Checking ACL2 Theorems via SAT Checking

ACL2 Workshop
Grenoble, France
April 9, 2002

Rob Sumners
robert.sumners@amd.com
The need for theorem checking...

• Basic ACL2 proof strategy: divide-and-conquer
 – In practice, this is really divide-and-divide-and-
 divide-and-divide-and-divide...

• In order to avoid spending time proving non-
 theorems, we would like to have a tool we could
 use to automatically check the theorem on some
 sufficiently-bounded domain of values for the
 free variables
 – If the theorem fails, we would like an assignment to
 the free variables witnessing the failure
 – Especially useful in testing inductive invariants

• A theorem checker could also be used in the
 context of a more general tool to either generate
 failure witnesses or heuristically prune the paths
 in search of a proof
Ideally, before attempting to prove some proposed theorem:

\[(\text{thm } \text{<expr>}) \]

We would like to first check or test the theorem:

\[(\text{check-thm} \ (\text{implies } \text{<constraint> } \text{<expr>})) \]

Where \text{<constraint>} sufficiently bounds the free variables in \text{<expr>}

Example:

\[(\text{check-thm} \ (\text{implies} \ (\text{and} \ (< \ (\text{len} \ x) \ 4) \ (< \ (\text{len} \ y) \ 3)) \ \text{(equal} \ \text{len} \ (\text{append} \ x \ y)) \ (+ \ \text{len} \ x) \ (\text{len} \ y)))) \]

What is “sufficiently bounded”?
[Our approach...]

• Basic idea: Translate the constrained theorem into a propositional formula

 – If generated propositional formula is valid, then original ACL2 theorem is valid
 ○ In practice, the other direction holds as well

 – Use a SAT checker to determine if the propositional formula is valid

 – Allow multiple SAT checkers to be used for engine

 – Translate failure witness for propositional formula into a failure witness for original ACL2 theorem
 ○ Failure witness (an alist binding the free variables) is double-checked by evaluating the theorem on witness

• The translation consists of two steps: translate the theorem into a simple sublanguage and then reduce the theorem to a propositional formula
[Step 1 of the Translation]

• First, translate the history and the proposed ACL2 theorem into a history and theorem in a sublanguage (ST) of ACL2

 – ST histories are built from the primitives if, cons, car, cdr, (quote nil)
 – ST universe consists of trees where nil is the only atom

• The input history and theorem is restricted to be a sublanguage (MDL) of ACL2

 – MDL histories are built from the primitives if, car, cdr, cons, binary-+, n-, <, naturalp, symbolp, consp, equal, quote, ...
 – MDL universe consists of trees where the only atoms are symbols and natural numbers
 – MDL could be extended, but resulting translation could be more expensive
 – Implicit assumption (constraint) of free variables in MDL universe
[Translation of MDL universe]

- Translation from MDL to ST is essentially defined by a translation of the MDL primitives to ST functions

 - This translation is based on mapping of MDL universe to ST universe:

 (defun mdl-to-tree (x aux)
 (cond
 ((null x) nil)
 ((consp x)
 (st-make-cons (mdl-to-tree (car x) aux)
 (mdl-to-tree (cdr x) aux)))
 ((naturalp x)
 (st-make-nat (nat-to-list x)))
 (t ;; (symbolp x)
 (st-make-symb
 (nat-to-list (location x (cons t aux)))))))

- **aux** parameter is a list of symbols automatically computed from the MDL history
| Translation of MDL primitives |

- For each MDL primitive we define a corresponding ST function

 - e.g. \texttt{binary--} translates to \texttt{st-binary--}:

 (defun st-coerce-to-nat (x)
 (if (st-naturalp x) x (st-make-nat nil)))

 (defun st-binary--valus (x y)
 (if-cons x (cons nil (st-binary--valus (cdr x) y)) y))

 (defun st-binary-- (x y)
 (let ((x (st-coerce-to-nat x))
 (y (st-coerce-to-nat y)))
 (st-make-nat (st-binary--valus (cdr x) (cdr y)))))

- We then need to prove that \texttt{st-binary--} is a legal implementation of \texttt{binary--}:

 (implies (and (good-model-object-p x aux)
 (good-model-object-p y aux))
 (equal (mdl-to-tree (binary-- x y) aux)
 (st-binary-- (mdl-to-tree x aux)
 (mdl-to-tree y aux))))
[Step 2 of the Translation]

- We translate the theorem in ST into a propositional formula

 - Propositional formulae (ITEs) are built from variables, booleans, and \((\text{if } x \ y \ z)\) terms

 - Common subterms are constructed uniquely

 - Each free variable in the ST theorem defines a tree of propositional variables – \textit{tree variable positions}\((\text{TVPs})\)

- The translation is an optimized rewriter which:

 - Eliminates \texttt{car} and \texttt{cdr} applications (may generate new TVPs)

 - Reduce the tests of \texttt{if} terms to propositional formula

 - Expand all functions (even recursive functions)

 - We must provide mechanisms to avoid unwanted expansion
(defun tfr-eval (term alist ctx fns)
 (if (variablep term)
 (let ((bound (assoc term alist)))
 (if bound (cdr bound) term))
 (case (first term)
 (quote nil)
 (cons (list 'cons (tfr-eval (second term) alist ctx fns)
 (tfr-eval (third term) alist ctx fns)))
 ((car cdr) (tfr-destruct (first term)
 (tfr-eval (second term) alist ctx fns)))
 (if (let* ((tst (ite-extract
 (tfr-eval (second term) alist ctx fns)))
 (t-ctx (ctx-and ctx tst))
 (f-ctx (ctx-and ctx (ite-not tst))))
 (cond
t ((ctx-empty f-ctx)
 (tfr-eval (third term) alist t-ctx fns))
 ((ctx-empty t-ctx)
 (tfr-eval (fourth term) alist f-ctx fns))
 (t
 (list 'if tst
 (tfr-eval (third term) alist t-ctx fns)
 (tfr-eval (fourth term) alist f-ctx fns))))
 (otherwise
 (mv-let (formals body)
 (if (flambdap operator)
 (mv (lambda-formals operator)
 (lambda-body operator))
 (lookup-function operator fns))
 (tfr-eval body
 (tfr-eval-bind formals (rest term)
 alist ctx fns)
 ctx fns)))))))
[Elaborations and Optimizations]

• We need to maintain a context in order to lazily evaluate if

 – ctx-and is used to extend ctx and ctx-empty determines if a ctx is consistent
 – In our case, a context is a partial assignment of the TVPs which must hold in the current context
 o efficient and (hopefully) sufficient

• Several optimizations in the term representation and evaluation

 – e.g. ITEs and TVPs are constructed uniquely, hash tables for lookup, etc.

• Translation maintains statistics on function expansion to assist in determining where constraints are insufficient

 – The translator also provides depth bounds for each function’s “stack”
[Translating ITE to SAT checker]

• In order to reduce the formula given to the SAT checker, we perform an initial simplification which:

 – Iteratively constructs a partial assignment which must hold for any satisfying assignment

 – Reduce the formula under this partial assignment

 – Save the partial assignment to include with any results from SAT checker

 ○ The <constraint> will often reduce to T

• We also need to communicate relationship between TVPs (i.e. (implies (car x) x))

• Translation to external SAT checkers involves creation of input file, sys-call to run the SAT checker, and parsing of the output file
Translating SAT results to ACL2

• If the SAT check produces a failure witness, the witness will define a (partial) assignment to the propositional TVPs

 – We first translate TVP assignment to a binding of the free variables in the theorem to ST objects

 – We then translate this assignment to a binding of free variables with MDL objects using the inverse mapping tree-to-mdl

 – Finally, we double-check the failure witness on the original theorem by evaluating the theorem

• In the case of our internal SAT checker, a partial assignment can be returned which may be useful in analyzing automatically generated theorems
Example: mutual exclusion

(defun step-state (s f)
 (case s
 (try (if f 'try 'go))
 (go 'wait)
 (otherwise 'try)))

(defun step-flag (s f)
 (case s
 (try t)
 (go nil)
 (otherwise f)))

(defun next (l n)
 (let ((f (car l))
 (s (get-nth n (cdr l)))
 (cons (step-flag s f)
 (set-nth n (step-state s f) (cdr l)))))

(defun no-one-go (l)
 (if (endp l) t
 (and (not (equal (car l) 'go))
 (no-one-go (cdr l)))))

(defun only-one-go (l)
 (and (consp l)
 (if (equal (car l) 'go)
 (no-one-go (cdr l))
 (only-one-go (cdr l)))))

(defun good (l)
 (if (car l)
 (only-one-go (cdr l))
 (no-one-go (cdr l))))
(defun boundedp (l k)
 (if (0p k) (not l)
 (and (consp l)
 (member (car l) '(try go wait))
 (boundedp (cdr l) (n- k 1))))))

(defun constrain (l n k)
 (and (consp l)
 (member (car l) '(t nil))
 (boundedp (cdr l) k)
 (naturalp n)
 (< n k)))

(check-thm
 (implies (constrain l n 4)
 (implies (good l)
 (good (next l n)))))

• What makes a good constraint?

 – The constraint should be sufficient for evaluation to terminate (checker provides feedback)

 – The weaker the constraint, the stronger the result

 – A stronger constraint may afford more efficient SAT checking and make failure witnesses easier to comprehend
Future Work – guiding SAT

- ITE is natural form of translation
 - Can asymmetry between test and branches provide hints to decision structure during SAT check?
 - Initial attempts at defining a SAT checker for ITE forms failed because I did not see the relevance of splitting on intermediate nodes
 - natural byproduct of translation to CNF

- The following case split is (roughly) sufficient:
 - (car 1), and in the only-one-go case, a further split on the location of 'go, and a case split on n

- Work continues on heuristics and user annotation to better direct decisions made in SAT checker
[Future Work – Proof of correctness]

- In some cases it would be useful to actually **prove** theorems using the theorem checker

- The sanctioned approach is to define a meta-function which maps terms to (provably) equivalent terms, but evaluator is limited

```
(defthm theorem-checker-is-correct
  (let* ((fns (assemble-MDL-functions term state))
         (aux (quoted-symbols-in-fns fns)))
    (implies (and (good-mdl-object-alist-p alist aux)
                  (equal (check-thm term) :qed))
             (mdl-eval term alist fns))))
```

- In order to prove this, we will need to prove each step of the translation is correct:

 - Translation from MDL functions to ST functions is consistent via **mdl-to-tree**

 - Interpretation of term returned by **tfr-eval** is consistent with evaluation of ST functions