Formal Verification of Divide and Square Root
Algorithms using Series Calculation

Jun Sawada
IBM Austin Research Laboratory
Email: sawada@us.ibm.com

Abstract

IBM Powerd ™ processor uses series approximation to calculate di-
vide and square root. We formally verified that the algorithms with a
series of rigorous error bound analysis using the ACL2 theorem prover.
In order to carry out the verification, we need to show that the error of the
Chebyshev series used in the square root algorithm is suitably bounded.
This was performed by analyzing the Chebyshev series using Taylor se-
ries. In general, Taylor series has less accuracy than Chebyshev series,
however, we used ACL2’s macro extensions and computed hints to auto-
matically generate Taylor serious approximation for small segments, and
proved that the approximation error in each of these segments is smaller
than the requirement.

1 Introduction

In this paper, we discuss the formal verification of the divide and square root al-
gorithms used in the IBM Power4™ processor. This algorithm was first proven,
not formally, by Agarwal et al. in [AGS99]. Conventional mathematical anal-
ysis, such as that given in the work of Agarwal, provides a great insight into
algorithms and a certain level of assurance. However, hand-proof generally does
not provide an absolute assurance on the correctness. Mechanical theorem prov-
ing, on the other hand, provides a greater confidence in the proven algorithm
by systematically checking every detail of the algorithm.

There are a number of formal verification studies on the floating-point unit of
industrial microprocessors. Moore et al. used the ACL2 theorem prover [KM96]
to verify the microcode for the divide algorithm used in the AMD-K$5 processor
[MLK98]. Russinoff later verified the microcode for the square root algorithms
in the same processor [Rus99]. Our work is very similar to these works, as we
verify the divide and square root algorithms that are encoded as microcodes of
the Power4 processor. We also find divide and square root algorithm verification
in the later work by Russinoff [Rus98] and Aagaard et al. [AJK+00], which pay
more attention to fill the “semantic gap” between the low level implementation
with gates and wires and the high level mathematical specifications.

One thing that distinguishes our work from others is the error bound calcu-
lation for the series approximation used in the algorithm. The divide and square
root algorithms verified in the work mentioned above use the Newton-Raphson
algorithm [PH96]. This algorithm, starting from an initial estimate, calculates

a better estimate from a previous one. The formula to obtain a new estimate
is relatively simple, and it takes a few iterations to obtain an accurate enough
estimate which is rounded to the final answer according to a specified round-
ing mode. In the Newton-Raphson algorithm, many instructions are dependent
on earlier instructions. The algorithm may require more execution cycles on a
processor with many pipeline stages and high latency.

IBM Power4 processor and its predecessor Power3™ processor use a differ-
ent method of function iteration for divide and square root. From the initial
approximation, it obtains a better approximation using series approximation.
Series calculation needs more instructions than a single iteration of the Newton-
Raphson algorithm. However, only one iteration is sufficient to obtain the nec-
essary precision. Since instructions in the series calculation are less dependent
on earlier instructions than those in the Newton-Raphson algorithm, more in-
structions can be executed in parallel with a pipelined floating-point unit.

One challenge in the formal verification is the calculation of the error by the
series approximation. Specifically, the square root algorithm uses the Chebyshev
series, which provides a better approximation than the Taylor series of the same
degree. We want to verify that this series has errors small enough to guarantee
that the final estimate is rounded to the correct answer.

In order to formally prove the error size of the Chebyshev series, we defined
Taylor series and admitted Taylor’s theorem as an axiom in ACL2. Then we
used it to calculate the error of the Chebyshev series. This allowed us to avoid
the complex mathematics of Chebyshev series. With the help of ACL2 macros
and computed-hint features, we automatically generated hundreds of Taylor
series to give an accurate analysis of the Chebyshev series.

2 Divide and Square Root Algorithm

In this section, we explain the divide and square root algorithm used in the
Power4 processor. Both algorithms use a table-lookup to obtain an initial esti-
mate of the answer, derive a better estimate using series calculation, and round
it to the final answer.

Let us first discuss the divide algorithm. The mantissa part and the exponent
part are independently calculated. The mantissa part calculation is essential
to the algorithm, as the exponent calculation is simply a subtraction and an
adjustment based on the mantissa result. Thus, we assume that 1 < a,b < 2,
and discuss the algorithm to calculate a/b. A reference algorithm to calculate
the division for the entire range has been written, but we did not model the logic
for exponent calculation and rounding implemented in the Power4 processor.

First, we introduce a few functions. We define expo(z) as the function that
returns the exponent of z. Function ulp(z,n) returns the unit of least position
that is defined as:

ulp(a:,n) — 9expo(z)—n+1_

This corresponds to the magnitude of the least significant bit of an n-bit preci-
sion floating point number z. Function near(z,n) rounds a rational number z to
the floating-point number with n-bit precision using IEEE nearest mode round-
ing. Function rnd(z,m,n) rounds z to n-bit precision floating-point number
using rounding mode m, where m can be near, trunc, inf or minf corresponding

Table 1: Double-precision floating-point divide algorithms used in Power4.

Algorithm to calculate a/b
Look up yo

e := near(l — yo X b,53)

qo := near(yo X a, 53)

t; ;= near(1/2 + e x e,53)
y1 := near(yo + Yo X €, 53)
es := near(a — b x qq, 53)
to :=near(3/4+t; X t1,53)
t3 := near(y; X e2,53)
q1:=¢qo + 12 X t3
div-round(gy ,a, b, mode)

to the four IEEE rounding modes [Ins]. These functions, except ulp(z,n), are
defined in the ACL2 public library.

The division algorithm obtains an initial estimate of 1/b from a table on the
chip, which will be called yo. The initial estimate is accurate enough to satisfy
|1 —yo x b| < 1/256. Let e = 1 — yo x b. An estimate of a/b is given by the
product go = yo X a. The error of the estimate go can be calculated as follows:

a/b—qo =a/bx (1 —byy) =a/bxe

By solving this equation with respect to a/b, we can get a/b = qo/(1 —e) ~
qo(1 + e+ e2 +e® + et + e® + eb). This equation is used to calculate a better
estimate of a/b from the initial estimate go. The actual algorithm is given in
Table 1.

This divide algorithm calculates a better estimate ¢; from ¢¢ using a series
of multiply-and-add instructions. Instructions are ordered so that only a few of
them are truly-dependent on immediately preceding instructions. This allows
the pipelined floating-point unit to execute multiple instructions in parallel.

Function div-round(g:, a,b,m) at the end of the algorithm rounds the final
estimate ¢; to the correct answer rnd(a/b,m,53). This rounding involves a
multiplication, a comparison and an adjustment. For example, when m = inf
and b x near(q1,53) < a, the function returns near(qy,53) + ulp(q:,53) as the
rounded result. This rounding is performed by an internal instruction in Power4
processor, and it works only under the condition |a/b—¢1| < ulp(g1,53)/4. This
is the condition that must be verified for the final estimate ¢; in the divide
algorithm.

The square root algorithm is similar to the divide algorithm. Again, the
calculation of exponent is not essential for the algorithm, thus we describe the
algorithm to calculate the mantissa of the square root of b, assuming that 1/2 <
b<2.

We look-up two initial approximations from on-chip tables. One is for the
12-bit estimate of v/b, which will be named as go. Another is 53-bit rounded
approximation of 1/¢Z, which is called yo. The tables are given only for 1/2 <
b < 1 to reduce the size of the on-chip tables. For 1 < b < 2, we lookup the
table for b/2 and adjust the values by dividing yo by 2 and multiplying go by
root2, which is a precomputed 53-bit representation of v/2. The adjusted

Table 2: Double-precision floating-point square root algorithms used in Power4.

Algorithm to calculate v/b

Look up yos

Look up qo

e := near(1 — yos X b, 53)

qos := near(*root2 x xXqg,53) if 1 <b < 2
= qo if1/2<b<1

t3 := near(cy + c5 X €, 53)

t4 := near(cs + ¢3 X €,53)

esq := near(e X e, 53)

t5 := near(co + ¢ X €,53)

€1 = near(QOs X qos — b7 53)

t1 == near(yos X qos,53)

te := near(ty + esq X t3,53)

doe := near(t; x e1,53)

t7 := near(ts + esq X tg,53)

q1 := qos + qoe X t7

sqrt-round(q; ,b,mode)

values are called yo, and qos, respectively. Estimate yo, is close enough to 1/b
to satisfy |e| < 279, where e = 1 — yosb.
The difference between the squares of go, and v/b can be calculated as:
qgs —bx~ qgs(]- —bx yOS) = qgse
By solving this equation with respect to v/b, we get
Vb~ GosV1 — e ~ qos(1 + coe + c1e? + coe® + czet + cae® + c5eb)

where 1 + cge + --- + c5€8 is the Chebyshev series approximation of /1 — e.
Further manipulation of the right-hand side will lead to:

Vb~ qos + qose(co + - - cse®)

q0s + qos(1 — yosb)(co + - - - c5€”)

q0s + Gos (@4sYos — Yosb)(co + -+ - cse”)
qos + qosyos(dgs — b)(co + - - - c5€”)

The algorithm in Table 2 uses this equation to calculate a better approxima-
tion ¢; of v/b. The procedure to obtain Yos from yg is not explicit in Table 2 as
it is simply an exponent adjustment. Chebyshev coefficients ¢y through c5 are
53-bit precision floating-point numbers obtained from an on-chip table. In fact,
we use two sets of Chebyshev coefficients, one of which is intended to be used
for 0 < e < 27 and the other for —27% < e < 0. Let cop, C1p, Cap, C3p, Cap and
¢sp be the first set of coeflicients intended for the positive case, and cop, cin,
Cans C3n, C4n and csp, be for the negative case. In our algorithm, the 6th fraction
bit of b, instead of the polarity of e, determines which set of coefficients will be
used. This can be justified by the fact that e tends to be positive when the 6th

fraction bit of b is 0, and negative otherwise. However, this relation between
the 6th fraction bit of b and the polarity of e is not always true, and we must
verify that this heuristic in selecting Chebyshev coeflicients does not cause too
much error. The analysis in Section 4 takes care of this problem.

The function sqrt-round(q; , b, m) at the end of the algorithm rounds the final
estimate ¢; to the correct answer rnd(\/B, m, 53), under the condition |¢; —\/l_J| <
ulp(g1,53)/4. The trick to implement this function can be found in [AGS99],
together with that of the rounding function for divide.

Summarizing the algorithm description so far, both divide and square root
algorithms look up an initial estimate from the table, calculate a better estimate
¢q1 with the error of less than a quarter of ulp, and round it to determine the
final answer. QOur verification objective is to prove ¢; falls into this required
error margin.

3 Verification Overview

In this section, we provide an overview of the verification proof of the divide
and square root algorithm. The proof is basically the same as that presented by
Agarwal et al.[AGS99] Here, we will focus on the way the proof is formalized by
the ACL2 theorem prover. In the formal proof, we are not allowed to simplify
formulae using approximations, such as v/1+z ~ 1 + z/2 for a very small z,
as was done in Agarwal’s paper. Every formula transformation must be exact,
and this will eliminate the ambiguity of the hand-proof. Every small error is
formally defined and analyzed, and it is the only way to carry out the formal
proof using a mechanical theorem prover.

3.1 Proof of Divide

First, we define intermediate values for the divide algorithm during the calcu-
lation of a/b. We define 4o, €, qo, t1, 1, €2, t2 and £3 to be the values before
rounding during the calculation of yo, €, qo, t1, y1, €2, t2, and t3, respectively.
We also define ry,, Te, 740, Tt15 Tyr) Teas Tta, a0d 14, as the amount added to the
raw values by rounding. More formally, the definition can be given as:

e=1-bxuy e = near(¢, 53) Te =€—€
do = a X Yo qo = near(go,53) T4 =4qo — Jo
1_1/2+€X€ t1=near(t1,53) ’I"tlztl—tl

Y1 =Yoo+ Yo Xe Y1 = near(y1,53) Ty, = Y1 — Y1
=a—-bxqo e2 = near(éz,53) Tey = €3 — €9

She . 8

=3/4+1t; xt; ty = near(t,53) Ty = to — Lo
t3 = y1 X ey ts = near(ts, 53) rig = t3 — t3

In fact, these values are defined as functions of @ and b in the ACL2 formaliza-
tion, but we omit the arguments for presentation purposes.

By automatic case-analysis of the look-up table for yo, ACL2 shows that
|é] < 278 and also |e| < 278, The amount rounded off by the nearest-mode
rounding is at most half of the ulp as stated in the following lemma.

Lemma 1 For rational number x and a positive integer n,

|near(z,n) — x| < ulp(z,n)/2

From this lemma, we can show that |r.|] < 276!, The magnitude of other
intermediate values can be similarly calculated as:

|do| < 2 ld0] <2 g <27%°
[t1] <1 [t1] <1 |re, | < 2754
|y <1 lyi| <1yl <27
2] <3/2x 27T lea| <278 |re,| <2760
lt2] < 2 ta] < 2 |7e,| < 2753
|t3] <276 t3] <276 |ry,| <2790

Next, we represent each intermediate value as the sum of a formula the
intermediate value is intended to represent and an error term. For example, t;
is the sum of 1/2 4 & x & and its error term Ey, = 2reé + 12 + 1y, .

t1 = 1/24 (E4re) X (E+7e) + 14y
= 1/2+EXE+2r+T1] +1y
= 1/2+éxé+ Ey,,

From the magnitude of the intermediate values, the size of the error term Ey,
can be calculated as:

|Et1| < 2|7'e||é| + |7°e|2 + |Tt1| < 275 4 97067

Similarly, with appropriate error terms Ey, , Ey,, E;,, and E;, whose definitions
are given in the appendix, we can represent yi, t2, t3 and ¢; in the following
way:

Y1 = Yo + yoé + By, |By, | <275 4276
ta=1+é&*+é&' + Ey, |Ey, | < 2752
t3 = yo(]. + é)6~2 + Et3 |Et3| < 258

=g tye(lté+e+et+et+e%)+E, |E,|<2°"—2710
The right-hand side of the last equation can be further manipulated as follows:

56

- e
@ = Qo +y062—1 = + Eg,
1—¢b
= go+yo(a — bqo) + Eq,
byo
= o+ (a/b—qo) — (a/b— o — r4,)& + E,,

Since a/b— go = a/b(1 — byo) = a/b x &, we can further simplify the formula to
a1 =a/b(1 =€) +r,E +E,;, =a/b(1—€") + Efinau 1)

where we define Ef;nq; to be ry €8+ E,,. We can easily calculate |Efinq| < 27°7.
Finally, we show that the |g1 —a/b| is less than ulp(g1,53)/4 by case analysis.
Suppose ¢; > 1. Since a/b < 2, we get using the equation (1):

lgr — a/b] < |a/b||é]” + | Efinar| < 275% 4+ 2757 < 275 = ulp(qy, 53) /4
Suppose g1 < 1. Then, again from the equation (1),

— FEtina 142757
a/b _ q1 J:z I +
1—¢7 1—2-56

Therefore,
lgr — a/b| < |a/bllé|]” + |Efinat| < 27%° = ulp(q1,53) /4.

Either way, |¢; — a/b| is less than ulp(q;, 53)/4.
Summarizing the proof, it was carried out in the following steps:

1. Define the intermediate values, and prove the upper bound of the absolute
values.

2. Calculate the deviation of intermediate values from the approximated for-
mula.

3. Using the results from the previous steps, calculate the deviation of the
final estimate from the infinitely precise result.

Mechanization of the proof using ACL2 was straightforward. We encoded each
step as ACL2 theorems, and then verified the theorems in ACL2. Sometimes
we needed to fill the logical gap between theorems to aid the mechanical proof,
but the ACL2 theorem prover, once proper libraries had been loaded and fine-
tuned, was good at simplifying formulae and calculating the upper bound for
error terms.

3.2 Proof of Square Root

In the proof of the square root algorithm, we took an approach which was
similar to the one for the divide algorithm. However, there are a few important
differences to note. First, we used ACL2(r) [Gam99] to carry out the proof.
ACL2(r) is a version of ACL2 which allows analysis on real numbers using non-
standard analysis[Rob59]. Square root can return irrational numbers, and we
can only define and reason about it directly using ACL2(r). The other major
difference is we need to calculate the approximation error by Taylor series and
Chebyshev series, which will be discussed in detail in the next section.

First we define intermediate values qos,¥os,€,t3,t4,€8q,t5,€1,%1,t6, oe, t7
and ¢;. These are, in fact, functions of b, but we omit the argument b for
simplicity in the paper. The same is true for the Chebyshev coefficients c0, ¢1,
€2, ¢3, c4 and ¢5, which are selected from two sets of coefficients depending on
b. For each of the intermediate values, we define é, t3, ts, e3q, ts, €1, t1, ts,
go. and t7 as the infinitely precise value before rounding. We define r., 7, 4,
Tesq, Ttsy Teis Tti> Tter Tqo. and ¢, as the values added to the infinitely precise
values by rounding. Additionally, we define p as p = yosq5, — 1.

Analyzing the look-up tables for yos and gos using ACL2(r), we can easily
show that |e| < 276, |u| < 397/128 x 2753 50/71 < qo, < 71/50 and 1/2 <
Yos < 2. We calculate the magnitude of intermediate values and the adjusting
values for rounding. Some of the upper bounds of intermediate values are |e3q| <
27121t <271+ 2751611 <27° +27°0 and |gg.| < 183/128 x 275,

Next, by defining appropriate error terms Ey,,, Eesq, Ets, Et,, Ety, Et, and
E;,, we represent intermediate values as the sum of the formula it intends to

represent and an error term.

qoe = qOS(é + N) + Eqoe |E110e| < 2756
€sq = e + Eesq |Eesq| < 2764
t3 = c4 + c5€ + Ets |Et3| < 258 4 265
ty = Cco + c3€ + Et4 |Et4| < 2-57 + 9—64
t5 =cy + Clé —+ Et5 |Et5| S 2_54 =+ 2_61
te = co + c3€ + 0462 + C5é3 + Et6 |Et6| < 956 4 9—63

t7 = co + C1€ + 28% + €38 + c4f* + c5€° + By, |Ey,| <2758 42760
Let P(z) denote the polynomial® cq + c12 + co2? + 322 + cax* + c52°. Then
a1 = qos + qos(é + p)P(é) + En |Eq1| <27

for some appropriate error term Eg;.
We are going to rewrite the last equation using a number of series approxi-
mation. We define

Bo = VT+u—+p/2)
E, = V1-é—(1-¢/2)
Eepey = V1I—é— (1+&P(&))
Further we define the following error terms:
Eperz = P(&) — (-1/2-¢€/8)
Egy = qos X Ese = Vb x (Esu + 11/2)
Efina = —3/8X qost€ — qosEenes + nEsp/2 + VbEsy + Eg1 + qositEpets

Then we can prove that
@ =Vb+E final

The details of the proof are provided in the appendix.
As we discuss in the following section, we can prove that:

|Esu| S 27105
|Ese| S 2715 + 2719
|Echeb| < 3/2 X 2_58

From these inequalities and the definition of Ef;nqi, we can prove:
|Efinat] < 27°° < ulp(b,53)/4

Thus the new estimate ¢; is less than one quarter of the ulp away from v/b.

4 Use of Taylor’s Theorem in Error Size Calcu-
lation
In the proof of the square root algorithm in the previous section, we skipped

the proof of the upper bounds of |Egy|, |Ese| and |Ecpes|- In this section, we
introduce Taylor series and use it in their proof.

1Since coefficients co through cs depend on b, P(z) depends on b as well. In ACL2(r), we
define it as a function that takes b and z as its arguments.

First, we introduce 1/z as an ACL2(r) function (sroot z), using the ACL2(r)
function stub mechanism, which introduces a function without definition. Then,
we assumed that (sroot z) satisfies the following two axioms.

(defaxiom realp-sroot
(implies (and (realp b) (>= b 0))
(and (realp (sroot b)) (>= (sroot b) 0)))

(defaxiom square-sroot
(implies (and (realp b) (>= b 0))
(equal (* (sroot b) (sroot b)) b)))

The first theorem states that v/b is a non-negative real number, and the
second states that vb x v/b = b. Because /z is defined as a function without
definition, ACL2(r) cannot directly calculate the value of applications of this
square root function. This is true even if we define the square root using non-
standard analysis, because 1/ can return an irrational number which cannot
be handled directly by ACL2(r).

However, there is a function that approximates square roots. ACL2(r) func-
tion (iter-sqrt z €) in the public library distributed with ACL2 returns a
rational number close to y/z. In this paper, we write \/5: to denote this func-
tion. This function satisfies \/z| x \/z, < z and 2—+/Z. X/Z, < € for a positive
rational number e. From this, we can easily prove that v/z—+/z, < maz(e, /).

Taylor series approximation is a simple and frequently used approximation
for differentiable functions. Taylor’s theorem states

Taylor’s Theorem If f(™)(z) is continuous in [z, 20 +0] and TV (2) exists
in (zo,xo + 0), then there exists £ € (xg,zo +) and

f"(0)
o 24+ ﬁ

n!

fl@o+3) = f(xo)+ f'(zo)d +

The term >, A)(w°)5’ is often used as an approximation of the function f
at point zg. The error of Taylor series approximation is given by the term
%6”, which is called the Taylor remainder.

Since the square root function is infinitely differentiable and its derivatives
are continuous for the positive domain, we can apply Taylor’s theorem on the
entire positive domain. Let us define a(n,z) as:

Function a(n, zg) gives the n’th Taylor coefficient for \/z at zo. Then Taylor’s
equation for square root can be given as:

n—1
VEo+6= Z a(i, z0)8" + a(n, &)™
=0

Given that (nth-tseries-sroot i xg J) represents i’th term in the Taylor
series a(i, zg)d", we define the Taylor series approximation in the ACL2(r) logic
as:

(defun tseries-sroot (n x delta)
(if (zp n)
0
(+ (nth-tseries-sroot (- n 1) x delta)
(tseries-sroot (- n 1) x delta))))

Since & in Taylor’s theorem depends on n, = and &, we represent £ using ACL2(r)
stub function (taylor-sroot-xi m z §). Then Taylor’s theorem for square
root can be defined as an ACL2(r) axiom.

(defaxiom taylor-theorem-on-sroot

(implies (and (integerp n) (< 0 n)

(realp x) (< 0 x)

(realp delta) (< 0 (+ x delta)))
(equal (sroot (+ x delta))

(+ (tseries-sroot n x delta)
(nth-tseries-sroot n (taylor-sroot-xi n x delta)
delta)))))

Additionally, we constrain (taylor-sroot-xi n z J) to return a real number
that is in the open segment (z,z + 4).

(defaxiom type-taylor-sroot-xi
(implies (and (integerp n) (< O n)
(realp x) (realp delta) (< 0 x) (< 0 (+ x delta)))
(realp (taylor-sroot-xi n x delta))))

(defaxiom range-taylor-sroot-xi
(implies (and (integerp n) (< 0 n)
(realp x) (realp delta) (< 0 x) (< 0 (+ x delta)))
(and (<= (min x (+ x delta))
(taylor-sroot-xi n x delta))
(taylor-sroot-xi n x delta)
(max x (+ x delta)))))

(<

Summarizing so far, we have added a square root function without con-
crete definition and admitted a few facts about it including Taylor’s theorem
as axioms. Alternatively, we can use ACL2(r)’s non-standard analysis feature
to define square root function, prove the basic properties and Taylor’s theorem
without adding new axioms. However, in this paper, we are interested in using
the square root function in the verification of an algorithm, not the definition of
the square root function and proof of its basic properties. So we chose to skip
these elaborate definitions and fundamental proofs.

An upper bound of |Es,| can be calculated by applying Taylor’s theorem.
Since Es, is equal to the second degree Taylor remainder for the function /1 + p
at u=0:

B = TH - (14 /2 = —5 1+ 732

10

Since |p| < 397 x 275% and || < |u|, an upper bound of |E,,| is given as:
1 397 3 397
E (1 = 8 2—53 -5 % (2 % 2—53 2 2—105
] < 51— 290 gmmny=d o (BT oy o

Similarly, the upper bound for |Ej.| can be calculated as:
|Ese| < é X (1 — 276)7% X (2*6)2 < 2715 + 2_19

We used Taylor series in the calculation of an upper bound of |E.pep| as
well. Since the Chebyshev series 1+ éP(€) is a better approximation of /1 — &
than the Taylor series of the same degree, it is not straightforward to use Taylor
series in the measurement of its approximation error.

Our approach is dividing the range of € into small segments, generating a
Taylor series for each segment and using it to calculate the error of the Cheby-
shev series for every segment one at a time. Each segment should be small
enough so that the generated Taylor series is a far more accurate approxima-
tion of the square root function than the Chebyshev series. The range of € is
[-276,276]. We divided it into 128 segments of size 2712, and performed error
analysis on each segment.

Since there are a large number of segments, we must automate the error
analysis at each segment. One of the obstacles is that ACL2(r) cannot perform
calculation on irrational numbers directly. For example, the Taylor coefficient
a(i,zo) is usually an irrational number. In order to automate the error cal-
culation, we define an ACL2(r) function that calculates the approximation of
a(i, zo) using the function v/z,. More precisely,

a*(z,i,m) 1:1 (1/2 - m*"

Then we can show:

n—1

la(e,m) — a*(@n,m)| <~ [] (172~ i) x maz G, n/a)e
T i=0

As discussed in Section 2, our algorithm selects Chebyshev coefficients from
two sets of constants depending on the 6th fraction bit of b. Let

Cheby(e) = 1+ cope+ c1p€® + cape® + cape + cape® + cspel

Chebn(e) = 1+ cone+ cine® + cone® + cane® + cane® + cspe’

Then Ecpep, = /1 — €—Cheb,(€) when the 6th fraction bit of bis 0, and Ecpep =
V1 —¢&— Cheb,(é) when it is 1.

Let us calculate the size of E.p.p for the case where the 6th fraction bit of
bis 1. A simple analysis shows that —27¢ < & < 3/2 x 27!2. Note that €
can be slightly positive, even though our heuristic suggests that é is negative
when the 6th fraction bit of b is 1. We divide this domain of € into 66 segments
by substituting ey — es for € in /1 — é — Cheb, (€), where eg is one of the 66
constants —63 x 2712, —62 x 2712, ... 2 x 2712, while e; is a new variable that
satisfies 0 < es < 2712, The upper bound for the entire domain of € is simply
the maximum value of all the upper bounds for the 66 possible choices for eq.

11

The upper bound for |E.pep| can be represented as the summation of three
terms.

5
V1 —eo+es — Chebp(eo —es)| < ‘\/1—eo+65—2a(1—eo,i)ef;

5 5
+ Za(l —eg,1)es — Za*(l —€o,1%,7)€s
i=0 i=0
5
+ Za*(l — eo,i,m)es — Chebn(eo — e5)
i=0

An upper bound for the first term can be given by applying Taylor’s theorem.

5
1 1
[V1—eo+es — E (1 — eo,d)es| < |a(€, 6)e G_H 5—’”5 2 les]

i=0
5

1 1 . — — -
< [1G -9 xmaz((t = e0) ™, (1 —e0)*) x 277
=0
Here £ is the constant satisfying Taylor’s theorem such that 1 — ey < £ <
1—eg+e;5. Note that this upper bound can be calculated by ACL2(r) as it does
not contain square root nor variables.
The upper bound for the second term can be calculated as follows:

n—1 n—1 n—1
1> a(l —eo,i)el =D a”(1—eo,i,m)es] < Y Ja(1 —eo,4) — a” (1 — eo, i, 7)]eh
=0 =0 =0
—1311 1
< Z{ 1172 =) x maz(n n/(1 = e0)) x (1 = eo) ™
j=0

We chose 1 to be 270 to make this term small enough. Again the upper bound
has no variables involved and can be calculated by ACL2(r).

The third term is the difference between the Chebyshev series approxima-
tion and the Taylor series approximation. Since ey and 7 are constant in the
third term, we can simplify the term Z?:o a*(1 — eg,i,n)et — Cheby,(eo — e5)
into a polynomial of es of degree 6. Here having the computational function
a*(1—ey,,n) rather than the real Taylor coefficient allows ACL2(r) to automat-
ically simplify the formula. We denote the resulting polynomial as 2?20 bes,
where coefficient b; is a constant automatically calculated by ACL2(r) during
the simplification. Then the upper bound can be given as:

5

6 6
> a*(1—eo,i,n)es — Chebp(eo —es)| = | bies| < > |bi| x 27 1%
i=0 i=0

i=0
By adding the three upper bounds, we can prove that
|V1 —eo + es — Cheby,(eg — e5)| < 3/2 x 27°8
for all 66 values for eg. This is the upper bound of |E.pp| when the 6th fraction
bit of b is 1. Similarly, we can prove that |\/1 —eg + e5 — Cheby(eg — €5)| <

12

3/2x 2758 for the case where the 6th fraction bit is 0. In this case, —6/5x2 12 <
€ < 275, Since the ranges of & are overlapping for the two cases, we repeat the
upper bound analysis on some segments. Summarizing the two cases, |Ecpep|
has the upper bound 3/2 x 2758,

5 Discussions

We have formally verified that the Power4 divide and square root algorithms
return the final estimate whose error is less than a quarter of the ulp. The
main proof was carried out by defining error terms and analyzing their size
at each step of the algorithm. One major challenge for the verification was
evaluating the approximation error for Chebyshev series. We have performed
error size calculation of the Chebyshev series approximation in hundreds of
small segments. For each segment, a Taylor series is generated to evaluate the
approximation error of the Chebyshev series. This type of proof can be carried
out only with a mechanical theorem prover or other type of computer program,
because the simplification of hundreds of formulae is too tedious for humans to
carry out correctly.

The upper bound proof of the Chebyshev series approximation was carried
out automatically after providing the following:

1. Magcros that provide the template of the proof for small segments.
2. Computed hints that spawn the case analysis automatically.

3. A set of rewrite rules that simplify a complex formula into a polynomial
of rational coefficients.

Since the proof is automatic, we could change a number of parameters to try
different configurations. For example, we changed the segment size and 7 used
to calculate \/z.. In fact, Chebyshev series approximation error was obtained
by trial-and-error. At first, we set a relatively large number to an ACL2(r)
constant *apx_error* and ran the prover to verify |E.pep| <*apx_errorx. If
it is successful, we lowered the value of *apx_errorx, iterated the process until
the proof failed. The details of macros and computed hints are discussed in
Appendix C.

The approximation error analysis using Taylor series requires less computa-
tional power than brute-force point-wise analysis. When [é] < 27¢, the value
V1 — & ~ 1—¢&/2 ranges approximately from 1—2~7 to 1+2~". In order to prove
that the error of its Chebyshev series approximation is less than 1.5 x 2758, sim-
ple calculation suggests that we need to check nearly 250 points. On the other
hand, the entire verification of the square root algorithm with approximation
calculation on 128 segments took 673 seconds on a Pentium IIT 400MHz system.
It is not a sheer luck that we could finish the error calculation by analyzing only
hundreds of segments. Because the size of the n’th degree Taylor remainder
for the square root function is O(d™) for the segment size d, the approximation
error by a Taylor series quickly converges to 0 by using high degree Taylor series
and making the segment smaller. We believe that we can apply our technique
to other algorithms involving series calculations.

13

For our proof, we assumed the correctness of Taylor’s theorem, instead of
proving it. However, ACL2(r) can prove Taylor’s theorem by carrying out non-
standard analysis. In fact, Gamboa and Middleton recently proved Taylor’s
theorem in ACL2(r)[GMO2]. It is our future work to integrate their result into
the proof presented in this paper.

There might be a question why we did not assume the known facts about
Chebyshev series and use them in the series analysis. One answer is that the
mathematics behind Chebyshev series is much more complex than Taylor series.
We also need to develop ACL2(r) library to compute the approximation of
integration which would be used in the calculation of Chebyshev coefficients. It
is also more likely that we might introduce incorrect axioms about Chebyshev
series because its definition is complex.

Finally, we must acknowledge the usefulness of the floating-point library in
the books distributed with ACL2. This library, originally developed by David
Russinoff, supplied most of the basic theorems about floating point numbers
and rounding. This allowed us to focus on the verification of the algorithm.

References

[AGS99] Ramesh C. Agarwal, Fred G. Gustavson, and Martin S. Schmook-
ler. Series approximation methods for divide and square root in the
power3 processor. In Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, pages 116-123, 1999.

[AJKT00] Mark D. Aagaard, Robert B. Jones, Roope Kaivola, Katherine R.
Kohatsu, and Carl-Johan H. Seger. Formal verification of iterative
algorithms in microprocessors. Proceedings Design Automation Con-
ference (DAC 2000), pages 201 — 206, 2000.

[Gam99] Ruben Gamboa. Mechanically Verifying Real-Valued Algorithms in
ACL2. PhD thesis, University of Texas at Austin, 1999.

[GMO02] R.A.Gamboa and B. E. Middleton. Taylor’s formula with remainder.
In ACL2 Workshop 2002, 2002.

[Ins] Institute of Electrical and Electronic Engineers. IEEE Standard for
Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985.

[KM96] Matt Kaufmann and J Strother Moore. ACL2: An industrial strength
version of nqthm. In FEleventh Annual Conference on Computer
Assurance (COMPASS-96), pages 23-34. IEEE Computer Society
Press, June 1996.

[MLK98] JS. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked
Proof of the AMD5x86 Floating-Point Division Program. IEFEFE
Trans. Comp., 47(9):913-926, September 1998.

[PH96] David A. Patterson and John L. Hennessey. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, Inc., San
Francisco, California, second edition, 1996.

14

[Rob59] A. Robinson. Model theory and non-standard arithmetic, infinitistic
methods. In Symposium on Foundations of Mathmatics, 1959.

[Rus98] D. M. Russinoff. A Mechanically Checked Proof of IEEE Compli-
ance of the Floating Point Multiplication, Division, and Square Root
Algorithm of the AMDKY Processor. J. Comput. Math. (UK), 1,
1998.

[Rus99] D. Russinoff. A Mechanically Checked Proof of Correctness of the
AMDKS5 Floating-Point Square Root Microcode. Formal Methods in
System Design, 14(1), 1999.

[Saw00] Jun Sawada. ACL2 computed hints: Extension and practice. In
ACL2 Workshop 2000 Proceedings, Part A. The University of Texas
at Austin, Department of Computer Sciences, Technical Report TR-
00-29, November 2000.

A Error Terms for the Divide Proof

E,, = yore+ry

Ey, = 2E,(1/2+8&)+E] +r,

Et3 = (yO + yOé)rm + Eyl (6~2 + T€2) + Ttg

E, = Eny(1+é&)ér+ (1+¢&*e*Ey, + Ey, Ey,

B Proof Detail of Square Root Algorithm

First we provide the error term definitions missing from Section 3.

Egp. = tire, + 1,61 +7g,

Eesg = 2ér.+ rz + Tesq
Eyy, = csretrig
Ei, = csretriy
Ey, = cire+ryy
E, = E;, +&Ey +t3E.5 +1,
E;, = Ey +é&E, +1t6Ecsq + 11,
Ey = Eq.P(é) + qocEr,

Now we discuss the derivation of ¢; = vVb+ Efina from g1 = gos+qos€P(€)+
(ZOSIUP(é) + qu .

Vb = b+ p) — Vb(Eeu + g)
= dqosV by03 - \/E(Esu + g)
QOsVl_é_\/E(Esu'i‘ g)

15

e
= dqos — q035 + qOSEse - \/E(Esu + g)

é
= dos — qOS§ + Esb

Using this equation, we can derive:

qos + LIOSéP(é) = qOS(\% l—e-— Echeb)
= b(]- + /.L) - quEcheb
= \/l_) + \/I—)% + \/EESU - qOSEcheb

é
= Vb+ g(qos — 9055 + Bu) + V0o — qoaFones

From the definition of Epes2,

~ 1 €
Gos 1P (€) = qosh(—7 = 3T Epet2)
By adding the two equations above:
@1 = qos +qos€P(€) + qospuP(€) + Ey,

3 - 1
= \/I; - gQOs/J/e - QOsEcheb + EEsb/ff + \/EEsu + qOSuEpet2 + qu

= \/E + Efinal

In this appendix, we showed the detail of the equation rewriting. The ACL2
theorem prover can figure out the detail with appropriate hints, thus we do not
have to feed the detailed proof into the prover. For example, the proof shown
here was proven with 5 defthm’s.

C Use of Macros and Computed Hints for Square
Root Proof

We describe the macros and computed hints used in the verification of the
square root algorithm. The macro shown in Figure 1 generates the ACL2 proof
of the upper bound of |E,pp| discussed in Section 4. It has three parameters: n,
lemma-namebase and apx-fun. This macro analyzes the upper bound of |Ecpep|
when e ranges over the segment [n X *apx-epsilon*, (n+ 1) X *apx-epsilon*],
where *apx-epsilonxis an ACL2(r) constant equal to 2712, Parameter lemma-
-namebase provides the name of the main lemma, and apx-fun selects either
Cheby, or Cheb,, as the function analyzed in the proof.

This macro generates an ACL2(r) encapsulate expression which contains
four local lemmas and one exported lemma. The first three local lemmas prove
the upper bound for the three terms from Section 4 whose summation gives the
upper bound of |\/1 — ey + e5 — Cheby(eg — e5)| (when Cheb,, is passed for the
argument apx-fun). The fourth local lemma combines these lemmas and gives
a constant upper bound for |\/T —eg + es — Cheb,(eg — €5)|. The last main
lemma, rephrases the result of the fourth lemma by substituting e for ey — es.

16

There are several parameters found in the macro: *apx-epsilon* specifies
the segment size to carry out the upper bound analysis at a time, *apx-eta*
defines 1 used to calculate the function a*(x,i,7), *tc-differencex* specifies
the upper bound for the third lemma, and *apx-error* is the upper bound for
| Eches|- We can easily change the value of these parameters and rerun the proof
to find a better upper bound.

Another macro prove-all-apx-error-bound-lemmas makes it easier to re-
peatedly perform the upper bound proof for the small segments. For example,

(prove-all-apx-error-bound-lemmas -63 2 abs-E_cheb-neg-case- Cheb-n)

calls (apx-error-bound-lemmas n abs-E_cheb-neg-case- Cheb-n) 66 times
by varying n from —63 to 2.

We combined the lemmas for the 66 segments into a single lemma. The proof
of the combined lemma goes like this way: first we case-split the target formula
into 67 subgoals that cover all the segments, then we apply the proper lemma
to each subgoal by :use hint. The next defthm implements this approach using
computed-hints.

(defthm abs-E_cheb-neg

(implies (and (rationalp e)

(k= (- (expt 2 -6)) e)

(<= e (* 3/2 (expt 2 -12))))

(<= (abs (- (sroot (- 1 e)) (Cheb-n e)))
*apx-error))
thints ((case-split-i-=-x-to-y ’*(FL (* (expt 2 12) e)) (- (expt 2 6)) 1)
(when-GS-match-& ((0) (x) . 0)
(gen-use-apx-neg-lemma-ajusted-index))))

The computed-hint (case-split-i-=-x-to-y ’expr n m) splits the goal
into m — n 4+ 1 cases where expr ranges over the integers between n and m. It
is defined as:

(defun collect-for (i x y)
(declare (xargs :measure (nfix (- (1+ y) x))))
(if (and (integerp x) (integerp y) (<= x y))
(cons ‘(equal ,i ,x) (collect-for i (1+ x) y))
nil))

(defun case-split-i-=-x-to-y (i x y)
‘(:cases ,(collect-for i x y)))

The computed-hint (when-GS-match-& pat more-hint) tries another com-
puted hint more-hint when the goal spec matches the pattern provided as
pat [Saw(00]. In the defthm above, it applies the computed hint gen-use-
-apx-neg-lemma-ajusted-index on every immediate subgoal after the case
split. The computed hint gen-use-apx-neg-lemma-ajusted-index selects the
proper lemma out of 66 candidates, and insert it by a :use hint. It is defined
as:

(defmacro gen-use-apx-neg-lemma-ajusted-index ()
‘(let ((idx (caadr id)))
(if (and (<= 1 idx) (<= idx 66))
(gen-use-lemma-with-suffix ’abs-E_cheb-neg-case-
(+ 3 (- idx)))
nil)))

17

(defmacro apx-error-bound-lemmas (n lemma-namebase apx-fun)
(let* (<Variables used for Lemma Name Generation>
(name-of-lemma-1 < Name of Lemma 1>)
(name-of-lemma-2 < Name of Lemma 2>)
(name-of-lemma-3 <Name of Lemma &>)
(name-of-lemma-4 <Name of Lemma 4>)

(name-of-lemma <Main Lemma Name>))
‘ (encapsulate nil
(local

(defthm ,name-of-lemma-1
(implies (and (rationalp ed) (equal e0 (* ,n *apx-epsilonk))
(<= 0 ed) (<= ed *apx-epsilonx*))
(<= (abs (- (sroot (+ 1 (- e0) ed))
(tseries-sroot 6 (+ 1 (- e0)) ed)))
(taylor-rem-sr-ub-2 6 (- 1 e0) *apx-epsilon%*)))
<Lemma Options>))
(local
(defthm ,name-of-lemma-2
(implies (and (rationalp ed) (equal e0 (* ,n *apx—epsilonk))
(<= 0 ed) (<= ed *apx-epsilon*))
(<= (abs (- (tseries-sroot 6 (+ 1 (- e0)) ed)
(p-tseries-sroot 6 (+ 1 (- e0)) ed *apx-eta*)))
(E_p-tseries-sroot 6 (+ 1 (- e0))
apx-epsilon *apx-etax)))
<Lemma Options>))
(local
(defthm ,name-of-lemma-3
(implies (and (rationalp ed) (equal e0 (* ,n *apx-epsilon*))
(<= 0 ed) (<= ed *apx-epsilon*))
(<= (abs (- (p-tseries-sroot 6 (+ 1 (- e0)) ed *apx-etax)
(,apx—-fun (- e0 ed))))
*tc-differencex))
<Lemma Options>))
(local
(defthm ,name-of-lemma-4
(implies (and (rationalp ed) (rationalp e0)
(equal e0 (* ,n *apx-epsilon¥*))
(<= 0 ed) (<= ed *apx-epsilon*))
(<= (abs (- (sroot (- 1 (- e0 ed)))
(,apx—fun (- e0 ed))))
*apx—errors))
<Lemma Options>))
(defthm ,name-of-lemma
(implies (and (rationalp e)
(<= (* (- ,n 1) *apx-epsilon*) e)
(<= e (* ,n *apx-epsilon*)))
(<= (abs (- (sroot (- 1 e)) (,apx-fun e)))
*apx-errorx))
<Lemma Options>)))) ; end of proof macro

Figure 1: Macro to generate lemmas for the error analysis of |Epep|. Some
details have been cut out and replaced with an italic text in angles.

18

A computed-hint receives the current goal spec through the variable id. This
information is sufficient for the computed-hint to construct the name of the
proper lemma to be applied.

The macros and computed hints allowed us to succinctly write the theorems.
It makes it easier to perform the proof with various parameters. In this sense,
the macros and computed-hints were essential to carry out the verification work
presented in this paper.

19

