Using ACL2 Arrays to Formalize Matrix Algebra

by

John Cowles
Ruben Gamboa
Jeff Van Baalen
University of Wyoming
{cowles,ruben,jvb}@cs.uwyo.edu

Supported by NASA grant NAG 2-1570.
Matrix Algebra

Let \(p \) and \(q \) be positive integers.

A \(p \times q \) matrix is a rectangular array of numbers,

with \(p \) rows and \(q \) columns,

\[
\begin{pmatrix}
m_1 & 1 & \cdots & m_1 & q \\
\vdots & \ddots & \ddots & \vdots \\
m_p & 1 & \cdots & m_p & q
\end{pmatrix}
\]
Matrix Operations

- The **sum** of two $p \times q$ matrices is a $p \times q$ matrix.

- The **product** of a $p \times q$ matrix and a $q \times r$ matrix is a $p \times r$ matrix.

- The **scalar** product of a *number* and a $p \times q$ matrix is a $p \times q$ matrix.

- The **transpose** of a $p \times q$ matrix is a $q \times p$ matrix.
• Matrix addition and multiplication are **associative**.

\[(M_1 + M_2) + M_3 = M_1 + (M_2 + M_3)\]

• Matrix addition is **commutative**. Matrix multiplication need not be commutative.

\[M_1 + M_2 = M_2 + M_1\]

• Matrix and scalar multiplication **distribute** over matrix addition.

\[M_1 \cdot (M_2 + M_3) = M_1 \cdot M_2 + M_1 \cdot M_3\]

• There is an unique \(p \times q\) **zero** matrix 0 such that

\[M + 0 = M = 0 + M.\]
• For *square* matrices, there is an unique \(p \times p \) identity matrix \(\mathbf{I} \) such that
\[
M \cdot \mathbf{I} = M = \mathbf{I} \cdot M.
\]

• Every \(p \times q \) matrix has an unique \(p \times q \) negative matrix such that
\[
M + (-M) = 0 = (-M) + M.
\]

• Some square matrices, called nonsingular, have unique (multiplicative) inverses such that
\[
M \cdot M^{-1} = \mathbf{I} = M^{-1} \cdot M.
\]

• If \(M_1 \cdot M_2 = 0 \), then neither \(M_1 \) nor \(M_2 \) need be \(0 \).
ACL2 Arrays

ACL2 provides functions for accessing and updating both one and two dimensional arrays,

- with applicative semantics,

- but good access time to the most recently updated copy,

- and usually constant update time.

Should be natural and straightforward to implement the matrix operations using ACL2 two dimensional arrays.
Applicative Semantics for Arrays

- Use a “sparse” array representation.

- An array is an **alist**, i.e. a list of pairs.

 ◦ One element is the “header” that contains

 * the number of rows, \(d_1 \)

 * the number of columns, \(d_2 \)

 * a **default** value

 ◦ Other elements are of the form \(((i . j) . \text{val})\).

 * \(i \) and \(j \) are integers

 * \(0 \leq i < d_1 \) and \(0 \leq j < d_2 \)

 * \text{val} is an arbitrary object
Applicative Array Access

To access the value indexed by the pair \((i . j)\) in an array alist:

- Use the function \texttt{aref2}

- Search for the first pair whose car matches the pair \((i . j)\).

- If such a pair is found,
 - then \texttt{aref2} returns the cdr of the pair
 - otherwise \texttt{aref2} returns the default value stored in the header.
Fast Array Access

Made possible by maintaining, behind the scenes, a “real” Common Lisp array.

- The real array **may** currently represent the given array alist.

- In that case, an array access can be very fast because the real array can be accessed directly.

- If the real array does **not** currently represent the given array alist, access is done by linear search through the alist:

Slow Array Access! A call of AREF2 on an array named A1 is being executed slowly. See :DOC slow-array-warning

Complication

Useful to distinguish two versions of “two dimensional arrays.”

Logical or “slow” array.

The **alist** representation used by the applicative semantics.

“Fast” executable array.

A logical array with fast accessing and updating.

Represented, behind the scenes, by a “real” Common Lisp array.
Additional Restriction on “Fast” Arrays

So some compilers can lay down faster code.

Let \(d_1 = \) number of rows and
\[d_2 = \] number of columns.

Then \(d_1 \cdot d_2 \) is required to fit into 32 bits.

\[
\begin{align*}
 d_1 \cdot d_2 & \leq \text{maximum-positive-32-bit-integer} \\
 & = 2^{31} - 1 \\
 & = 2,147,483,647
\end{align*}
\]
Closure Properties of Matrix Operations

Whenever the results of these operations are mathematically defined,

both logical and fast arrays are closed under the operations of

- transpose,
- unary-minus,
- scalar multiplication,
- matrix sum, and
- matrix multiplicative inverse.
Complication due to the
Additional Restriction
on “Fast” Arrays

Logical arrays are closed under **matrix** product.

Fast arrays are **not** closed under **matrix** product.
Examples

Suppose the Additional Restriction on “Fast” Arrays is $d_1 \cdot d_2 \leq 20$.

- Product of \textbf{fast} arrays need not be \textbf{fast}.

\[
\begin{array}{cc}
M_1 & \bullet & M_2 \\
5 \times 2 & & 2 \times 5 \\
\uparrow & & \\
5 \times 5 & & \\
\end{array}
\]

- Two equivalent ways to compute the same \textbf{fast} array, with differing results.

\[
\begin{array}{cc}
(M_0 & \bullet & M_1) & \bullet & M_2 \\
2 \times 5 & & 5 \times 2 & & 2 \times 5 \\
2 \times 2 & & 2 \times 5 & & \\
\uparrow & & \end{array}
\]

\[
\begin{array}{cc}
M_0 & \bullet & (M_1 & \bullet & M_2) \\
2 \times 5 & & 5 \times 2 & & 2 \times 5 \\
2 \times 5 & & 5 \times 5 & & \\
\uparrow & & \end{array}
\]

7-d
One More Restriction

Ensure that matrix products of \textbf{fast} arrays are always \textbf{fast} arrays:

Let $d_1 = \text{number of rows}$ and $d_2 = \text{number of columns}.$

\[
\begin{align*}
 d_1, d_2 & \leq \lfloor \sqrt{\text{maximum-positive-32-bit-integer}} \rfloor \\
 & = \lfloor \sqrt{2,147,483,647} \rfloor \\
 & = 46,340
\end{align*}
\]

Then $d_1 \cdot d_2$ is guaranteed to be less than the \textbf{maximum-positive-32-bit-integer}.
46,340 is not enough

http://www.mat.bham.ac.uk/atlas/v2.0/

ATLAS of Finite Group Representations

ATLAS: Monster group M

Order =
\[2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \cdot 10^{53} \]

Standard generators

Standard generators of the Monster group M are a and b where ... and ab has order 29.

Update 15th December 1998: standard generators have now been made as 196,882 x 196,882 matrices over GF(2). They have been multiplied together, using most of the computing resources of Lehrstuhl D für Mathematik, RWTH Aachen, for about 45 hours.
Test for Matrix Equality: \((m = M1 M2)\)

- **Equivalence** relation on the entire ACL2 universe.

- When one of \(M1\) or \(M2\) is not a **logical array**, then \(m =\) coincides with \(\text{equal}\).

- **Congruence** relation with respect to the matrix operations of transpose, unary minus, scalar product, sum, and product.
Matrix Sum: \((\text{m--} \ M1 \ M2)\)
Matrix Product: \((\text{m--*} \ M1 \ M2)\)

- Defined on the entire ACL2 universe.

- When one of \(M1\) or \(M2\) is not a logical array, then
 - \(\text{m--}\) coincides with +
 - \(\text{m--*}\) coincides with *.

- Allows some hypotheses-free matrix equalities.
Example **Distributivity:**

\[
\begin{align*}
(\text{m--} & = (\text{m--*} \ M1 \ (\text{m--} \ M2 \ M3))) \\
(\text{m--} & = (\text{m--} \ (\text{m--*} \ M1 \ M2)) \\
& = (\text{m--*} \ M1 \ M3)))
\end{align*}
\]
• Allows some matrix equalities to use equal in place of m-=.

• Example: m+- satisfies this version of commutativity

\[(\text{equal} (\text{m+-} \text{ M1} \text{ M2})
(\text{m+-} \text{ M2} \text{ M1}))\]

• as well as this weaker version

\[(\text{m-=} (\text{m+-} \text{ M1} \text{ M2})
(\text{m+-} \text{ M2} \text{ M1})).\]

• Similar comments apply to the associativity of m+- and m-*.

9-a
Determinant
Matrix Inverse: (m⁻¹/ M)

- Computed using row and column operations.

- Temporary definition:
 A matrix is **nonsingular** iff it is a square matrix and m⁻¹/ does, in fact, compute a two-sided multiplicative inverse.

- Future plans: Use **determinants** to determine if a square matrix is singular or nonsingular.
ACL2 proofs are still required for the following

- For square matrices, whenever the determinant is not 0, then \(m^-/ \) computes the two-sided inverse.

- Whenever the determinant is 0 then there is no inverse.

- Non-square matrices do not have two-sided inverses.
(defun m-= (M1 M2)
 (declare (xargs :guard
 (and (array2p ’$arg1 M1)
 (array2p ’$arg2 M2)))))

 (if (mbt (and (alist2p ’$arg1 M1)
 (alist2p ’$arg2 M2)))

 (let ((dim1 (dimensions ’$arg1 M1))
 (dim2 (dimensions ’$arg2 M2)))
 (if (and (= (first dim1)
 (first dim2))
 (= (second dim1)
 (second dim2)))
 (m-=--row-1 (compress2 ’$arg1 M1)
 (compress2 ’$arg2 M2)
 (- (first dim1) 1)
 (- (second dim1) 1))
 nil))

 (equal M1 M2)))
• (array2p name A) returns t if A is a two dimensional fast executable ACL2 array. Otherwise return nil.

The extra input argument name is used by ACL2’s “fast” implementation of arrays.

• (alist2p name A) returns t if A is a two dimensional logical array. Otherwise return nil.

• (compress2 name A) allocates and stores fast array A in a Common Lisp array.

• (dimensions name A) returns the dimensions list of the array alist. That list contains d_1 and d_2.
mbt ("must be true")

- A new ACL2 Version 2.8 macro.

- Used to replace an expensive Boolean test with \(t \) during execution.

- Semantically, (mbt \(x \)) equals \(x \)

- In raw Lisp (mbt \(x \)) macro-expands to \(t \).

- A guard proof obligation is generated:

\[
(\text{implies}<\text{guard}>
\begin{align*}
(\text{equal} & \ x \ t))
\end{align*}
\]

- ACL2’s guard verification mechanism ensures that the raw Lisp code is only evaluated when appropriate.
mbt ("must be true")

In the definition of \(m-= \), since

\[
(\text{implies} \ (\text{array2p name } M) \\
(\text{alist2p name } M),
\]

the \text{mbt} replaces the \text{alist2p} tests with \(t \) during execution.