Matrices in ACL2

Joe Hendrix
University of Illinois at Urbana-Champaign
jhendrix@uiuc.edu

July 5, 2003

1 Introduction

This paper describes some initial work on a formalization of matrices in ACL2.
The current work is focused on creating an executable implementation that
is simple to mechanically reason with and complete enough to be capable of
analyzing real problems in linear algebra. A number of basic operations have
been defined including matrix addition, transposition and multiplication by a
scalar, a vector, and another matrix. These operations have an extensive library
of over 200 theorems to make reasoning about these operations more convenient
and automatic. These theorems include the axioms for rings and other rewrite
rules that attempt to change matrix expressions into a canonical form. Unlike
the work in [2] where the focus was mainly on implementing Strassens algorithm
for square matrices where the number of rows and columns is a power of 2, this
operations are for arbitrary m x n matrices.

This paper is intended to be a brief introduction to the matrix library. It is
not intended as a reference, and for detailed questions there is no substitute for
consulting the source code of the books directly. Hopefully after reading this
paper, navigating those books will be easier.

2 Data Representation

In the context of this paper, vector refers to a mathematical vector and not
to the Common Lisp data type. It is represented as a proper list of numbers.
Operations defined on vectors include vector addition, subtraction, multiplica-
tion by a scalar, and dot product. The book vectors defines these operations,
includes a number of theorems, and defines a predicate mvectorp for recogniz-
ing vectors. It is named mvectorp to avoid conflicting with the Common Lisp
predicate vectorp.

A matriz is represented as a list of vectors where each vector represents a row
and must have the same number of elements. For technical reasons, Nil is
considered a valid matrix known as the empty matriz, however atoms other



than Nil are not considered matrices. Each row vector in a non-empty matrix
must contain at least one element.

3 Basic Operations

Before defining the interesting operations about matrices, it turns out to be
helpful to define a core set of primitive operations for recognizing, constructing,
and destructing matrices. These core operations are defined in terms of basic
Lisp operations, but their internal definitions are disabled so that proofs about
higher level operations such as matrix multiplication can avoid dealing with the
internal representation of matrices. The book mdefuns contains the function
definitions and performs guard verification. The book mdefthms defines the
theorems used for theorem proving before disabling the implementation details.
The basic operations are summarized below:

Operation Description

(matrixp m) Predicate that accepts if m is a valid matrix.

(matrix-emptyp m) | Predicate that accepts if m is an atom.

(empty-matrix) Returns nil.

(row-count m) Number of rows in the matrix m or 0 if m is the
empty matrix.

(col-count m) Number of columns in the matrix m or 0 if m
is the empty matrix.

(row-car m) Top row of the matrix m.

(row-cdr m) Matrix formed by removing the top row of m.

(row-cons v m) Matrix whose top row is the vector v and
whose remaining rows are the rows of the ma-
trix m.

(col-car m) Leftmost column of the matrix m.

(col-cdr m) Matrix formed by removing the leftmost col-
umn of the matrix m.

(col-cons v m) Returns the matrix whose leftmost column is
the vector v and whose remaining columns are
the columns of the matrix m.

Example 1 Sample Matrix:

1 2 3 (row-cons ‘(1 2 3)
4 5 6 | can be formed from ‘(4 5 6)
7 8 9 (7 8 9)))

It may seem surprising that row-count and col-count are included as basic
operations. Although they could be defined in terms of the other operations
and (and logical definitions using the other operators are created in mdefthms),
the guard for row-cons requires that if m is a non-empty matrix, the length of
the vector v must equal the column count of the matrix m, and for col-cons,



the length of v must equal the row count of m. If m is the empty matrix, v can
be any vector containing at least one element.

Since the original definition of each operator is disabled, mdefthms contains a
logical definition for each basic operation. These logical definitions are mutually
recursive and would not terminate if executed, so they cannot be admitted using
defun, but they can be defined using defthm and used for reasoning purposes.
In addition, mdefthms contains theorems for when the result of these operations
is a valid matrix, rewrite rules to simplify terms containing these operators,
and a proof about the ac12-count of row-cdr and col-cdr to allow inductive
definitions using those operations. In total, there are over 60 different theorems
about matrices in this book, and not all of them are enabled by default, because
this could lead to infinite loops. The default strategy is to simplify where pos-
sible, but otherwise move row operations to the outside and column operations
to the inside. This may not always be desirable, so users interested in imple-
menting their own matrix operations using these primitives are encouraged to
study the contents of mdefthms.

4 Defined Operations

All other operations are defined in terms of the basic operations listed above.
For modularity, the operations are broken up into several different books, but
can all be imported by including the book matrices. The operators currently
defined include:

Operation Description

(row i m) Vector for ith row in m.

(col j m) Vector for jth column in m.

(mentry i j m) | Entry at row i and column j in m.

(mzero r c) Zero matrix with r rows and ¢ columns.

(mid n) Identity matrix with n rows and columns.

(m+ m n) Adds the matrices m and n.

(m- m) Multiplies the matrix m by —1

(m- m n) Subtracts the matrix n from m.

(sm* c m) Multiplies each entry in m by the scalar c.

(row* v m) Returns vector containing the dot product of
v and each row in m.

(col* v m) Returns a vector containing the dot product
of v and each column in m.

(m* m n) Multiplies the matrices m and n.

(mtrans m) Transpose of m.

5 Theorems

Since it is advisable to keep conditions simple on rewrite rules to make them eas-
ier to apply, some of the ACL2 theorems may contain fewer conditions than the



mathematical definition would allow. This can make theorem proving simpler,
but if it is important that applications do not depend at all on the particular
details of the ACL2 representation, guard checking should be performed on all
functions using the matrix library. The guards for each operation indicate the
proper usage of the functions.

The theorems are often proven by induction on the number of rows of an argu-
ment, and case-splitting on whether a matrix is the empty matrix is an often
needed tactic. In initially proving the results, forcing the conditions was heavily
used, but as the theorems have been simplified that technique was phased out
and forcing is no longer required. The theorems are too numerous to mention
each specifically in this paper, but they can be broadly classified into a number
of different categories.

5.1 Predicate Theorems

Predicate theorems concern the result types of defined operations and when the
result is a valid matrix, empty matrix, vector, or number.

Example 2 Addition matrix predicate:

(defthm matrixp-m+
(implies (matrixp m)
(matrixp (m+ m n))))

Note that n does not have to be a matrix for (m+ m n) to be a matrix.

5.2 Size Theorems

Size theorems concern the number of rows, number of columns, or length of
operation results. These are essential conditions for many rewrite rules and are
frequently used in backchaining.

Example 3 Column count of addition:

(defthm col-count-m+
(implies (matrixp m)
(equal (col-count (m+ m n))
(col-count m))))

5.3 Alternative Definitions

For efficiency reasons, operations are usually defined using row-cons, row-car,
row-cdr. These functions operate in constant time whereas the column variants
take time proportional to the number of rows in the matrix. However it turns
out to be useful, particularly when dealing with transpose, to also have logical
definitions of operations using the column constructors and destructors.



Example 4 Addition by columns:

(defthm m+-by-col-def
(implies (and (matrixp m) (matrixp n))
(equal (m+ m n)
(if (matrix-emptyp m)
(empty-matrix)
(col-cons (v+ (col-car m) (col-car n))
(m+ (col-cdr m)
(col-cdr n))))))

:rule-classes :definition)

5.4 Entry Values

Although the higher level operations are the preferred mechanism for manipu-
lating matrices, it may be necessary to prove properties about the contents of
matrices. For this, properties about the row, column, and entry values for each
operation are defined.

Example 5 Entry of addition:

(defthm entry-m+
(implies (and (matrixp m) (matrixp n))
(equal (mentry r ¢ (m+ m n))
(if (and (< (nfix r) (row-count m))
(< (nfix c¢) (col-count m)))
(+ (mentry r ¢ m) (mentry r c n))

nil))))

5.5 Zero and Identity Matrices

Zero and identity matrices are identity elements of addition and multiplication,
and transposition. Theorems have been defined to eliminate operations on these
matrices when possible.

Example 6 Transpose of zero:

(defthm mtrans-zero
(equal (mtrans (mzero r c))
(mzero c 1)))

5.6 Simplification properties

Simplification properties refer to a broad assortment of properties involved in
transforming matrix expressions into a canonical form. This includes operations
involving a single operation as well as relations among the different operations.



Example 7 Successive multiplication by a scalar:

(defthm sm*-sm*
(implies (matrixp m)
(equal (sm* a (sm* b m))
(sm* (* a b) m))))

Example 8 Transpose of matrix multiplication:

(defthm mtrans-m*
(implies (m*-guard m n)
(equal (mtrans (m* m n))
(m* (mtrans n) (mtrans m))))

These theorems generally try to convert a term involving higher level operations
into a canonical form where addition operations are moved to the outside, fol-
lowed by multiplication by a scalar, matrix by matrix multiplication, and with
transpose on the inside.

6 Conclusion and Future Work

Future plans include adding operations for inverting matrices and determinates
using Gaussian elimination. Except for its lack of matrix inversion, this library
could be used for proving the results in [1], but using executable definitions and
proven theorems rather than axioms. Linear algebra is a rich and interesting
subject with a wide range of practical applications. I hope that this work can
serve as the basis for reasoning about such problems in ACL2.

7 Acknowledgements

The original idea to work on this came while I was attending a class at UIUC
taught by Grigore Rosu [1]. Many of the theorems about matrices were taken
directly from axioms used in some of his work with Kalman filters. In addition, I
must thank Miguel Palomino for reviewing a draft copy, and Francisco Palomo-
Lozano, J Moore, and Matt Kaufmann for their encouragement to write this

paper.

References

[1] Leustean Laurentiu and Grigore Rogu. Certifying Kalman filters. Technical
report, RIACS 03.02, January 2003.

[2] F. Palomo-Lozano, I. Medina-Bulo, and J. A. Alonso-Jimenez. Certifica-
tion of matrix multiplication algorithms: Strassen’s algorithm in acl2. In
TPHOLS, 2001.



