Generic Theories as Proof Strategies

Wilfred J. Legato
National Security Agency
Outline of Talk

- Background
- Loop Invariant Theory
- Tail Recursion Theory
- Alternative Induction Theory
- An Example
- Concluding Remarks
A Floyd-Hoare Triple

\[
\{ \text{N} > 0 \} \\
X := N \\
A := 0 \\
\text{LOOP:} \quad A := A + X \\
X := X - 1 \\
X > 0 \implies \text{GO TO LOOP} \\
\{ A = N \times (N+1)/2 \}
\]
A Floyd-Hoare Proof

- Find a loop invariant $R(A,X)$

 $$X \geq 0 \land A + X \times (X+1)/2 = N \times (N+1)/2$$

- Prove: (1) $N > 0 \implies R(0,N)$
 (2) $X > 0 \land R(A,X) \implies R(A+X,X-1)$
 (3) $X \leq 0 \land R(A,X) \implies A = N \times (N+1)/2$

- Use identity $X \times (X+1)/2 = X + (X-1) \times X/2$
Weakest Precondition Model

- Denote the postcondition by $Q(A, X, N)$

- Mechanically derive

 $$wp(A, X, N) =$$

 if $X > 1$ then $wp(A + X, X - 1, N)$ else $Q(A + X, X - 1, N)$

- Prove: $N > 0 \Rightarrow wp(0, N, N)$
Attempted Weakest Precondition Proof

- Induction patterned after wp yields:

- Base case:
 \[N=1 \Rightarrow wp(0,N,N) \]

- Induction step:
 \[N>1 \land wp(0,N-1,N-1) \Rightarrow wp(0,N,N) \]

- Expansion of \(wp(0,N,N) \) to \(wp(N,N-1,N) \) does not match the hypothesis.
Capturing Proof Strategies

- We can prove weakest preconditions with the same ease as Floyd-Hoare.

- We will identify alternative strategies to deal with finding suitable inductions when recursive functions are applied to specialized arguments.

- We will use generic theories to capture and apply these strategies.
Loop Invariant Theory

- The most general weakest precondition may be represented by:

\[(wp \ s) = (if \ (b \ s) \ (qp \ s) \ (wp \ (sigma \ s)))\]

where \(b\) is the loop exit predicate, \(sigma\) represents the loop body, and \(qp\) is the postcondition.
Loop Invariant Theory

- We constrain \(wp \) by:

 \[
 (b \ s) \implies (wp \ s) = (qp \ s)
 \]

 \[
 (\text{not} \ (b \ s)) \implies (wp \ (\sigma s)) = (wp \ s)
 \]

- Since these are treated as rewrite rules the order of the equalities matters.
Loop Invariant Theory

- We constrain a measure function:

\[
(o \cdot p (\text{measure } s)) \\
(\text{not } (b \ s)) \Rightarrow \\
(o < (\text{measure } (\text{sigma } s)) (\text{measure } s))
\]

in order to allow inductive proofs about \text{wp}.
Loop Invariant Theory

- Finally, we constrain a loop invariant r by:

\[(\text{not } (b \ s)) \land (r \ s) \Rightarrow (r \ (\text{sigma} \ s))\] \hspace{1cm} (2)
\[(b \ s) \land (r \ s) \Rightarrow (qp \ s)\] \hspace{1cm} (3)

from which we prove

\[(r \ s) \Rightarrow (wp \ s)\] \hspace{1cm} (1)

- This characterizes wp as the weakest loop invariant.
Summary of the Tail Recursion Theory

- Our goal in this theory is to remove the “a” component of state from the tail recursive function

\[(g \ a \ s) = (\text{if} \ (bb \ s) \ \text{then} \ (qt \ a \ s) \ \text{else} \ (g \ (rho \ a \ s) \ (tau \ s)))\]

where \(tau\) is measure decreasing.
Summary of the Tail Recursion Theory

- We introduce an invariant rt to capture underlying assumptions of the theory.

\[
\text{not (bb s)) } \land (rt a s) \Rightarrow (rt (rho a s) (tau s))
\]
Summary of the Tail Recursion Theory

- We introduce functions op, h and hs with properties that allow us to prove

\[(rt \ a \ s) \Rightarrow \ (g \ a \ s) = (if \ (bb \ s) \n(\ qt \ a \ s) \n(\ qt \ (op \ a \ (h \ s) \ s) \ (hs \ s)))\]
Summary of the Alternative Induction Theory

- This theory uses two tail recursive functions

\[(fn1 \ s) = (\text{if} \ (b1 \ s) \ (q1 \ s) \ (fn1 \ (\text{sigma1} \ s)))\]

\[(fn2 \ s) = (\text{if} \ (b2 \ s) \ (q2 \ s) \ (fn2 \ (\text{sigma2} \ s)))\]

together with a mapping id-alt from the domain of \(fn1\) to the domain of \(fn2\), and a loop invariant \(p\) on the domain of \(fn1\).
Summary of the Alternative Induction Theory

- The key requirement in this theory is

\[(\text{not (b1 s)}) \land (p \ s) \Rightarrow (\text{id-alt (sigma1 s)}) = (\text{sigma2 (id-alt s)})\]

- When fn1 and fn2 are identical, this property states that id-alt and sigma1 commute.
Summary of the Alternative Induction Theory

- This theory allows us to prove

\[(p \ s) \Rightarrow (fn1 \ s) = (fn2 \ (id-alt \ s))\]

- Notice that when fn1 and fn2 are the same and id-alt is measure decreasing, id-alt defines an alternative induction.
Example Using the Loop Invariant Theory

- State consists of bytes A, N and flag C.

\[
\{ N>0 \wedge NS=N \wedge N^*(N+1)/2<256 \}
\]

LDA #0 \quad \text{load A immediate with 0}
CLC \quad \text{clear the carry flag}

\text{LOOP:}
ADC N \quad \text{add with carry N to A}
DEC N \quad \text{decrement N by 1}
BNE LOOP \quad \text{branch if N>0 to LOOP}

\[
\{ A=NS^*(NS+1)/2 \}
\]
Example Using the Loop Invariant Theory

- The weakest precondition at LOOP is

```lisp
(defun wp-loop (n a c ns)
  (declare (xargs :measure (dec n)))
  (if (equal (dec n) 0)
      (equal (mod (+ c a n) 256)
             (floor (* ns (1+ ns)) 2))
    (wp-loop (dec n)
             (mod (+ c a n) 256)
             (floor (+ c a n) 256)
             ns)))
```
Example Using the Loop Invariant Theory

- Where `dec` is defined by

 (defun dec (n)
 (if (zp n) 255 (1- n)))

- The weakest precondition at the beginning of the program is

 (defun wp-1 (n ns)
 (wp-loop n 0 0 ns))
Example Using the Loop Invariant Theory

- The proof goal is

```lisp
(defthm wp-loop-is-correct
  (implies (and (not (zp n))
               (equal ns n)
               (< (floor (* n (1+ n)) 2)
                 256))
  (wp-1 n ns)))
```
The Automated Loop Invariant Proof

;;; Define the loop invariant

(defun sum-invariant (n a c ns)
 (and (not (zp n))
 (< (+ a (floor (* n (1+ n)) 2)) 256)
 (natp a)
 (equal c 0)
 (natp ns)
 (equal (+ a (floor (* n (1+ n)) 2))
 (floor (* ns (1+ ns)) 2))))
The Automated Loop Invariant Proof

;;; Instantiate the theory

(defthm wp-sum-loop-invariant
 (implies (sum-invariant n a c ns)
 (wp-loop n a c ns))
 :hints ((loop-invariant-hint ; computed hint
 'wp-loop ; concrete weakest precondition
 '(sum-invariant n a c ns))))

(defthm wp-loop-is-correct
 (implies (and (not (zp n))
 (equal ns n)
 (< (floor (* n (1+ n)) 2) 256)
 (wp-1 n ns)))
A Comparison of the Theories

- We compare the theories on the sum program and the following multiply program.

\[\{ F1=F1\text{SAVE} \land F1<256 \land F2<256 \land \text{LOW}<256 \} \]

- **LOOP**
 - LDX #8: load the X register immediate with 8
 - LDA #0: load the A register immediate with 0
 - ROR F1: rotate F1 right circular through carry
 - BCC ZCOEF: branch on carry clear to ZCOEF
 - CLC: clear the carry flag
 - ADC F2: add with carry F2 to the contents of A
 - ZCOEF
 - ROR A: rotate A right circular through carry
 - ROR LOW: rotate LOW right circular through carry
 - DEX: decrement the X register by 1
 - BNE LOOP: branch if X is non-zero to LOOP

\[\{ \text{LOW } + 256*A = F1\text{SAVE}*F2 \} \]
A Comparison of the Theories

- We count the number of supporting lemmas needed to prove the two programs with each of the generic theories. We use Robert Krug’s September 2003 modified ACL2 and arithmetic-4 proof library as well as NQTHM with my modular arithmetic-98 proof library.
A Comparison of the Theories

Theorem Count for the Sum Program

<table>
<thead>
<tr>
<th></th>
<th>Generalization</th>
<th>Loop Invariant</th>
<th>Tail Recursion</th>
<th>Alt. Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>NQTHM</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Theorem Count for the Multiply Program

<table>
<thead>
<tr>
<th></th>
<th>Generalization</th>
<th>Loop Invariant</th>
<th>Tail Recursion</th>
<th>Alt. Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL2</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>NQTHM</td>
<td>8</td>
<td>11</td>
<td>19</td>
<td>11</td>
</tr>
</tbody>
</table>
Conclusions

- Without automation generic theories are cumbersome to use compared with straightforward generalization.

- With automation they are effective means for high level proof structuring.

- Based upon these examples, ACL2 and NQTHM are roughly comparable in their ability to support arithmetic proofs over the naturals.