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Abstract

We present a new finite set theory implementation for
ACL2 wherein sets are implemented as fully ordered
lists. This order unifies the notions of set equality
and element equality by creating a unique represen-
tation for each set, which in turn enables nested sets
to be trivially supported and eliminates the need for
congruence rules.

We demonstrate that ordered sets can be reasoned
about in the traditional style of membership argu-
ments. Using this technique, we prove the classic
properties of set operations in a natural and effort-
less manner. We then use the exciting new MBE
feature of ACL2 to provide linear-time implementa-
tions of all basic set operations. These optimizations
are made “behind the scenes” and do not adversely
impact reasoning ability.

We finally develop a framework for reasoning about
quantification over set elements. We also begin to
provide common higher-order patterns from func-
tional programming. The net result is an efficient
library that is easy to use and reason about.

1 Introduction

Why reimplement set theory in ACL2? After all,
the standard implementation [7] is already well
distributed, documented, and quite good. Its
congruence-oriented reasoning is extensible to a user’s
functions, and its defx macro provides access to more
advanced proof strategies.

Execution efficiency is one consideration. The
standard implementation represents sets as un-
ordered lists. While some operations can be imple-
mented efficiently this way, important functions such
as equality and subset testing are quadratic. In con-
trast, all basic set operations can be implemented in
linear time using ordered lists. This suggests an or-
dered implementation may work well for some large
problems.

A more basic “objection” to unordered lists is that
a single set may have many representations. For ex-
ample, the set {1, 2} could be represented either by
the list (1 2) or by (2 1). Because of this, an ex-
plicit notion of set equality is needed, as are conven-
tions for when set equality should be applied rather
than equal. Further complicating the situation, set
membership, subset, and set equality are now mu-
tually recursive. In contrast, ordered lists provide a
unique representation for each set, so only the stan-
dard definition of equality is needed. This advantage
also holds over representations such as trees.

There are drawbacks. Unordered lists can ignore
duplication to provide constant-time insertion, a fun-
damental operation. Full ordering also brings new
challenges to reasoning. Moore remarks:

“I found this approach to complicate set
construction to a degree out of proportion
to its merits. In particular, functions like
union and intersection, which are quite
easy to reason about in the list world (where
order and duplication matter but are simply
ignored), become quite difficult to reason
about in the set world, where most of the
attention is paid to the sorting of the out-
put with respect to the total ordering.” [7]

Beneath these words lies a challenging problem:
how can the realities of an ordered implementation
be abstracted away into the traditional view of sets
as unordered collections? Success here is crucial: rea-
soning about union and intersection should not be
based on the underlying implementation, but rather
through an abstract, membership-based approach.
Much of our initial effort is focused on achieving this
abstraction.

We begin by introducing the core set operations
and the strategies used to reason about them (Sec-
tion 2). We partition our work into three “levels”
which we name the primitive, membership, and top
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levels for easy reference. Later levels build off the
work accomplished in the previous levels. The prim-
itive level defines the set recognizer and focuses on
wrapping the basic list operations (car, cdr, . . . ) in
new “set primitives” which behave more predictably
when applied to non-set objects. The membership
level then introduces set membership and subset, and
works towards abstracting away the set order. In
its place, membership-based methods are developed
for working with sets, including “pick-a-point” proofs
of subset and double-containment proofs of equality.
The top level builds from this by introducing the re-
maining set operations (e.g., union, intersection, dif-
ference) and developing reasoning strategies for these
operations using the membership-based approach.

Our attention then turns to execution efficiency
(Section 3). We introduce MBE, a new feature of
ACL2, and show how it can be used to provide ef-
ficient versions of the set operations while preserv-
ing the reasoning strategies developed thus far. We
briefly compare the performance of our implementa-
tion with the existing sets library, and add a sort so
that we may quickly create sets from lists.

We then take another look at reasoning, inter-
ested now in how the library can be made more
easily extensible to new problem domains (Section
4). We create instantiable “templates” for quan-
tifying predicates over sets, e.g., ∀a ∈ X,P (a) or
∃a ∈ X,P (a). We discuss the relationship between
these arguments and the pick-a-point strategy cre-
ated in the membership level for reasoning about sub-
sets, and discover that quantification is a generaliza-
tion of this strategy. We then begin work on provid-
ing some common higher-order functional program-
ming paradigms, such as map and filter, and find our
work with quantification to be immediately useful in
developing these strategies.

Finally, we conclude by looking at future direc-
tions for the library (Section 5). We consider our
success with quantification-based reasoning and the
benefit derived from automating functional instanti-
ation. We explore the consequences of changing the
set order, and take a cursory look into applying our
techniques to other data structures.

2 The Basic Set Operations

We now turn our attention to defining the basic set
operations. Our first task is to define the represen-
tation of sets. A total order on ACL2 objects, <<,
was recently introduced and is available as a stan-
dard ACL2 book, misc/total-order. [8] We adopt
this order verbatim, but the particular order is unim-

portant, and we will later consider the possibility of
using alternate orders (Section 5).

We initially implemented the set recognizer using
two functions: unique ensured that the list contained
no duplicates, and ordered ensured that all of the el-
ements were in order. Sets were then those lists which
satisfied both uniqueness and order. This definition
can be simplified, as the asymmetry of << means that
order implies uniqueness. In the end, setp is this:

(defun setp (X)

(if (atom X)

(null X)

(or (null (cdr X))

(and (consp (cdr X))

(<< (car X) (cadr X))

(setp (cdr X))))))

2.1 The Primitive Level

ACL2 functions are total, so set operations must be
defined not only for sets, but also for non-set objects.
As in [7], we adopt the non-set convention: if a func-
tion is passed a non-set object where a set is expected,
we treat the object as the empty set. As a result
of this decision, many theorems need not have ex-
tra hypotheses. For example, (subset X X) is now a
global truth irrespective of the type of X. This has sev-
eral useful consequences: rewrite rules become more
widely applicable, and apply quickly because fewer
hypotheses must be relieved. [6]

It is tempting to implement the remainder of the
sets package directly using the usual list primitives:
car, cdr, cons, and endp. Indeed, this was our ini-
tial approach. Using these functions, proofs about
“simple” operations (element insertion/deletion, sub-
set testing) were possible, but proofs about “compli-
cated” operations (union, intersection, difference) be-
came unmanageable. We came to believe these prob-
lems were not entirely artifacts of the set order, but
at least partially because the list primitives do not
respect the non-set convention. For example, (1 1)

contains duplicate elements and hence is not a set,
yet the list primitives do not treat it as empty:

• (car ’(1 1)) = 1, should be nil.

• (cdr ’(1 1)) = (1), should be nil.

• (endp ’(1 1)) = nil, should be t.

• (cons 1 ’(1 1)) = (1 1 1), should be (1).

The list primitives were designed to operate on reg-
ular lists — not ordered sets. As a result, they are
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poor candidates on which to directly base a set li-
brary. Instead, we implement analogous set primi-

tives that respect to the non-set convention:

• sfix – identity, but nil on non-sets.

• head – car, but nil on non-sets.

• tail – cdr, but nil on non-sets.

• empty – endp, but t on non-sets.

• insert – cons, but preserves the set order and
treats non-sets as nil.

The set primitives form a primitive level of abstrac-
tion, one step removed from the list primitives. Def-
initions for these functions are provided in Figure 1.

(defun empty (X)

(or (null X)

(not (setp X))))

(defun sfix (X)

(if (empty X) nil X))

(defun head (X)

(car (sfix X)))

(defun tail (X)

(cdr (sfix X)))

(defun insert (a X)

(cond ((empty X) (list a))

((equal (head X) a) X)

((<< a (head X)) (cons a X))

(t (cons (head X)

(insert a (tail X))))))

Figure 1: Primitive Set Functions

The non-set convention has interesting conse-
quences. Earlier we asserted ordering gives a unique
representation to every set, and this is true in that if
(setp X) ∧ (setp Y), then either X = Y or there is
some element in one but not the other. Yet, since the
set functions treat any non-set as empty, in a sense
there are multiple representations for the empty set.
(Of course, only one of these representations satisfies
setp). To deal with these “improper” empty sets,
we show that emptiness implies certain equalities. In
particular, if (empty X) ∧ (empty Y), then:

(head X) = (head Y)

(tail X) = (tail Y)

(insert a X) = (insert a Y)

(sfix X) = (sfix Y)

Eventually, we disable the definitions of setp,
sfix, empty, head, tail, and insert to prevent the
list primitives from occurring in higher level proofs
about sets.

2.2 The Membership Level

The primitive level supports the non-sets convention
well, but is a poor platform for set reasoning: the
only tools it provides are induction over insert’s def-
inition and some rules about the set order. In con-
trast, traditional set theory proofs are largely based
on membership and view sets as unordered collec-
tions. The membership level builds from the primi-
tive level, supplanting order-based reasoning with a
membership-based approach. To begin, set member-
ship and subset are introduced:

(defun in (a X)

(and (not (empty X))

(or (equal a (head X))

(in a (tail X)))))

(defun subset (X Y)

(or (empty X)

(and (in (head X) Y)

(subset (tail X) Y))))

We now have three goals: replacing order-based
reasoning with membership-based reasoning, devel-
oping the pick-a-point strategy for proving subset re-
lations, and showing that double containment is the
same as equality.

Eliminating Order-Based Reasoning. We
would like to reason about sets through membership
instead of using the set order. Towards this end,
we first prove the following theorem, which provides
us with the understanding that a set’s elements are
unique. Importantly, this statement is made entirely
in terms of membership:

(defthm head-unique

(not (in (head X) (tail X))))

A second key step is to provide a new induction
scheme for insert. Insert is the fundamental oper-
ation through which we construct sets, and inducting
over insert is a common necessity. However, insert
is defined using the set order, so in the course of these
inductions the set order will be introduced into our
proofs. We avoid this by defining a new induction
scheme which uses membership for its cases.
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The new scheme is natural. We make no induc-
tive assumptions when (empty X) or (in a X): in
either of these cases, (insert a X) = X, so the prop-
erty must only be shown to hold for X. Otherwise,
a will be added somewhere in the list. As a third
base case, if a will be placed at the front of the list,
then we know (head (insert a X)) = a and (tail

(insert a X)) = X. Finally, if a is not placed in the
front of the list, we inductively assume the property
holds for (insert a (tail X)).

No longer needing the set order for inductive proofs
about insert, we are one step closer to reasoning
exclusively through membership.

Pick-a-Point Proofs. In traditional mathemat-
ics, the pick-a-point method is typically used to prove
subset relationships. The idea is to show that ∀a : a ∈
X ⇒ a ∈ Y to conclude X ⊆ Y . So, to prove a sub-
set relationship, simply pick an arbitrary point and
show this membership relationship holds.

Because of the universal quantifier, this idea cannot
be directly stated as an ACL2 rewrite rule. However,
we can set up an “encapsulate” event and use it to
accomplishes a similar reduction. Suppose hyps, sub,
and super are some functions which happen to satisfy
the following constraint:

(defthm membership-constraint

(implies (and (hyps)

(in a (sub)))

(in a (super))))

Then the following is a theorem:

(defthm subset-by-membership

(implies (hyps)

(subset (sub) (super))))

The proof involves the use of a witness function.
We create a new function, (subset-witness X Y),
that searches for an element which satisfies (in a

X) and (not (in a Y)). An easy lemma is that if
subset-witness fails to find such an element, then
X is a subset of Y.

Now, suppose towards contradiction that
(subset-witness (sub) (super)) finds an ele-
ment, a. Then, by the definition of subset-witness,
(in a (sub)) and (not (in a (super))). But
this directly contradicts the membership constraint.
Therefore, we know that (subset-witness (sub)

(super)) cannot find a satisfactory element, and by
our lemma we are done.

Concrete subset relationships can be proven
through the functional instantiation of the
functions sub, super, and hyps. In other

words, we can now conclude (implies (hyps)

(subset (sub) (super))) merely by proving that
membership-constraint holds for our choices of
hyps, sub, and super.

The theorem prover will not automatically try to
use functional instantiation, but can be instructed to
do so through hints. Here is an example theorem of
such a hint:

(defthm subset-union-Y

(subset Y (union X Y))

:hints(("Goal" :use (:functional-instance

subset-by-membership

(sub (lambda () Y))

(super (lambda () (union X Y)))

(hyps (lambda () t))))))

This hint instructs the theorem prover to function-
ally instantiate subset-by-membership, selecting t

for hyps, Y for sub, and (union X Y) for super. In
other words, this hint will allow us to conclude:

(implies t

(subset Y (union X Y)))

If we can show the corresponding membership con-
straint, namely:

(implies (and t (in a Y))

(in a (union X Y)))

Fortunately, this is an easy proof for ACL2, and hence
the conclusion of (implies t (subset Y (union X

Y))) is accepted. A simple reduction allows us to con-
clude (subset Y (union X Y)), finishing the proof.

Automating Pick-a-Point Proofs. Ideally, a
sets library should be capable of deep reasoning about
sets without user interaction. Although it would not
be difficult for a user to explicitly invoke a pick-a-
point proof of a subset relation, we would prefer a
more automatic solution. Towards this end, we have
developed computed hints1 to automatically apply
this strategy when it seems applicable.

Rather than derail our discussion of set reasoning,
we relegate the details of this process to Appendix B.
The general idea is if (a) our goal is to prove a subset
relationship, and (b) all other attempts at simplifying
the conjecture have been exhausted, then an appro-
priate functional instantiation hint is suggested. The
substitutions to make are extracted from the conjec-
ture itself, i.e., if the conjecture is (H ⇒ (subset X

Y)), then we instantiate hyps with H, sub with X,

1Computed hints [3] allow hints to be automatically gen-
erated and suggested, rather than having a user write them
explicitly.
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and super with Y. As with subset-union-Y above,
this reduces the subset argument to a membership
argument.

Double Containment Proofs. Attention now
turns to proving double containment is equality, and
subset-by-membership is immediately useful. Sup-
pose two sets are subsets of one another, i.e., X ⊆ Y

and Y ⊆ X. First, we show (head X) = (head

Y). Next we show (in a (tail X)) implies (in a

(tail Y)). Subset-by-membership is then called
upon twice to show (tail X) is a subset of (tail Y),
and vice versa. We induct on a “double-tail” scheme,
so the inductive hypothesis asserts if the tails are mu-
tual subsets they are equal. Now (head X) = (head

Y) and (tail X) = (tail Y), so we conclude X = Y.
The resulting rewrite rule is:

(defthm double-containment

(implies (and (setp X)

(setp Y))

(equal (equal X Y)

(and (subset X Y)

(subset Y X)))))

Because this theorem is a rewrite rule, equalities
between sets will be automatically rewritten into sub-
set arguments. As an aside, we had been able to prove
that double containment was equality even before im-
plementing the pick-a-point strategy. Yet, the proof
required first introducing the delete function and
several theorems pertaining to it, then inducting by
deleting (head X) from both sides of the proposed
equality. In contrast, the above saves a significant
amount of work as the theorems about delete (which
had themselves required induction arguments) can
now be proven automatically by appealing to double-
containment.

The following rewrite strategy has been created:
set equalities are reduced to containment arguments,
and containment arguments are reduced to mem-
bership arguments. The beauty of this strategy is
that relationships about in (which are typically easy
to prove) are now sufficient to conclude subset and
equality relations between complicated expressions,
which might otherwise require hard inductions. This
method bears a close resemblance to traditional set
theory proofs and is a natural way to work with the
set functions.

Finally, all remaining theorems mentioning the set
order are disabled. Membership alone will now be
used to prove theorems.

2.3 The Top Level

While the membership level provides a solid basis for
set reasoning, the library is far from complete: we
have only insertion, membership, subset testing, and
the set primitives at this point. Using the member-
ship level as a foundation, the top level introduces
the remaining set theory functions: delete, union,
intersect, difference, and cardinality. These
functions are presented in Figure 2.

Using membership to prove subsets and equalities
is a powerful approach. Theorems about these func-
tions, so hard to prove in our early attempts, are now
automatic. At this level, “The Method” is generally:

• Introduce a function, prove it produces sets and
prove its basic membership properties

• Call upon the pick-a-point method to prove in-
teresting equalities and subset relationships.

(defun delete (a X)

(cond ((empty X) nil)

((equal a (head X)) (tail X))

(t (insert (head X)

(delete a (tail X))))))

(defun union (X Y)

(if (empty X)

(sfix Y)

(insert (head X) (union (tail X) Y))))

(defun intersect (X Y)

(cond ((empty X) (sfix X))

((in (head X) Y)

(insert (head X)

(intersect (tail X) Y)))

(t (intersect (tail X) Y))))

(defun difference (X Y)

(if (empty X)

(sfix X)

(if (in (head X) Y)

(difference (tail X) Y)

(insert (head X)

(difference (tail X) Y)))))

(defun cardinality (X)

(if (empty X)

0

(1+ (cardinality (tail X)))))

Figure 2: Top Level Definitions
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Many theorems are proven this way. Included among
them are the associativity of union and intersec-
tion, the symmetry of union and intersection, dis-
tributivity of unions over intersections, DeMorgan
laws for distributing differences, and so forth. Other
theorems are not based entirely on the pick-a-point
method, but are still carried out without mentioning
the set order. (In particular, cardinality properties
are demonstrated using our membership-based induc-
tion over insert.) Many selected theorems are listed
in Appendix A.

Users of the library would typically base their work
on the top level, using this same style of reasoning.

3 Execution Efficiency

When sets are implemented as ordered lists, all basic
set operations can be implemented with linear com-
plexity. However, the functions presented in Section 2
do little to realize this possibility. Here efficiency and
reasoning conflict: we would like to take advantage
of the set order to implement these functions more
efficiently, yet the given definitions of subset, union,
intersection, and difference are nice for reason-
ing precisely because they are described in terms of
membership and not the set order. Fortunately, there
is a nice solution to this problem using guards and
MBE.

Guards and MBE. Although ACL2 functions are
total, guards allow us to state an “intended domain”
for functions. [5] [1] [4] Guards are often presented
as a tool for ensuring the compatibility of ACL2 code
with Common Lisp, but they can also be used as run-
time assertions when guard checking is enabled, or as
static checks through the process of guard verifica-

tion (using the theorem prover to show whenever a
function is called, its arguments satisfy its domain).
We add guards to our basic set operations as listed
in Figure 3.

Introduced in ACL2 2.8, the MBE macro allows
two separate definitions — one logical, and one exe-

cutable — to be provided for a single function. When
reasoning about the function, the logical definition
is used. However, when executing the function on
arguments that satisfy the function’s guards, the ex-
ecutable definition is used instead. Note that for this
substitution to be sound, both definitions must be
proven to produce the same answer for any inputs
satisfying the guards (hence MBE stands for “must
be equal”).

Achieving Efficiency. As a first step, the com-
bination of MBE and guards can be used to provide

Function Guard

(setp X) t

(empty X) (setp X)

(sfix X) (setp X)

(head X) (setp X)

(tail X) (setp X)

(insert a X) (setp X)

(in a X) (setp X)

(subset X Y) (setp X) ∧ (setp Y)

(delete a X) (setp X)

(union X Y) (setp X) ∧ (setp Y)

(intersect X Y) (setp X) ∧ (setp Y)

(difference X Y) (setp X) ∧ (setp Y)

(cardinality X) (setp X)

Figure 3: Guards for Set Functions

faster versions of the set primitives. In Section 2,
all primitives called setp (sometimes via sfix) to
ensure their argument was a set. This is a terrible
waste, since setp must examine the entire set. With
guards to ensure the primitives operate only on sets,
these setp calls are no longer necessary. We there-
fore make the following MBE substitutions: (empty

X) is replaced by (null X), (sfix X) by X, (head
X) by (car X), and (tail X) by (cdr X). Insert is
not changed; it is already linear now that the other
primitives have been made efficient.

Our attention then turns to the other operations.
In is unchanged since it is already linear. An alter-
native in could use the set order to stop early, for
example (in 1 ’(2 3 4)) could terminate immedi-
ately because (<< 1 2). But there are also cases
when this would be slower, as each iteration would
incur the overhead of a call to <<. Because of this,
the given definition is retained.

Linear versions of subset, union, intersect, and
difference, are shown in Figure 4. These are vis-
ibly more complicated than their original counter-
parts. Except for subset, the proofs of equivalence
can be carried out by merely showing these functions
produce sets and have the characteristic membership
property, then appealing to double containment to
finish the proof. Importantly, this approach obviates
the need to directly induct against union, etc.

Even so, these are not trivial proofs and turn out
to involve many cases: cons only produces sets under
certain conditions, so theorems about it are compli-
cated and weak. These proofs must be argued from
“first principles” using the set order and induction,
but this is not a violation of our goal of reasoning
through membership: these functions are dependent
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(defun fast-subset (X Y)

(cond ((empty X) t)

((empty Y) nil)

((<< (head X) (head Y)) nil)

((equal (head X) (head Y))

(fast-subset (tail X) (tail Y)))

(t (fast-subset X (tail Y)))))

(defun fast-union (X Y)

(cond ((empty X) Y)

((empty Y) X)

((equal (head X) (head Y))

(cons (head X)

(fast-union (tail X) (tail Y))))

((<< (head X) (head Y))

(cons (head X)

(fast-union (tail X) Y)))

(t (cons (head Y)

(fast-union X (tail Y))))))

(defun fast-intersect (X Y)

(cond ((empty X) nil)

((empty Y) nil)

((equal (head X) (head Y))

(cons (head X)

(fast-intersect (tail X)

(tail Y))))

((<< (head X) (head Y))

(fast-intersect (tail X) Y))

(t (fast-intersect X (tail Y)))))

(defun fast-difference (X Y)

(cond ((empty X) nil)

((empty Y) X)

((equal (head X) (head Y))

(fast-difference (tail X)

(tail Y)))

((<< (head X) (head Y))

(cons (head X)

(fast-difference (tail X) Y)))

(t (fast-difference X (tail Y)))))

Figure 4: Linear Time Implementations

on the implementation, and the set order is the only
reason they work.

No Compromises. This solution sacrifices nei-
ther execution efficiency nor reasoning ability. All set
operations are now constant or linear time, yet their
logical definitions are simply the Lisp reflections of
their mathematical meanings, seemingly unconcerned

with implementation details.
This approach is particularly appealing for the free-

dom it provides the author. When designing the li-
brary throughout Section 2, efficiency was not con-
sidered (our most primitive functions had to exam-
ine the entire set), and we focused solely on develop-
ing simple, straightforward models and creating proof
strategies.

Only then, after the theory was complete, did effi-
ciency become a consideration. Efficient but compli-
cated models of these functions were developed. No
theory was developed about the complicated models
beyond showing that they faithfully implemented the
simple models. The power of the established theory
was preserved, while the efficiency of the complicated
models was gained.

Without MBE, even a convenience like the non-set
convention would inflict a large efficiency penalty. If
efficiency is sacrificed, the library may be too slow
to be practically useful. If efficiency is not sacrificed,
theorems will have extra hypotheses, proofs will be
larger, and more effort will be required on the part of
the library’s designer and its users.

Efficiency Analysis. Set theory is so widely ap-
plicable and the library is sufficiently general that
benchmarking its performance is difficult. There is no
concept of representative input data. There are also
at least five Lisp implementations on which ACL2
can be run, each supporting various operating sys-
tems and hardware, each with different performance
characteristics.

Nevertheless, it would be nice to have some rudi-
mentary test data to demonstrate the efficiency of
these operations. Towards this end, we have put to-
gether a small set of test programs where sets are cre-
ated from either random integers or random strings
taken from a dictionary file. We timed the test pro-
grams using GCL on Linux machines, but make no
claim that our tests were thorough or representative
of the results which may occur in other contexts. Out
of curiosity, analogous functions from the standard
sets books were also timed for comparison purposes.2

The results were not surprising. The standard sets
library significantly outperformed ordered sets for in-
sertion, but ordered sets were significantly faster for
intersections and differences. The performance dif-
ference in each case can be made arbitrarily large
by choosing large enough sets. This is exactly what
should be expected: the standard library can ignore

2The standard sets books do not have verified guards by
default, so in each case we artificially verified their guards using
skip-proofs. This should ensure comparisons are not being
made between compiled and interpreted performance.
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duplication and just use cons for a constant-time in-
sert, whereas the ordered library must make a linear
scan of the set. In the cases of set difference and
intersection, the ordered sets library can use a lin-
ear pass where the standard library uses a quadratic
algorithm.

We were not able to demonstrate that either library
was consistently faster than the other at performing
unions.3 We did not test subset or set equality, but
would expect the ordered library to significantly out-
perform the standard library in “true” cases on these
functions.

Adding a Sort. Unordered sets are significantly
faster at repeated element insertions than ordered
sets. Unordered inserts take constant time, so insert-
ing n elements is a linear operation; ordered inserts
are each linear, so inserting n elements is quadratic.

Generating sets is a fundamental operation, so a
more efficient method for building large sets is desir-
able. Towards this purpose, a simple merge sort was
implemented, reducing the time needed for n inserts
from n2 to n log2 n. This is still not as good as
the linear performance of unordered sets, and is the
inescapable price paid for full ordering.

The sort itself is easy to write using the already
efficient union operation to perform the merge. As
with the other basic set operations, we use MBE to
combine easy reasoning with efficiency in execution:
mergesort is logically viewed simply as repeated in-
sertions.

4 Instantiable Extensions

At this point we have covered the core of the sets
library. Though efficient and relatively straightfor-
ward to reason about, this core is limited in its ca-
pabilities. Having more functionality available ahead
of time may make modeling new problems easier, and
although it is certainly impossible to foresee and cater
to every need, we suspect we can provide at least a
few widely applicable extensions.

Two extensions seem to be particularly good candi-
dates. Having recently seen the benefits derived from
our subset-by-membership strategy, it seems desir-
able to provide some support for quantification over
set elements. Furthermore, the time honored pat-

3The results are dependent on the inputs. Both algorithms
are linear, but the standard sets library simply conses the el-
ements from the first list onto the second, requiring n conses
and recursion where n is the length of the first list. In contrast,
the ordered sets library must compare set orders, walking down
both lists simultaneously.

terns of functional programming are probably also
good candidates with which to extend the library.

4.1 Quantification

We have found quantification over set elements to be
quite useful, and would like to be able to support
statements of the form “∀a ∈ X,P (a)” and “∃a ∈
X,P (a)” for some arbitrary predicate P .

To support this generality, we introduce an op-
tional extension to the library. Here, we create a
fully instantiable generic theory (as in [2]) and pro-
vide macros to create concrete instances of this the-
ory. Our macros are complex enough to support
predicates with any number of arguments, and also
support the use of custom guards on those argu-
ments. As some examples, simple predicates such
as integerp or stringp are useful for defining typed
sets. More complicated predicates allow us to ex-
press notions such as “sets of integers less than b”.
Note that (subset X Y) itself is nothing more than
∀a ∈ X,P (a) where P (a) = (in a Y).

In the end, given a predicate, (P a ...), where
... is understood to represent 0 or more extra argu-
ments, the user can invoke a single macro to create
the following functions and an associated rewriting
strategy:

• (all<P> X ...), returns t if ∀a ∈ X, (P a

...), or nil otherwise.

• (exists<P> X ...), returns t if ∃a ∈ X, (P a

...), or nil otherwise.

• (find<P> X ...), returns an element a ∈ X

such that (P a ...), or nil if no such element
exists.

We also create quantifying functions for “not P”
(named all<not-P>, exists<not-P>, . . . ), as well as
“list” versions of each function (named all-list<P>,
all-list<not-P>, . . . ) which are useful for rea-
soning through any calls to mergesort we may en-
counter. Furthermore, the macro also sets up an ini-
tial rewriting strategy.

Most of this strategy is relatively straightforward
and is summarized in Appendix A, but we also set
the stage for deeper reasoning about these functions.
As we noticed before, all<P> is quite like subset,
and in fact (subset X Y) is exactly (all<in> X Y).
Since the pick-a-point strategy was quite successful
at proving theorems about subset, we suspect analo-
gous strategies for handling all-P might be similarly
successful here.

We generalize the pick a point strategy by doing
away with (super) and simply using (predicate
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(sub)) instead of (subset (sub) (super)) as the
conclusion for our membership constraint. Where we
would have previously substituted X for (sub) and
Y for (super), we now continue to substitute X for
(sub), but instead substitute (lambda (x) (in x

Y)) for (predicate x). Hence, we can still perform
pick a point proofs of subsets, but can also consider
other substitutions for predicate.

As before, we set up computed hints to automate
these strategies for each predicate that the user quan-
tifies, and more details about how these hints are
constructed are provided in Appendix B. Prior to
ACL2 2.9, users were required to explicitly manage
which computed hints would be active during proof
attempts, but as of version 2.9, these hints can be au-
tomatically installed by the macro each time a new
all<P> function is introduced, without requiring any
action or knowledge from the user. Because of these
changes, computed hints can now be a tightly inte-
grated part of a library’s overall reasoning strategy.

4.2 Higher Order Functions

We further extend the library with two common
higher order patterns from functional programming:
filter and map. We find that our theory of quantifi-
cation helps us greatly here.

Filter. We extend the quantification macro to ad-
ditionally provide a filter<P> function and its ba-
sic theorems when we create the quantification the-
ory for a predicate. As an example, observe that
(filter<in> X Y) is exactly equal to (intersect

X Y). We might also consider simple filtering, e.g.
filter<integerp>. This addition is a quite painless
extension of the existing macro developed to instan-
tiate the quantification theory.

Map. We create a second, optional extension of
the library which allows the user to introduce map<F>
given some transforming function F. In order to pro-
vide as much generality as possible, we F can take any
number of extra arguments. The function introduced
takes the following form:

(defun map<F> (X ...)

(if (empty X)

nil

(insert (F (head X) ...)

(map<F> (tail X) ...))))

This is inefficient; we are essentially performing an
insert sort. To remedy this situation, we use MBE to
provide an executable definition which instead puts
all of the mappings into a list, which can be sorted
efficiently afterwards.

(defun map-list<F> (X ...)

(if (endp X)

nil

(cons (F (car X) ...)

(map-list<F> (cdr X) ...))))

For brevity, assume F takes no extra arguments.
We guard map<F> with (setp X), then work towards
proving (map<F> X) = (mergesort (map-list<F>

X)), which will be our MBE substitution. This equal-
ity is an easy proof by double containment.

To do much set reasoning about mappings, the
most important property is that of membership.
What can be said about (in a (map X)). Naturally,
we would like to speak in terms of inverses. Conve-
niently, the quantification theory we have developed
allows us to do this. In particular, we can introduce
the following predicate, which returns true when (F

a) = b, or in other words, when a is an inverse of b.

(defun inversep<F> (a b)

(equal (F a) b))

We can then use the macro developed in our
quantification extension to introduce the notion of
(exists<inversep<F>> X e). This allows us to ask
if there is any inverse of e in X. In short, the following
is a theorem:

(equal (in a (map<F> X))

(exists<inversep<F>> X a))

We can now rapidly develop theorems about map

using the pick a point method. Whenever we need to
reason about membership in a mapped set, we simply
consider the existence of inverses in the original set.
Combining this with the pick a point method and all
of the techniques we already have for proving mem-
bership properties, this becomes a powerful strategy
that is sufficient to prove the obvious theorems re-
lating subset, union, intersection, and difference to
mapping. Many of these theorems are enumerated in
Appendix A.

We conclude with an example of this strategy at
work. The following proof method is discovered by
ACL2 automatically with no user intervention, yet
has a very natural feel.

(equal (map<F> (union X Y))

(union (map<F> X) (map<F> Y)))

ACL2 first notices that map and union both produce
sets, so a proof by double containment is employed.
The first subgoal is to show that (map<F> (union

X Y)) is a subset of (union (map<F> X) (map<F>

9



Y)). Using a pick a point proof, we choose some ele-
ment a in (map<F> (union X Y)). By our member-
ship property, we see that (exists<inversep<F>>

(union X Y) a). Simple rewrites show that
this is the same as (exists<inversep<F>> X) or
(exists<inversep<F>> Y). But this leads us to con-
clude that (in a (map X)) or (in a (map Y)), and
hence that the subset relationship holds, by the mem-
bership property of union. The second subgoal is
similarly straightforward.

5 Conclusions

Set theory has been an excellent domain for learning
to work with ACL2, and perhaps it would be a simi-
larly rich pedagogical tool for interacting with other
theorem provers. The functions are simple and fa-
miliar, yet we discovered many subtle challenges in
trying to develop a sensible proof strategy.

In a domain as rich and general as set theory, there
are few limits on how we might hope to extend the
library. For the near term, we consider how we might
improve the automation of functional instantiation,
whether or not changing the set order might be useful,
discuss the limits of instantiable theories, and leave
open the question of applying our techniques to other
container structures.

Lessons Learned. Hiding complexity behind lev-
els of abstraction seems to be a crucial step in success-
fully implementing an ACL2 library. This is the en-
tire idea behind the primitive and membership levels.
We do not believe that proofs of the many theorems
in the top level would have been nearly as easy using
induction and properties of the set order, but they
are simple once a membership strategy is available.

MBE has also shown itself to be an extremely use-
ful tool. Without MBE, either efficiency would have
to be sacrificed for reasoning ability (even the primi-
tive operations would be linear in complexity to sup-
port the non-sets convention), or reasoning would be
impaired by attempting to directly reason about the
“fast” versions of the functions.

Functional Instantiation. A cornerstone of the
library’s reasoning ability is the reduction of subset
problems to membership problems. Using encapsu-
lation and functional instantiation in this way is a
fairly standard trick; the new idea here is the use
of computed hints to automate the process. This au-
tomation is nothing more than a very narrow instance
of second-order pattern matching, where only subset

(or other suitable triggers) are considered for instan-
tiation, and only under certain conditions. Even this

very limited match seems to find broad application
in the set theory domain.

An interesting question is whether or not a more
general form of second-order pattern matching could
be implemented to automatically apply these types of
strategies. There are many difficulties in implement-
ing this, particularly the large number of matches and
how to decide which one(s) to attempt to use. Still,
it seems this could eventually become a powerful ex-
tension of functional instantiation.

Custom Set Orders. Another question, more
specifically pertaining to ordered sets, is if it would
be worthwhile to parameterize the set order. On one
hand, this seems like a fairly easy thing to implement.
The library is quite indifferent to the internal work-
ings of the order: only the properties of irreflexivity,
asymmetry, transitivity, and trichotomy are ever used
in set reasoning, and the definition of << is never used.

It seems like creating “custom” set orders is quite
easy. For example, here is an adaptation of the exist-
ing order which places the integers first in “greatest
to least” order:

(defun my-order (a b)

(cond ((integerp a)

(if (integerp b)

(> a b)

t))

((integerp b) nil)

(t (<< a b))))

My-order still satisfies all the properties of a to-
tal order, and if given the guard (and (integerp

a) (integerp b)), it would be easy to prove MBE
equivalence to >. But complications arise from such
a scheme: to verify the guards of the set functions,
we might need to add additional guards or change
our definitions. For example, we might modify setp

to require that every element satisfy integerp, but
this would destroy theorems such as (setp (insert

a X)) unless we modified the definition of insert to
ifix its arguments, and so forth.

For now, we have elected to hold off on customizing
set orders. In the meantime, it would certainly be
possible (and easy) to “hard-wire” in a different order
with a guard of t, but certainly this is not a general
solution.

Instantiation’s Limits. Using macros to auto-
mate functional instantiation is a difficult and poor
way to emulate higher order programming.

One problem is the sheer number of events intro-
duced with each instantiation. For example, the the-
ory of mapping involves introducing a quantification
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theory for a new inversep function as well as several
theorems. In total, there are well over 100 defini-
tions and theorems introduced just to introduce a
new map. At present, these events are all grouped
into convenient theories which can be enabled and
disabled at will, but it seems clear that in the long
term, more sophisticated methods will be needed to
handle this kind of load, or to reduce the number of
theorems actually provided.

Another issue is the sheer complexity of writing the
macros. To facilitate the size of these instantiable
theories, we ended up providing a simple rewriter
and using it to do most of the work of setting up
functional instantiation hints and very restricted the-
ories to prove the concrete versions of each theorem.
Nevertheless, the system is still awkward and bulky.
Techniques to more easily define and use generic the-
ories (where these theories are complicated, and in-
volve definitions, guards, theorems, computed hints,
and so forth) would be welcome.

Other Containers. Mainstream programming
languages often offer a myriad of “container classes.”
As users of ACL2, we tend to shun such complexity
in favor of simple lists or association lists. Can MBE
offer the same benefits to such structures in terms of
interface/implementation separation, and can the au-
tomation of quantification-based arguments lend the
same reasoning ability to other containers as they
have to set theory? If so, perhaps these containers
could become more practical for use in those ACL2
models where reasoning and efficiency are both im-
portant.

Availability. The library is released under the
GNU General Public License. Full source code (and
other materials) are available through the following
web site:

http://www.cs.utexas.edu/users/jared/osets/
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A Selected Theorems

The following is a list of many theorems provided
by the ordered sets library. It is not comprehensive,
but should give a good flavor of the rewriting strat-
egy. For brevity, instantiable functions such as all

are written without extra arguments/predicates, and
traditional notation is freely mixed with ACL2 terms.

Set Creation

(setp (sfix X))
(setp (tail X))
(setp (insert a X))
(setp (delete a X))
(setp (union X Y))
(setp (intersect X Y))
(setp (difference X Y))
(setp (mergesort x))
(setp (filter X))
(setp (map X))

Membership

(in a (insert b X)) = (in a X) ∨ (equal a b)
(in a (delete b X)) = (in a X) ∧ ¬(equal a b)
(in a (union X Y)) = (in a X) ∨ (in a Y)
(in a (intersect X Y)) = (in a Y) ∧ (in a X)
(in a (difference X Y)) = (in a X) ∧ ¬(in a Y)
(in a (mergesort x)) ⇔ (in-list a x)
(in a (filter X)) = (P a) ∧ (in a X)
(subset X Y) ∧ (in a X) ⇒ (in a Y)
(subset X Y) ∧ ¬(in a Y) ⇒ ¬(in a X)
¬(in a a)

Non-Set Convention

(empty (sfix X)) = (empty X)
(head (sfix X)) = (head X)
(tail (sfix X)) = (tail X)
(in a (sfix X)) = (in a X)
(insert a (sfix X)) = (insert a X)
(delete a (sfix X)) = (delete a X)
(subset (sfix X) Y) = (subset X Y)
(subset X (sfix Y)) = (subset X Y)
(union (sfix X) Y) = (union X Y)
(union X (sfix Y)) = (union X Y)
(intersect (sfix X) Y) = (intersect X Y)
(intersect X (sfix Y)) = (intersect X Y)
(difference (sfix X) Y) = (difference X Y)
(difference X (sfix Y)) = (difference X Y)
(cardinality (sfix X)) = (cardinality X)
(all (sfix X)) = (all X)
(find (sfix X)) = (find X)
(filter (sfix X)) = (filter X)
(map (sfix X)) = (map X)

11



Insertion, Deletion

¬(empty (insert a X))
(in a X) ⇒ (equal (insert a X) (sfix X))
(insert a (insert b X)) = (insert b (insert a X))
(insert a (insert a X)) = (insert a X)
(insert a (delete a X)) = (insert a X)
¬(in a X) ⇒ (equal (delete a X) (sfix X))
(delete a (delete b X)) = (delete b (delete a X)))
(delete a (delete a X)) = (delete a X)
(delete a (insert a X)) = (delete a X)
(subset X (insert a X))
(subset (delete a X) X)

Union

(empty X) ⇒ (equal (union X Y) (sfix Y))
(empty Y) ⇒ (equal (union X Y) (sfix X))
(empty (union X Y)) = (empty X) ∧ (empty Y)
(subset X (union X Y))
(subset Y (union X Y))
(union X X) = (sfix X)
(union X Y) = (union Y X)
(union (union X Y) Z) = (union X (union Y Z))
(union X (union Y Z)) = (union Y (union X Z))
(union X (union X Z)) = (union X Z)
(union (insert a X) Y) = (insert a (union X Y))
(union X (insert a Y)) = (insert a (union X Y))

Intersect

(empty X) ⇒ (empty (intersect X Y))
(empty Y) ⇒ (empty (intersect X Y))
(subset (intersect X Y) X)
(subset (intersect X Y) Y)
(intersect X X) = (sfix X)
(intersect X Y) = (intersect Y X)
(∩ (∩ X Y) Z) = (∩ X (∩ Y Z))
(∩ X (∩ Y Z)) = (∩ Y (∩ X Z))
(intersect X (intersect X Z)) = (intersect X Z)
¬(in a Y) ⇒ (∩ (insert a X) Y) = (∩ X Y)
¬(in a X) ⇒ (∩ X (insert a Y)) = (∩ X Y)

Difference

(empty X) ⇒ (empty (difference X Y))
(empty Y) ⇒ (equal (difference X Y) (sfix X))))
(empty (difference X Y)) = (subset X Y)
(subset (difference X Y) X)

Cardinality

(integerp |X|)
0 ≤ |X|
(|X| = 0) = (empty X)
|X ∩ Y | ≤ |X|
|X ∩ Y | ≤ |Y |
|X ∪ Y | = |X| + |Y | − |X ∩ Y |
|X − Y | = |X| − |X ∩ Y |

X ⊆ Y ⇒ |X| ≤ |Y |
X * Y ⇒ |X ∩ Y | < |X|

|(insert a X)| =

{

|X| if (in a X)
|X| + 1 otherwise

|(delete a X)| =

{

|X| − 1 if (in a X)
|X| otherwise

|X| = |(filter X)| + |(filter-not X)|
|(map X)| ≤ |X|

Miscellaneous

(union X (∩ Y Z)) = (∩ (union X Y) (union X Z))
(∩ X (union Y Z)) = (union (∩ X Y) (∩ X Z))
(diff X (union Y Z)) = (∩ (diff X Y) (diff X Z))
(diff X (∩ Y Z)) = (union (diff X Y) (diff X Z))

Quantification

(empty X) ⇒ (all X)
(all (sfix X)) = (all X)
(all X) ⇒ (all (tail X))
(all X) ⇒ (all (delete a X))
(all X) ∧ (in a X) ⇒ (P a)
(all X) ∧ ¬(P a) ⇒ ¬(in a X)
(all (insert a X)) = (P a) ∧ (all X)
(all (∪ X Y)) = (all X) ∧ (all Y)
(all X) ⇒ (all (intersect X Y))
(all Y) ⇒ (all (intersect X Y))
(all X) ⇒ (all (difference X Y))
(exists X) = (not (all-not X))

Filtering

(all (filter X))
(all X) ⇒ (filter X) = (sfix X)
(subset (filter X) X)

Mapping

(in a (map X)) = (∃-inversep X a)
(subset X Y) ⇒ (subset (map X) (map Y))
(map (insert a X)) = (insert (F a) (map X))
(map (delete a X)) ⊇ (delete (F a) (map X))
(map (∪ X Y)) = (∪ (map X) (map Y))
(map (∩ X Y)) ⊆ (∩ (map X) (map Y)))
(map X) − (map Y) ⊆ (map (X − Y))

B Details of Computed Hints

Much of our reasoning success lies in automatically
suggesting functional instantiation hints. The de-
tails of constructing these hints are now presented.
Throughout this appendix, we talk about proving
“subset” using computed hints, but this process is
the same for all<P> as well.

When to Suggest Hints. At any given point in
a proof attempt, ACL2 is trying to show that some
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conclusion follows from some hypothesis. Our strat-
egy is to suggest a hint only if all other attempts at
simplification have failed, and only for conclusions of
exactly (subset X Y) for some expressions X and Y.

If other attempts at simplification have not yet
been exhausted, there may be rewrite rules that
can prove the conjecture without falling back on a
membership argument. For example, perhaps if we
do not interfere, some rewrite rule will transform
the conclusion to (subset Y (union X Y)), which
can then be rewritten to t immediately by the rule
subset-union-Y. In this case, suggesting a member-
ship hint might still permit ACL2 to complete the
proof, but may be less efficient and less natural.

Suggesting hints only for conclusions is more sub-
tle. If we do encounter a conclusion of (subset X Y),
it certainly makes sense to suggest a hint: doing so
will reduce the proof to a membership argument that
may be easier to prove. A second, important aspect
is that we never suggest hints to reduce a hypothesis:
(subset X Y) is a strong hypothesis that we do not
wish to weaken, and given (subset X Y) we can al-
ready conclude (in a X) ⇒ (in a Y) using simple
rewrite rules.

Note that we suggest hints only for conclusions
which are exactly (subset X Y). In other words, we
would not suggest a membership argument for the
following:

(implies (...)

(foo a b (subset X Y) c))

Is this too restrictive? In this case, we might not
even want to show that (subset X Y) holds. ACL2
may eventually produce a new subgoal for which we
need to show (subset X Y), and at that point our
membership strategy can be applied. However, the
truth of (subset X Y) might also be irrelevant to
the truth of the entire conjecture. As it is not clear
that a hint would be useful, we choose conservatively
not to make a suggestion.

Creating Hints. Using a standard rewrite rule
(with syntaxp hypotheses to enforce the above con-
ditions), we identify the subset terms that we
would like to suggest hints for. We “tag” these in-
stances by rewriting them from (subset X Y) to
(subset-trigger X Y), a new function which is sim-
ply a synonym for subset.

Our hint generation function is allowed to exam-
ine the current clause ACL2 is working on. Clauses
are disjunctions of terms. For example, the clause
(not a) ∨ (not b) ∨ c represents the implication
(implies (and a b) c). We search the clause for

an instance of subset-trigger, creating a hint if we
find one.

The subs and super can be extracted easily from
the subset-trigger term. To create hyps, we re-
move the subset-trigger term from the clause and
then combine the remaining disjuncts by and’ing
their negations. For example, given the clause (not

(empty (difference X Y))) ∨ (subset-trigger

X Y), we first remove (subset-trigger X Y), then
negate the remaining disjunct to produce the hypoth-
esis (empty (difference X Y)).

Finally, we build a :functional-instance hint,
instantiating the theorem subset-by-membership

with our newly computed choices of sub, super, and
hyps.

User Notification. When hints are suggested, we
output a brief message to the user. We tell the user
our heuristics suggest using a pick-a-point style argu-
ment, and that we will therefore suggest a functional
instantiation hint. The message includes instructions
for disabling the strategy, in case it is not what the
user has in mind.
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