Fair Environment Assumptions in ACL2

ACL2 Workshop 2003

July 13, 2003

Rob Sumners
Advanced Micro Devices, Inc.

robert.sumners@amd.com
The Need for *Fairness*

- **reactive systems** are systems which maintain an ongoing interaction with an environment
 - Common examples: operating systems, concurrent algorithms, microprocessors, database transaction systems, etc.

- The specification of a reactive system will often include several *progress* properties
 - e.g. for a transaction system, every transaction eventually completes

- In order to prove progress for reactive systems, one often has to assume the environment makes “progress”
 - We term these progress assumptions *fair environment assumptions*
Simple Reactive System in ACL2

- We assume a reactive system is defined in ACL2 using a binary \texttt{step} function and a constant \texttt{init} function

 - The \texttt{step} function takes the current state and an input from the environment and returns the next state
 - The \texttt{init} constant function returns the initial state of the system

- Consider the following simple reactive system:

\begin{verbatim}
(defun init () 0)

(defun step (s i)
 (let ((s (if (= s i) (1+ s) s)))
 (if (<= s (UB)) s 0)))
\end{verbatim}

 - where \texttt{(UB)} is an arbitrary natural number Upper-Bound
Simple Progress Property in ACL2

- Assume the following function:

 \[
 \text{(defun good (s) (= s (UB)))}
 \]

- Consider the following \textit{Progress} property:
 - At any time in any run of the system, \textit{(good s)} will hold for some future state \textit{s} in the run

- But, the system may get “stuck” if inputs are selected unfairly
 - Thus we need to assume fair selection of inputs in the statement of our property
Specifying Progress (and Fairness)

• In English: Assuming fair input selection, then at all times, eventually \(\text{good s}\)

• In (pseudo) LTL:

\[
(\forall k \in \Phi : (GF(i = k))) \Rightarrow (GF(\text{good s}))
\]

– \(\Phi\) is the selection set and in this example must include the natural numbers between 0 and (UB)

– \(GF \equiv \text{infinitely often}\)

• How do we specify this in ACL2?

– The straightforward specification of progress (and fairness) involves statements about infinite sequences of states (and inputs)

– But, in practice, we can reduce this to the definition and proofs of well-founded measures and invariants over single steps of the system
In order to define progress, we need an infinite run of the system:

(encapsulate (((env *) => *)) ...)

;; arbitrary infinite input sequence

(defun run (n)
 (if (zp n) (init)
 (let ((n (+ 1 n)))
 (step (run n) (env n))))

We define our progress property ($GF(good s)$) using defun-sk:

(defun natp (x) (and (integerp x) (>= x 0)))

(defun time>= (y x)
 (and (natp y) (implies (natp x) (>= y x))))

(defun-sk eventually-good (x)
 (exists y (and (time>= y x) (good (run y))))

(defun progress (eventually-good n))
Approach #1: Define the notion of fair selection using **defun-sk** and add it as an hypothesis to the relevant theorems

\[
\text{(defun-sk \ exists-future (k x)}
\begin{align*}
 & (\exists y \ (\text{and} \ (\text{time} \geq y \ x)) \\
 & \quad (\text{equal} \ (\text{env} \ y \ k)))
\end{align*}
\]

\[
\text{(defun-sk \ fair-selection (}}
\begin{align*}
 & (\forall (k \ n) \ (\text{exists-future} \ k \ n)))
\end{align*}
\]

Assuming (**fair-selection**), we can now prove **progress**

\[
\text{(defthm \ progress)}
\begin{align*}
 & (\text{implies} \ (\text{fair-selection}) \\
 & \quad (\text{eventually-good} \ n)))
\end{align*}
\]

– In this case, \(\Phi \) is the ACL2 universe

But, how do we prove this?
Approach #1: Defining progress witness

• In order to prove \(\text{eventually-good } n\), we define a witness function which returns the next time at which \textbf{good} will hold:

\[
\text{(defun good-time (n)}
 \begin{align*}
 \text{(if (good (run n)) n (good-time (1+ n)))}
\end{align*}
\]

• In order to admit \textbf{good-time}, we will need to define a measure

 – Assume \textbf{(fair-selection)} to define one component of the measure – \(\text{(env-measure } k \, n)\) – with the following property:

\[
\begin{align*}
\text{(defthm env-measure-property} & \\
 \text{(and (natp (env-measure } k \, n))} & \\
 \text{(implies (and (fair-selection)} & \\
 \text{(natp } n) & \\
 \text{(not (equal (env } n) \, k)))} & \\
 (\text{< (env-measure } k \, (1+ \, n)) & \\
 \text{(env-measure } k \, n))))
\end{align*}
\]
Approach #1: Admitting the witness

- We will need to modify the witness function:

 (defun good-time (n)
 (declare (xargs :measure (good-measure n)))
 (cond ((not (fair-selection)) 0)
 ((not (natp n)) (good-time 0))
 ((good (run n)) n)
 (t (good-time (1+ n))))

- Where the appropriate measure is defined by:

 (defun good-measure (n)
 (lexprod
 (if (natp n) 1 2)
 (1+ (nfix (- (upper-bound) (run n))))
 (env-measure (run n) n)))

- A useful property of good-time:

 (defthm good-of-good-time
 (implies (fair-selection)
 (good (run (good-time n))))
[Approach #1: Drawbacks]

- The assumption of (fair-selection) implies the countability of the ACL2 universe

- Must include (fair-selection) as an hypothesis in several theorems
 - This inclusion follows a pattern and could be removed with a macro.

- Approach #2: Can we define an encapsulated fair environment on a subset Φ of the ACL2 universe?
 - Φ must be countable, but the larger Φ is, the better

- We factor this into two problems to solve:
 - Define a fair selector of the natural numbers
 - Define an invertible mapping from Φ into the naturals
Approach #2: Fair selection of naturals

- Problem: define \((\text{env } n)\) and \((\text{env-measure } k \ n)\) which satisfy:

\[
\begin{align*}
\text{(defthm env-measure-property} \\
&\quad (\text{and} \ (\text{natp} \ (\text{env-measure} \ k \ n)) \\
&\quad \quad (\text{implies} \ (\text{and} \ (\text{natp} \ k) ;; \text{only change} \\
&\quad \quad \quad (\text{natp} \ n) \\
&\quad \quad \quad \quad (\text{not} \ (\text{equal} \ (\text{env} \ n) \ k))) \\
&\quad \quad (\langle \ (\text{env-measure} \ k \ (1+ \ n)) \\
&\quad \quad \quad \quad (\text{env-measure} \ k \ n))))))
\end{align*}
\]

- Solution: define a round-robin where the upper-bound on the cycle is always increasing

\[
\begin{align*}
\text{(defun fair-step } (f) \\
&\quad (\text{let} \ ((\text{ctr} \ (\text{car} \ f)) \ (\text{top} \ (\text{cdr} \ f))) \\
&\quad \quad (\text{if} \ (\langle \ \text{ctr} \ \text{top}) \\
&\quad \quad \quad (\text{cons} \ (1+ \ \text{ctr}) \ \text{top}) \\
&\quad \quad \quad \quad (\text{cons} \ 0 \ (1+ \ \text{top})))))
\end{align*}
\]

\[
\text{(defun fair-init } () \ (\text{cons} \ 0 \ 0))
\]
Approach #2: Fair selection ...

- We can now define `env` and `env-measure` witness functions with the desired property:

```lisp
(defun fair-run (n)
  (if (zp n) (fair-init)
      (fair-step (fair-run (1- n)))))

(defun env (n) (car (fair-run n)))

(defun fair-ctr (goal ctr top)
  (declare ...)
  (cond (... 0)
          ((equal ctr goal) 1)
          ((< ctr top)
           (1+ (fair-ctr goal (1+ ctr) top)))
          (t
           (1+ (fair-ctr goal 0 (1+ top))))))

(defun env-measure (k n)
  (fair-ctr k
            (car (fair-run n))
            (cdr (fair-run n))))
```
Approach #2: Transferring to Φ

- We define Φ to be the *nice* objects with the following recognizer:

 (defun nicep (x)
 (or (stringp x)
 (characterp x)
 (acl2-numberp x)
 (symbolp x)
 (and (consp x)
 (nicep (car x))
 (nicep (cdr x))))

- Define an invertible mapping to the natural numbers as the composition of:

 - An invertible mapping from *nice* objects into the *simple-trees*

 - An invertible mapping from the *simple-trees* into the naturals

- Transfer the fair selection of naturals to Φ using the mapping and its inverse appropriately
Approach #2: Application to Example

- Using the constrained fair selection of *nice* objects, we can now prove the theorems for our example without the (fair-selection) hypotheses:

 - For example, the following are now theorems:

 (defthm good-of-good-time
 (good (run (good-time n))))

 (defthm progress (eventually-good n))

- If fair selection of the *nice* objects is sufficient (as in our example), then we recommend Approach #2

 - Otherwise, either use Approach #1 or use Approach #2 and maintain a redirection table in the system step function
Approach #2: More Complex Example

- A mutual exclusion protocol with the following step and good functions:

\[
\text{(defun step (s i)} \\
\quad \text{(if (prp i)} \\
\quad \quad \text{(let* ((ndx (car s))} \\
\quad \quad \quad \text{(prs (cdr s))} \\
\quad \quad \quad \text{(p (getp i prs))} \\
\quad \quad \quad \text{(p+ (next-pc p))} \\
\quad \quad \quad \text{(p+ (if (and (in-crit p+)} \\
\quad \quad \quad \quad \text{(/= i ndx))} \\
\quad \quad \quad \quad \quad \text{p} \\
\quad \quad \quad \quad \quad \text{p+)})} \\
\quad \quad \text{(prs (setp i p+ prs))} \\
\quad \quad \text{(n+ (next-pr ndx))} \\
\quad \quad \text{(ndx (if (and (not (in-crit p+))} \\
\quad \quad \quad \text{(= i ndx))} \\
\quad \quad \quad \quad \quad \text{n+} \\
\quad \quad \quad \quad \quad \text{ndx)})}) \\
\quad \text{(cons ndx prs))} \\
\quad s)) \\
\text{)}
\]

\[
\text{(defun good (s)} \\
\quad \text{(in-crit (getp (pick-pr) (cdr s))))}
\]
• Good News: We only need to change the definition of \texttt{good-measure}

• Bad News:

\begin{verbatim}
(defun good-measure (n)
 (let* ((s (run n))
 (ndx (car s))
 (prs (cdr s))
 (nogo (not (equal ndx (pick-pr)))))
 (lexprod
 (if (natp n) 1 2)
 (nfix (- (crit-pc) (getp (pick-pr) prs)))
 (if nogo 2 1)
 (if nogo
 (if (> ndx (pick-pr))
 (+ (- (last-pr) ndx)
 (1+ (pick-pr)))
 (- (pick-pr) ndx))
 0)
 (if nogo
 (- (last-pc) (getp ndx prs))
 0)
 (env-measure ndx n))))
\end{verbatim}
Further Extensions?

• Conditional Fairness:

 – We presented \textit{unconditional} fairness, what about \textit{conditional} fairness?

 – Imagine a predicate (\texttt{legal s i}) such that our \texttt{step} function was only defined for \texttt{legal} inputs at the current state

 – We would like to have a fair environment which ensured:

 \[
 \forall k \in \Phi : (GF(\texttt{legal s k}) \Rightarrow GF(i = k))
 \]

 – A \textit{solution} to this problem is provided in the supporting materials, but its use is not recommended since it requires tighter composition between system and environment

• Real-time Constraints:

 – Some algorithms require bounds on the relative frequency of selections of different inputs in order to function

 – This is an area of future work
[Summary and Conclusions]

- We have presented two approaches to the use of fair environment assumptions in ACL2
 - One approach requires a (fair-selection) assumption, the other restricts the selection set to nice objects

- In practice, the example proofs of progress provide a template for proving progress for other systems
 - The definition of the function good-measure will be specific to a given system and will include the necessary calls of env-measure

- Related Work: Mechanization of UNITY in PC-NQTHM by D. Goldschlag
 - Work focuses more on the mechanization of UNITY proof rules (which rely on fairness) in PC-NQTHM rather than the definition of fair environments