Implementing abstract types in ACL2

Vernon Austel
IBM
A very simple example

(defun append-nil
 (implies (true-listp x)
 (equal (append x nil) x)))

;; This is false.
(thm
 (equal (append x nil) x))

(defun list=-append-nil
 (list= (append x nil) x))
Equivalence relation and fixer

(defun listfix (x)
 (if (endp x)
 nil
 (cons (car x) (listfix (cdr x))))
)

(defun list= (x y)
 (equal (listfix x) (listfix y))
)

(defequiv list=)
congruences on the type

(defcong list= list= (append x y) 1)
(defcong list= list= (append x y) 2)

(defthm list=-append-nil
 (list= (append x nil) x))

(thm
 (list= (append (append x nil) y) (append x y)))
Pros and cons

+ fewer hypotheses
- more prep work
- have to remember to use equivalence relation
- doesn't work with linear rewriting (e.g. to replace integerp with intgr=)
Chores involving the new type

- define a ``kind'' predicate, if appropriate
- define destructors and constructors
- prove measure lemmas for the destructors
- define a ``fix'' function, using the destructors
- define the equivalence using the fix function
- prove congruence theorems for the destructors and constructors
- prove elimination rules for the constructors
Constructors and destructors

(defun expr-kind (expr)
 (cond ((symbolp expr) 'SYMBOL)
 ((consp expr) 'BINOP)
 (t 'LIT)))

(defun binop-left (expr)
 (if (equal (expr-kind expr) 'BINOP)
 (caddr expr)
 nil))

(defun mk-binop (op left right)
 (list 'BINOP op left right))
The equivalence relation

(defun exprfix (expr)
 (let ((kind (expr-kind expr)))
 (case kind
 (SYMBOL expr)
 (LIT (litfix expr))
 (otherwise
 (mk-binop
 (binop-op expr)
 (exprfix (binop-left expr))
 (exprfix (binop-right expr)))))))

(defun expr= (x y)
 (equal (exprfix x) (exprfix y)))

(defequiv expr=)
(defun free-vars (expr)
 (let ((kind (expr-kind expr)))
 (case kind
 (SYMBOL (list expr))
 (LIT nil)
 (otherwise
 (append (free-vars (binop-left expr))
 (free-vars (binop-right expr)))))))
(defcong expr= (free-vars expr) 1)
Defining functions on the type (2)

;; this defines the function and
;; proves the congruence
(defexpr free-vars (expr) equal
 :SYMBOL (list expr)
 :LIT nil
 :BINOP (append $left $right))
Proving theorems using the type

;;; this has no type hypothesis for expr
(defexprthm env-irrelevant
 (implies (not (consp (free-vars expr)))
 (equal (eval-expr expr env)
 (eval-expr expr nil))))
Induction using functional instantiation

(encapsulate
 ((expr-induct (expr) t))

(local (defun expr-induct (x) (declare (ignore x)) t))

(deffun expr-induct-symbol
 (implies (equal (expr-kind expr) 'SYMBOL)
 (expr-induct expr)))

(deffun expr-induct-lit
 (expr-induct (litfix expr)))

(deffun expr-induct-binop
 (implies (and (expr-induct left)
 (expr-induct right))
 (expr-induct (mk-binop binop left right))))

(defcong expr= iff (expr-induct expr) 1))
Subgoal 2
(implies (and (or (not (not (consp (free-vars left))))
 (equal (eval-expr left env)
 (eval-expr left nil)))
 (or (not (not (consp (free-vars right))))
 (equal (eval-expr right env)
 (eval-expr right nil))))
(not (consp (append (free-vars left)
 (free-vars right)))))
(equal (+ (eval-expr left env)
 (eval-expr right env))
 (+ (eval-expr left nil)
 (eval-expr right nil)))).
Proof performance

Time to prove "env-irrelevant"

Using normal induction:
Time: 0.09 seconds (prove: 0.05, print: 0.01, other: 0.03)

Using functional instantiation:
Time: 0.04 seconds (prove: 0.03, print: 0.00, other: 0.01)
Drawbacks of functional instantiation

- Constraints may be wrong
 - too strong
- Variable names used in constraints may not be used in theorems ("left", "right")
- Induction cannot change arguments in recursive calls (e.g., for an accumulator)
Conclusions

- This is workable, but not easy
- Changes to ACL2 could make it easy
 - guess congruences
 - no proof necessary - syntactic check
 - Modify induction to use constructors
 - only allow type-correct fns and theorems
 - avoids silly mistakes