A Theory About First-Order Terms in ACL2

Dpto. de Ciencias de la Computación e Inteligencia Artificial

UNIVERSIDAD DE SEVILLA
Introduction

• We present an ACL2 library formalizing the lattice-theoretic properties of first-order terms

• Our purpose is twofold:
 • theoretical: prove algebraic properties of terms
 • practical: verify some basic algorithms, like matching, renaming, anti-unification and unification
 • these algorithms can be executed in any compliant Common Lisp

• Example:
 • Definition and execution:
 ACL2 !>(anti-unify '(f (h (k u)) x (h y))
 '(f (h u) (g z) (h z)))
 (F (H 3) 2 (H 1))

 • Formal properties (greatest lower bound):
 (defthm anti-unify-lower-bound
 (and (subs (anti-unify t1 t2) t1)
 (subs (anti-unify t1 t2) t2)))

 (defthm anti-unify-greatest-lower-bound
 (implies (and (subs term t1)
 (subs term t2))
 (subs term (anti-unify t1 t2))))

• Usefulness of this library:
 • Already used in a formalization of term rewriting
 • It could be used to study properties of symbolic computation and automated deduction systems
Representation of first-order terms

- Terms in prefix notation, using lists:
 - $f(x, g(y), e)$ is represented as (f x (g y) (e))
 - Substitutions as association lists
- Useful view: every ACL2 object as a term
 - Variables: (defun variable-p (x) (atom x))
 - Non-variables: car and cdr, function symbol and list of arguments, respectively
- Recursion for terms and lists of terms
 (defun apply-subst (flg sigma term)
 (if flg
 (if (variable-p term)
 (val term sigma)
 (cons (car term)
 (apply-subst nil sigma (cdr term))))
 (if (endp term)
 term
 (cons (apply-subst t sigma (car term))
 (apply-subst nil sigma (cdr term))))))

 (defmacro instance (term sigma)
 `(apply-subst t ,sigma ,term))

- A typical example of theorem:
 (deftm composition-of-substitutions-apply
 (equal (apply-subst flg (composition sigma1 sigma2) term)
 (apply-subst flg sigma1 (apply-subst flg sigma2 term))))

- Induction scheme very close to structural induction
- As a particular case, the theorem for terms
- No "type" conditions
Matching and subsumption

- Subsumption: $s \leq t$ if and only if $\exists \sigma$ (matching substitution) such that $\sigma(s) = t$

- The subsumption relation in ACL2
 - Definition of (match-mv t1 t2), returning two values (a boolean (subs) and a substitution (matching))
 - The main theorems:
 (defthm subs-soundness
 (implies (subs t1 t2)
 (equal (instance t1 (matching t1 t2))
 t2)))

 (defthm subs-completeness
 (implies (equal (instance t1 sigma) t2)
 (subs t1 t2)))

- Remark: in order to define a theoretical concept, we defined and verified an executable algorithm match-mv, very used in practice
 - Definition and verification is inspired in a rule-based definition of a unification algorithm (described later)

- We have proved in ACL2 that the set of terms is a well-founded lattice w.r.t. \leq
 - Well founded quasi-ordering, with glb and lub
 - We only use the above properties about subs and matching, defining the subsumption relation
The subsumption quasi-ordering

- A well-founded quasi-ordering
 (defthm subsumption-reflexive (subs t1 t1))

 (defthm subsumption-transitive
 (implies (and (subs t1 t2) (subs t2 t3))
 (subs t1 t3)))

 (defthm subsumption-well-founded
 (and (e0-ordinalp (subsumption-measure t1))
 (implies (and (subs t1 t2) (not (subs t2 t1)))
 (e0-ord-< (subsumption-measure t1)
 (subsumption-measure t2)))))

- Equivalent terms and renamings
 (defun renamed (t1 t2)
 (and (subs t1 t2) (subs t2 t1)))

 (defun renaming (sigma)
 (and (variable-substitution sigma)
 (no-duplicatesp (co-domain sigma))))

- Theorems:
 (defthm renamed-implies-renamed
 (implies (and (renaming sigma)
 (subsetp (variables t term)
 (domain sigma)))
 (renamed (instance term sigma) term)))

 (defthm renamed-implies-renaming
 (let ((ren (normal-form-subst t (matching t1 t2) t1)))
 (implies (renamed t1 t2)
 (and (renaming ren)
 (equal (instance t1 ren) t2)))))
A particular renaming

- For practical purposes, we defined a particular renaming
 - \((\text{number-rename term } x \ y), \text{ which replaces numbers for variables}\)
 - Its main property:
 \[
 \text{(defthm number-renamed-term-renamed-term}
 \text{ implies (and (acl2-numberp } x \text{) (acl2-numberp } y \text{)}
 \text{ (not (= } y \ 0)))
 \text{ (renamed (number-rename term } x \ y \text{) term)))}
 \]

- Standardization apart
 \[
 \text{(defthm number-rename-standardization-apart}
 \text{ implies (and (acl2-numberp } x1 \text{) (acl2-numberp } x2 \text{)}
 \text{ (< } x1 \ x2 \text{) (< } y1 \ 0 \text{) (< } 0 \ y2))}
 \text{ (disjointp}
 \text{ (variables } t \text{ (number-rename } t1 \ x1 \ y1)\text{)}
 \text{ (variables } t \text{ (number-rename } t2 \ x2 \ y2)\text{))}
 \]

- The renamed equivalence and congruences
 \[
 \text{(defequiv renamed)}
 \]
 \[
 \text{(defcong renamed iff (subs } t1 \ t2 \text{) 1)}
 \]
 \[
 \text{(defcong renamed iff (subs } t1 \ t2 \text{) 2)}
 \]

- Congruence rewriting very useful in the mechanization of our proofs
Greatest lower bound of two terms

- We define an anti-unification algorithm
 - Example:

 ACL2 !>(anti-unify '(f (h y) x (h y)) '(f (g z) (g z) (g z)))
 (F 1 2 1)
 - Auxiliary function (anti-unify-aux flg t1 t2 phi)
 - By structural recursion, for terms and lists of terms
 - The terms are traversed, collecting their common structure
 - The argument phi is built incrementally, associating numeric variables to corresponding pair of terms with no common structure

- Properties of anti-unify (lower semilattice):

 (defthm anti-unify-lower-bound
 (and (subs (anti-unify t1 t2) t1)
 (subs (anti-unify t1 t2) t2)))

 (defthm anti-unify-greatest-lower-bound
 (implies (and (subs term t1)
 (subs term t2))
 (subs term (anti-unify t1 t2))))

- Proof strategy:
 - Incremental construction of phi: difficult to prove
 - Compositional reasoning: we first verify a similar function, where phi is assumed to be fixed
 - Under some conditions on phi, this function is equal to anti-unify
Unification of two terms (I)

• Definitions:
A substitution σ is a solution of a system of equations $S = \{s_1 \approx t_1, \ldots, s_n \approx t_n\}$ if $\sigma(s_i) \approx \sigma(t_i)$, $1 \leq i \leq n$.

It is a most general solution if $\sigma \leq \delta$ for every solution δ of S (where $\sigma \leq \delta$ if there exists a substitution γ such that $\delta = \gamma \circ \sigma$).

A (most general) unifier of s and t is a (most general) solution of the system $\{s \approx t\}$.

• Unification in ACL2
 • We defined (mgu-mv t1 t2), returning two values:
 a boolean (unifiable) and a substitution (mgu)
 • The main theorems:
 (defthm mgu-completeness
 (implies (equal (instance t1 sigma)
 (instance t2 sigma))
 (unifiable t1 t2)))

 (defthm mgu-soundness
 (implies (unifiable t1 t2)
 (equal (instance t1 (mgu t1 t2))
 (instance t2 (mgu t1 t2)))))

 (defthm mgu-most-general-unifier
 (implies (equal (instance t1 sigma)
 (instance t2 sigma))
 (subs-subst (mgu t1 t2) sigma)))

 • Subsumption between substitutions: subs-sust (its definition and properties are not trivial)
 • The main proof effort of the library
Unification of two terms (II)

- Rule–based specification of unification

Delete: \{t \approx t\} \cup R; T \quad \Rightarrow_u R; T
Decomp: \{f(s_1, \ldots, s_n) \approx f(t_1, \ldots, t_m)\} \cup R; T \quad \Rightarrow_u \{s_1 \approx t_1, \ldots, s_n \approx t_m\} \cup R; T
Conflict: \{f(s_1, \ldots, s_n) \approx g(t_1, \ldots, t_m)\} \cup R; T \quad \Rightarrow_u \text{nil} \quad \text{if} \ f \neq g \ \text{or} \ n \neq m
Orient: \{t \approx x\} \cup R; T \quad \Rightarrow_u \{x \approx t\} \cup R; T \quad \text{if} \ x \in X \ \text{and} \ t \notin X
Check: \{x \approx t\} \cup R; T \quad \Rightarrow_u \text{nil} \quad \text{if} \ x \in \nu(t) \ \text{and} \ x \neq t
Eliminate: \{x \approx t\} \cup R; T \quad \Rightarrow_u \{x \mapsto t\} R; \{x \approx t\} \cup \{x \mapsto t\} T \quad \text{if} \ x \in X \ \text{and} \ x \notin \nu(t)

- Definition in ACL2

 - We define (transform-mm S T), applying one step of transformation with respect to \(\Rightarrow_u\)

 - We define (solve-system S T bool), iteratively applying the transformation rules, until S is empty or unsolvability is detected (termination is difficult).

 - mgu-mv applies solve-system to (list (cons t1 t2))

- Advantages of rule-based specifications:

 - Proof clearly separated in two stages (invariants of the transformation steps and termination)

 - Logic and control separated (we do not need to specify a concrete selection strategy)

 - Nevertheless, some algorithms (anti–unification, for example) are more naturally expressed by recursion on the structure of the terms
Least upper bound of two terms

- Definition of (mg-instance t1 t2)
 - Standardize apart t1 and t2
 - Compute a most general unifier (if it exists) of the renamed terms
 - If it exists, apply the unifier to the renamed version of t1. Otherwise, return nil

- Examples:
 ACL2 !>(mg-instance '(f x (h y)) '(f (k u) u))
 (F (K (H 1)) (H 1))
 ACL2 !>(mg-instance '(f x (h x)) '(f (k u) u))
 NIL

- Theorems:
 (defthm common-instance-implies-mg-instance
 (implies (and (subs t1 term) (subs t2 term))
 (mg-instance t1 t2)))

 (defthm mg-instance-upper-bound
 (implies (mg-instance t1 t2)
 (and (subs t1 (mg-instance t1 t2))
 (subs t2 (mg-instance t1 t2)))))

 (defthm mg-instance-least-upper-bound
 (implies (and (subs t1 term) (subs t2 term))
 (subs (mg-instance t1 t2) term)))
Closure properties

- Terms in a given signature
 - Although we have not needed “type conditions”, we introduce them to state closure properties
 - A general signature
 (defstub signat (* *) => *)

- Well-formed terms in a signature
 (defun term-s-p-aux (flg x)
 (if flg
 (if (atom x)
 (eqlablep x)
 (if (signat (car x) (len (cdr x)))
 (term-s-p-aux nil (cdr x))
 nil))
 (if (atom x)
 (equal x nil)
 (and (term-s-p-aux t (car x))
 (term-s-p-aux nil (cdr x)))))))

 (defmacro term-s-p (x) '(term-s-p-aux t ,x))

- The operations defined are closed w.r.t. the terms in a given signature. For example:
 (defthm anti-unify-term-s-p
 (implies (and (term-s-p t1) (term-s-p t2))
 (term-s-p (anti-unify t1 t2))))

- As a particular case, the closure properties are used for guard verification
All these properties prove that the set of first-order terms in a given signature (plus an additional top term) is a well-founded lattice with respect to subsumption:
Conclusions and future work

- Quantitative information:

<table>
<thead>
<tr>
<th>Book</th>
<th>Lines</th>
<th>Definitions</th>
<th>Theorems</th>
<th>Hints</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>378</td>
<td>22</td>
<td>79</td>
<td>2</td>
</tr>
<tr>
<td>terms</td>
<td>770</td>
<td>53</td>
<td>76</td>
<td>12</td>
</tr>
<tr>
<td>matching</td>
<td>325</td>
<td>7</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>subsumption</td>
<td>295</td>
<td>13</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>subsumption-subst</td>
<td>327</td>
<td>16</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td>renamings</td>
<td>578</td>
<td>9</td>
<td>64</td>
<td>25</td>
</tr>
<tr>
<td>subsumption-well-founded</td>
<td>216</td>
<td>3</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>anti-unification</td>
<td>434</td>
<td>10</td>
<td>37</td>
<td>6</td>
</tr>
<tr>
<td>unification-pattern</td>
<td>808</td>
<td>7</td>
<td>105</td>
<td>33</td>
</tr>
<tr>
<td>unification</td>
<td>277</td>
<td>12</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>mg-instance</td>
<td>159</td>
<td>3</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>lattice-of-terms</td>
<td>148</td>
<td>17</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>4715</td>
<td>172</td>
<td>567</td>
<td>148</td>
</tr>
</tbody>
</table>

- Further work: to improve efficiency of the functions defined, by using better data structures to represent terms