The \textit{guarded domain} idea of defpun (Manolios and Moore, ACL2 Workshop 2000):
 - The domain of a partial function is its guard
 - The guard verification mechanism provides built-in support for ensuring that recursion is closed
 - Drawback: termination conditions are mixed with Common Lisp compliant conditions

- We would like more built-in support for this kind of situations