
Partial Clok Funtions in ACL2John Matthews and Daron Vroon�Galois Connetions, In.Beaverton, OR 97005 USAmatthews�galois.omandRokwell Collins Advaned Tehnology CenterCedar Rapids, IA 52498 USAvroon�.gateh.eduNovember 8, 2004AbstratJ Moore has disovered an elegant approah for verifying state invariants of imperativeprograms without having to write a veri�ation ondition generator (VCG) or lok funtion.Users need only make assertions about seleted utpoint instrutions of a program, suh asloop tests and subroutine entry and exit points. ACL2's rewriter is then used to automatiallypropagate these assertions through the intervening instrutions.We extend this methodology so that users an similarly prove termination properties ofprograms via indution over the sequene of utpoint instrutions the program exeutes. Justas with Moore's methodology, there is no need to speify a VCG or program-spei� lokfuntions. These termination proofs an then be used to write eÆient exeutable programsimulators in ACL2 that don't require step-ounters but are still guaranteed to terminate.1 IntrodutionIn his paper Indutive Assertions and Operational Semantis, J Moore desribes a simple and elegantmethod for proving partial orretness results for imperative programs [12℄. What interests us mostabout his approah is the fat that it requires no lok funtion or veri�ation ondition generator.This frees the user from the headahe of de�ning state invariants by providing assertions for everyprogram point. Instead, the user de�nes assertions only on spei�ed utpoints, suh as loop testsand the entry and exit points of programs. ACL2's rewriter is used to symbolially simulate theprogram in order to propogate these assertions through all the reahable program points. This�Daron Vroon is urrently aÆliated with the Georgia Institute of Tehnology's College of Computing.1



is done using tail reursive partial funtions, whih are admissable to ACL2 due to the work ofManolios and Moore who proved that every suh partial funtion has an admissable total funtionas a witness [10℄.In this paper, we present a variation on this method, built on the same onepts, whih an easilybe extended to reason about the termination of imperative programs. As with Moore's method, thesetermination proofs require no lok funtions, VCGs, or assertions de�ned on program points otherthan selet utpoints. Thus, by our variation on Moore's approah to partial orretness, users anprove the partial orretness of their programs, and then extend this result to one of total orretnesswith minimal e�ort.In addition, our approah to total orretness proofs an almost automatially generate eÆientlokless simulators. In general, the operational semantis of an imperative programming languagedo not guarantee termination. Thus, in order to admit a funtion into ACL2 to simulate arbitraryprograms written in these languages, users must inlude a lok parameter, whih gives the maximumnumber of steps to run the program before halting. Suh funtions take the form(defun run (k state)(if (zp k)state(run (1- k) (next state))))However, given that we know that a program terminates, it would be nie to have a simulationfuntion of the naive form form (i.e. without any ounters):(defun run (state)(if (halted state)state(run (next state))))Given a program proven to terminate using our method, we have devised a way to automatiallygenerate a funtion whose exeutable de�nition is of this form using ACL2's mbtmaro for generatingguarded exeutable ounterparts. It is therefore an eÆient lokless simulation funtion that runsa program to ompletion and is guaranteed to terminate.We start with a detailed desription of our total orretness method in Setion 2. This is followedby a desription in Setion 3 of how to obtain eÆient simulators in ACL2 by our approah. Then, inSetion 4, we present a more substantial example that brings together the onepts of the previoustwo setions. Finally, we present related work and onlude in Setions 5 and 6.2 The termination proof methodIn this setion we demonstrate the general termination proof method on the simplest state mahinemodel we ould think of that still has the potential for non-termination. However, we disable mostof the model's de�nitions, so that the termination proof makes expliit exatly what mahine modelassumptions it relies on. This also paves the way for our future goal of enapsulating the proof andturning it into a generi ACL2 book.
2



2.1 A simple state mahine modelOur example mahine model, alled mstate-model, onsists of a stobj ontaining only an integerprogram ounter �eld.(defstobj mstate(prog :type integer :initially 0))mstate-model's next-state funtion simply derements the program ounter �eld of mstate.(defund next (mstate)(delare (xargs :stobjs (mstate)))(update-prog (1- (prog mstate)) mstate))The theory also requires us to give a prediate stating whether a mahine state is a utpoint. Formstate-model we arbitrarily hoose our utpoint states to be those with a non-negative programounter that is evenly divisible by 10.(defund at-utpoint (mstate)(delare (xargs :stobjs (mstate)))(and (mstatep mstate)(natp (prog mstate))(equal (mod (prog mstate) 10)0)))We need to speify what it means for the mahine to have \halted". We plae quotes around theword \halted" beause for most appliations we don't atually expet the mahine to halt one thatstate has been reahed. Instead, we expet to be reasoning mostly about subroutines that will returnto the aller and ontinue exeuting when it has �nished. Therefore, we prefer to all suh statesexitpoints. The termination proof states that all utpoint states eventually reah an exitpoint state.The resulting theorems do not state anything about what happens after an exitpoint is reahed. Inthe mstate model, we speify an exitpoint to have been reahed when the program ounter is zero.(defund at-exitpoint (mstate)(delare (xargs :stobjs (mstate)))(and (mstatep mstate)(equal (prog mstate)0)))Our theory also makes a tehnial requirement that nil not be a utpoint. This requirementshould be easy to meet for non-trivial mahine models.(defthm nil-not-utpoint(not (at-utpoint nil)))The next-utpoint funtion, desribed in Setion 2.2.3, will return the default value nil whenno utpoint is reahable.We use the following de�nition of run to simulate the mahine model a given number of steps.The expression (at-utpoint (run n mstate)) tests whether stepping mstate n times results ina utpoint state. 3



(defun run (n mstate)(delare (xargs :stobjs (mstate):guard (natp n)))(if (zp n)mstate(let ((mstate (next mstate)))(run (1- n) mstate))))2.2 The termination theoryGiven a mahine model satisfying the requirements above, the next step is to de�ne a theory thateases the proess of proving that all utpoint states eventually lead to an exitpoint state. The maintrik we will employ is to partially de�ne a generi lok funtion, whih we all a partial lokfuntion. It is de�ned using the ACL2 book defpun [10℄. The partial lok funtion returns theminimum number of steps the mahine must take until a utpoint state is reahed. If no utpointstate is reahable then the funtion returns an arbitrary value. Although its de�nition mentionsnext and at-utpoint, the body of the partial lok funtion is always de�ned in the same way,regardless of the mahine model or program we are verifying. This means we an in priniple reatea maro to generate the lok funtion automatially.Although a partially-de�ned lok funtion does not sound very useful, it turns out we anuse run to logially test whether the funtion has returned the orret value. This test allows us todetermine whether a utpoint state is reahable, and also allows us to de�ne a (non-exeutable) totallok funtion steps-to-utpoint that from a starting state returns the number of steps until themahine an reah the next utpoint, or else returns (omega) if no utpoint state is reahable. Wean then use properties of ordinal arithmeti to derive stronger rewrite rules for steps-to-utpointthan we an for the original partial lok funtion in terms of whih it is de�ned.2.2.1 The partial lok funtionIn our theory the partial lok funtion is alled steps-to-utpoint-tail. It is de�ned withACL2's defpun maro.(defpun steps-to-utpoint-tail (n mstate)(if (at-utpoint mstate)n(steps-to-utpoint-tail (1+ n) (next mstate))))steps-to-utpoint-tail is de�ned tail-reursively, and takes an initial step-ounter parametern. It returns the minimum number of steps to the next utpoint minus n, when a utpoint state isreahable. Otherwise the funtion is unspei�ed.Using ACL2's defhoose onstrut, a spei�ation of a tail-reursive funtion an always beompleted to a non-exeutable total funtion de�nition. This is preisely what the defpun marodoes, generating the theorem steps-to- utpoint-tail-def, whih states:(equal (steps-to-utpoint-tail n mstate)(if (at-utpoint mstate)n(steps-to-utpoint-tail (1+ n) (next mstate)))).4



The steps-to-utpoint-tail funtion satis�es several key invariant properties. They areproved simultaneously with the theorem(defthmd steps-to-utpoint-tail-inv(implies (and (at-utpoint (run k mstate))(integerp steps))(let* ((result (steps-to-utpoint-tail steps mstate))(utpoint-steps (- result steps)))(and (integerp result)(natp utpoint-steps)(implies (natp k)(<= utpoint-steps k))(at-utpoint (run utpoint-steps mstate))))))Together these properties state that if a utpoint state is reahable in a �nite number of stepsfrom mstate, then� steps-to-utpoint-tail returns an integer value.� The value steps-to-utpoint-tail returns is always greater than or equal to its initial step-ounter parameter steps.� Given any utpoint state (not neessarily the �rst one) reahable in k steps, where k � 0, thenthe value returned by steps-to-utpoint-tail minus steps is less than or equal to k.In other words, the funtion has found the number of steps needed to get to the next utpointstate.� The state is atually a utpoint state.An important orollary states that when a utpoint state is reahable, then the initial step-ounter parameter an be moved outside of the partial step funtion.(defthm steps-to-utpoint-tail-diff(implies (and (at-utpoint (run k mstate))(syntaxp (not (equal n ''0)))(integerp n))(equal (steps-to-utpoint-tail n mstate)(+ n (steps-to-utpoint-tail 0 mstate)))))2.2.2 Total lok funtionsWe have extended the partial lok funtion steps-to-utpoint-tail into a total lok funtionalled steps-to-utpoint. We do this by alling the partial lok funtion with an initial step-ounter parameter of zero, and then testing whether the funtion was able to reah a utpoint state.If so, then steps-to-utpoint returns the number of steps to that utpoint, otherwise it returns(omega), the �rst in�nite ordinal, indiating that a utpoint an not be reahed in a �nite numberof steps. 5



(defun steps-to-utpoint (mstate)(delare (xargs :non-exeutable t))(let ((steps (steps-to-utpoint-tail 0 mstate)))(if (at-utpoint (run steps mstate))steps(omega))))For Turing-omplete mahine models this funtion is not omputable, although it is still a well-de�ned total funtion in ACL2's logi. However, steps-to-utpoint is still a useful funtion.Logially the partial lok funtion steps-to-utpoint-tail always returns some value. If thevalue is a natural number, then run will step the mahine state that number of times. Otherwiserun will just return mstate itself. In either ase we know that the state returned by run is reahablefrom mstate.Furthermore, we know that if that state is a utpoint state, then a utpoint state is reahable frommstate. So from the theorem steps-to-utpoint-tail-invwe get that steps-to-utpoint-tailreturns the orret value in this ase.On the other hand, if no utpoint state is reahable then run will return a non-utpoint state.Thus the formula (at-utpoint (run steps mstate))) in the de�nition of steps-to-utpointfaithfully tests whether a utpoint state is reahable from the input state.Although the funtion steps-to-utpoint unomputable in general, it an be evaluated onwell-hosen onrete mahine models. In fat, for many mahine programs it an be automatiallysimpli�ed by the following rewrite rules.(defthm steps-to-utpoint-zero(implies (at-utpoint mstate)(equal (steps-to-utpoint mstate) 0)))(defthm steps-to-utpoint-nonzero-intro(implies (not (at-utpoint mstate))(equal (steps-to-utpoint mstate)(o+ 1 (steps-to-utpoint (next mstate))))))These rewrite rules an be used to turn ACL2's rewriter into a symboli simulator. In any subgoalontaining an expression of the form (steps-to-utpoint term), where term is a sub-expressionrepresenting a mahine state, ACL2 will iteratively apply steps-to-utpoint-nonzero- intro aslong as it an disharge the hypothesis of the rule. There are three possible outomes of this symbolisimulation proess:� There is some expanded expression (at-utpoint (next (� � � (next term) � � �))) ontain-ing zero or more ourrenes of next that ACL2 an simplify to true. In this ase the rulesteps-to-utpoint-zero will eventually �re. The end result is that ACL2 will dedue thatthe original expression (steps-to-utpoint term) is equal to the expanded expression (o+1 (� � � (o+ 1 0) � � �)), whih will be simpli�ed to a onstant number.� During the symboli simulation proess there is some expanded mahine state term 0 suh thatACL2 an't simplify (at-utpoint term 0) to either true or false. In this ase the original(steps-to-utpoint term) expression will end up being simpli�ed to(o+ k (steps-to-utpoint term 0)), for some natural number k. It means that the symboli6



simulation proess is not powerful enough for the subgoal this expression ours in. The userneeds to strengthen the rules assoiated with their mahine model so that ACL2 an deidewhether term 0 is a utpoint state or not.� ACL2 an simplify every sequene of terms (at-utpoint (next (� � � (next term) � � �)))ontaining zero or more ourrenes of next to false. This means that term an not reah autpoint state. However, ACL2 an not detet this and instead ontinues rewriting until it isinterrupted or runs out of memory. In this ase the user must add a new utpoint state alongthe path of the symboli simulation to break the yle.The main advantages of steps-to-utpoint's rewrite rules are that their proofs aren't spei�to the underlying mahine model, and that they are valid regardless of whether a utpoint state isreahable or not. Thus they an be used to automatially alulate the number of steps needed untilthe next utpoint state is reahed (if there is suh a state). This should lead to more automatedsafety and termination proofs about the mahine program.2.2.3 Computing reahable utpoint statesWe an now use the run and steps-to-utpoint funtions to de�ne a funtion that steps themahine to the next utpoint state, provided it exists.The funtion next-utpoint returns the next utpoint state reahable from a given startingstate, if there is one. However, if a utpoint state is not reahable then next-utpoint returns thedefault value nil, whih we require to be a non-utpoint state.(defun next-utpoint (mstate)(delare (xargs :non-exeutable t))(let ((steps (steps-to-utpoint mstate)))(if (natp steps)(run steps mstate)nil)))(defthm nil-not-utpoint(not (at-utpoint nil)))This de�nition of next-utpoint leads to the two simple symboli simulation rules below. Inpartiular, returning a default value when a utpoint state is unreahable allows a simpler hypothesisfor the seond rewrite rule.(defthm next-utpoint-at-utpoint(implies (at-utpoint mstate)(equal (next-utpoint mstate)mstate)))(defthmd next-utpoint-intro-next(implies (not (at-utpoint mstate))(equal (next-utpoint mstate)(next-utpoint (next mstate)))))7



Finally, beause we forbid the default value nil from being a utpoint state, we know that if thevalue returned by next-utpoint is a utpoint, then that state is reahable in a �nite number ofsteps from the starting state:(defthm next-utpoint-reahes-utpoint(iff (at-utpoint (next-utpoint mstate))(natp (steps-to-utpoint mstate))))2.3 Reasoning about utpointsOur main goal is to prove that an exitpoint state is eventually reahed from any utpoint state. Weahieve this by providing a measure funtion utpoint-measure on the utpoint states, and thenprove by ordinal indution on this measure that an exitpoint is eventually reahed.For mstate-model the utpoint measure funtion just observes the value of the urrent programounter. We require that the measure funtion always returns a valid ACL2 ordinal.(defun utpoint-measure (mstate)(delare (xargs :stobjs (mstate)))(nfix (prog mstate)))(defthm utpoint-measure-is-ordinal(o-p (utpoint-measure mstate)))Next, we de�ne a funtion utpoint-to-utpoint that atomially transitions from one utpointstate to the next one, if it exists.(defun utpoint-to-utpoint (mstate)(delare (xargs :non-exeutable t))(next-utpoint (next mstate)))By expanding the de�nition of utpoint-to-utpoint, ACL2 an prove by symboli simulationthat if a utpoint state is not an exitpoint then another utpoint state an be reahed, and thatthe measure of that next utpoint has dereased. The �rst of these three theorems below alsodemonstrates how partial orretness results an be proved by symboli simulation with (extended)partial lok funtions.(defthm steps-to-next-utpoint-natp(implies (and (at-utpoint mstate)(not (at-exitpoint mstate)))(natp (steps-to-utpoint (next mstate)))))(defthm utpoint-to-utpoint-returns-utpoint-state(implies (natp (steps-to-utpoint (next mstate)))(at-utpoint (utpoint-to-utpoint mstate))))(defthm utpoint-measure-dereases(implies (and (at-utpoint mstate)(not (at-exitpoint mstate)))(o< (utpoint-measure (utpoint-to-utpoint mstate))(utpoint-measure mstate))))8



A few basi lemmas about modular arithmeti are needed in mstate-model for the symbolisimulation to sueed, sine at-utpoint and next are de�ned in terms of the mod operator andsubtration, respetively.The fat that the utpoint measure dereases allows us to de�ne a total funtion that from anyutpoint state returns the �rst reahable exitpoint state.(defun next-exitpoint (mstate)(delare (xargs :non-exeutable t:measure (utpoint-measure mstate)))(ond ((not (at-utpoint mstate)) mstate)((at-exitpoint mstate) mstate)(t (next-exitpoint (utpoint-to-utpoint mstate)))))We an �nally prove that next-exitpoint behaves orretly, and that utpoint states eventuallylead to exitpoint states.(defun steps-to-exitpoint (mstate)(delare (xargs :non-exeutable t:measure (utpoint-measure mstate)))(ond ((not (at-utpoint mstate)) 0)((at-exitpoint mstate) 0)(t (+ 1 (steps-to-utpoint (next mstate))(steps-to-exitpoint (utpoint-to-utpoint mstate))))))(defthmd next-exitpoint-orret(implies (at-utpoint mstate)(equal (run (steps-to-exitpoint mstate) mstate)(next-exitpoint mstate))))(defthm at-utpoint-implies-reahes-exitpoint(implies (at-utpoint mstate)(at-exitpoint (next-exitpoint mstate))))These theorems are proved by ordinal indution on utpoint-measure, derived by ACL2 fromthe de�nitions of steps-to-exitpoint and next-exitpoint, respetively.3 EÆient simulators and ACL2 limitationsWe would like to take advantage of our termination proof method to build eÆient terminating ma-hine simulators that do not require step-ounter parameters. As a �rst step, onsider the followingstobj-ompliant version of next-utpoint (where dummy-mstate reates some valid mstate thatisn't a utpoint):(defun next-utpoint-exe (mstate)(delare (xargs :stobjs (mstate):measure (steps-to-utpoint mstate):guard (and (mstatep mstate)(natp (steps-to-utpoint mstate)))))9



(if (mbt (and (mstatep mstate)(natp (steps-to-utpoint mstate))))(if (at-utpoint mstate)mstate(let ((mstate (next mstate)))(next-utpoint-exe mstate)))(dummy-mstate mstate))).The mbt maro utilized here stands for \must be true" and is used to introdue a test that is notto be evaluated. Logially, the test is neessary to prove termination. However, in pratie the guardhek assures that the body of the mbt is true, so it doesn't need to be evaluated when exeutingthe funtion. Thus, the exeutable version of next-utpoint-exe is just the \then" branh ofthe outer if statement. The dummy-mstate funtion makes mstate into a valid mstate that is notan exitpoint. This is neessary sine the rules of stobj use require that any funtion that altersthe stobj returns it. Given the theory presented in Setion 2, ACL2 is able to prove the followingproperties about the guard:(defthm mstatep-next(implies (mstatep mstate)(mstatep (next mstate))))(defthm natp-steps-to-utpoint-next(implies (and (mstatep mstate)(not (at-utpoint mstate))(natp (steps-to-utpoint mstate)))(natp (steps-to-utpoint (next mstate)))))Together these properties imply that the guard onjetures for next-utpoint-exe are satis�ed.However, our guard is not exeutable, sine it alls the non-exeutable funtion, steps-to-utpoint.ACL2 version 2.8 requires that all guards of exeutable funtions be exeutable, so that the guardan be heked when the user is invoking the funtion at the interative prompt. This means thatwe an't verify the guards for next-utpoint-exe. This is unfortunate beause it prevents thefuntion from being ompiled in ontexts where the guard is statially known to hold, suh as inthis eÆient version of utpoint-to-utpoint:(defun utpoint-to-utpoint-exe (mstate)(delare (xargs :stobjs (mstate):guard (and (at-utpoint mstate)(not (at-exitpoint mstate)))))(let ((mstate (next mstate)))(next-utpoint-exe mstate)))In this ase the guard for utpoint-to-utpoint-exe is exeutable, and moreover it impliesthe guard for the all to next-utpoint-exe holds by natp-steps-to-utpoint-next above andsteps-to-next-utpoint-natp (Setion 2.3). Thus we see that invoking the exeutable de�nitionof next-utpoint-exe in this ontext should not ause any logial inonsisteny or non-terminationproblems. 10



3.1 The elegant solution: a modest proposalACL2 urrently allows the de�nition of an exeutable funtion whose body ontains a all to a non-exeutable funtion. The result of running suh a funtion is that it runs normally until it reahesthe non-exeutable funtion all, at whih time it throws an error. If the exeution never reahesthis all, the funtion terminates normally.We propose that ACL2 take a similar poliy with regards to funtion guards. As we pointedout above, a funtion's guard is not evaluated in the ase where the funtion is alled from anotherfuntion whose guards have been veri�ed. In this ase, the guard is proven to hold when the funtionis alled, and therefore known to hold statially. In the ase where ACL2 attempts to evaluate a non-exeutable guard, an error an be thrown. We feel that this poliy would be more onsistant withthe already existing poliy of allowing non-exeutable funtion alls within exeutable funtions.A more aggressive approah would be to all the simpli�er on non-exeutable guards at theprompt, and if they simplify to true then to invoke the funtion's exeutable ounterpart. Even moredaring would be to try to simplify non-exeutable guards during subgoal proofs (???). However, aremust be taken in this ase not to rely on subgoal assumptions, sine these assumptions may not holdin the ACL2 runtime environment.3.2 A workaroundOur proposed hange to ACL2 would allow us to de�ne our eÆient lokless simulator without anyadditional e�ort. However, we have devised a way to work around the limitation in ACL2's guardpoliy. It involves using ACL2's more lenient poliy of allowing exeutable funtions to ontain allsto non-exeutable funtions in order to de�ne an exeutable version of steps-to-utpoint. Themain diÆulty here involves two of ACL2's neessarily strit rules for using stobjs. The �rst saysthat a stobj-ompliant funtion annot pass a stobj to a non-stobj-ompliant funtion. Thus,we annot pass mstate to steps-to-utpoint-tail. The seond is that any stobj-ompliantfuntion that alters a stobj must return that stobj. Our steps-to-utpoint funtion alls run,whih alters the mstate, but we want to return the number of steps to the next utpoint, not themstate.In order to get around these problems, we reated a way to opy data from a stobj to a normalobjet with the same logial struture as the stobj, and vie versa. The result is a ommand weall defstobj+. This ommand has the same general form as a defstobj ommand. However, inaddition to reating a stobj with all the normal funtionality, it provides funtions for opying toand from the stobj as well as proofs that these funtions are logially identity funtions. For ourmstate example, we alter the de�nition of mstate to use defstobj+ instead of defstobj:(defstobj+ mstate(prog :type integer :initially 0))In addition to the normal funtionality, this ommand provides the following funtions:(defun logial-mstatep (x)(delare (xargs :guard t))(and (true-listp x)(equal (len x) 1)(progp (nth *prog* x)))) 11



(defun opy-to-mstate (opy mstate)(delare (xargs :stobjs (mstate):guard (logial-mstatep opy)))(let* ((mstate (update-prog (nth *prog* opy)mstate)))mstate))(defun opy-from-mstate (mstate)(delare (xargs :stobjs (mstate)))(list (prog mstate)))as well as the following theorems:(defthm logial-mstatep-mstatep(equal (logial-mstatep x) (mstatep x)))(defthm opy-to-mstate-noop(implies (and (mstatep x) (mstatep y))(equal (opy-to-mstate x y) x)))(defthm opy-from-mstate-noop(implies (mstatep mstate)(equal (opy-from-mstate mstate)mstate)))These de�nitions and theorems are stobj-spei�, and work for any stobj struture (even inthe presene of array �elds). In addition, the defstobj+ book, in whih the ommand is de�ned,ontains a ommand alled with-opy-of-stobj. This maro has the same general form as thewith-loal-stobj. It reates a loal stobj that is a opy of the global one and performs all theations spei�ed within the body on that loal opy, and not the global one.With these two features ombined, we an reate an exeutable version of our steps-to-utpointfuntion:(defun steps-to-utpoint-exe (mstate)(delare (xargs :stobjs (mstate)))(let ((steps (steps-to-utpoint-tail 0 (opy-from-mstate mstate))))(if (and (natp steps) ;the number of steps is a natural number.(with-opy-of-stobj ;running a opy of mstate forward steps stepsmstate ;gives us a utpoint.(mv-let (result mstate)(let ((mstate (run steps mstate)))(mv (at-utpoint mstate) mstate))result)))steps(omega))))By alling steps-to-utpoint-tail on a non-stobj opy of mstate, we no longer pass ourstobj to a non-stobj-ompliant funtion. To bypass the problem aused by altering mstate without12



returning it, we use the with-opy-of-stobj maro. We run a dupliate of mstate forward to besure the utpoint is atually reahable. The parameter mstate is untouhed through this wholeproess. Therefore, we an legally return the value of steps or (omega) without returning themstate. So now we have an exeutable version of our steps-to-utpoint funtion, as we an provein ACL2:(defthm steps-to-utpoint-exe-steps-to-utpoint(implies (mstatep mstate)(equal (steps-to-utpoint-exe mstate)(steps-to-utpoint mstate))))Using steps-to-utpoint-exe, we an verify the guards of both next-utpoint-exe (onewe replae steps-to-utpointwith steps-to-utpoint-exe) and utpoint-to-utpoint-exe.Finally, we an use these funtions to reate our lokless simulator:(defun fast-utpoint-to-utpoint (mstate)(delare (xargs :stobjs (mstate):measure (utpoint-measure mstate):guard (at-utpoint mstate)))(if (mbt (at-utpoint mstate))(if (at-exitpoint mstate)mstate(let ((mstate (utpoint-to-utpoint-exe mstate)))(fast-utpoint-to-utpoint mstate)))(dummy-mstate mstate)))4 Putting it all together: Fibbonai sequene on the TINYMahineWe have presented our method for proving termination using lokless simulators, as well as amethod for extending that termination proof to reate eÆient lokless simulators. In this setionwe provide a more realisti example to demonstrate how it all �ts together.The semantis of this example are provided by the TINY model, a small, stak-based mahine�rst presented in [6℄ as a high-speed simulator example using stobjs. The Fibonai sequene isthe sequene whose �rst two elements are 1, and every subsequent element of whih is the sumof the previous two elements: (1; 1; 2; 3; 5; 8; 13; : : :). Our fib funtion takes a positive integer, n,and returns the nth value in the Fibonai sequene. The spei�ation for this funtion, written inACL2, is the following:(defun fib-spe (n)(ond ((not (integerp n)) 0)((< n 0) 1)((equal n 0) 1)((equal n 1) 1)(t (logext *word-size* (+ (fib-spe (- n 1)) (fib-spe (- n 2)))))))13



Figure 1 TINY assembly ode for �b program(pushsi 1 ;100 start-prog-addressdup ;102dup ;103pop 20 ;104 fib0 = 1;pop 21 ;106 fib1 = 1;sub ;108dup ;109 loop-labeljumpz 127 ;110 if n = 0, goto done-label;pushs 20 ;112dup ;114pushs 21 ;115add ;117pop 20 ;118 fib0 = fib1;pop 21 ;120 fib1 = fib0 (old value) + fib1;pushsi 1 ;122sub ;124 n = n-1;jump 109 ;125 goto loop-label;pushs 20 ;127 done-labeladd ;129 return fib0 + n;halt) ;130 halt-prog-addresswhere (logext n x) returns the integer orresponding to the low n bits of x interpreted as a signedinteger, and *word-size* is the number of bits in a word in TINY, whih is 32. The fib programwritten in the TINY assembly language isThe program addresses are given immediately to the right of the instrutions. Note that ar-guments take up 1 address spae eah, so that every address in the program is not neessarily aninstrution. To the right of the addresses are the utpoint labels. Finally, right of those are someomments to help larify the ode. Basially, the two most reently omputed values of the Fibonaisequene are stored in addresses 20 and 21. Eah iteration of the loop puts the sum of the valuesin these addresses in 21, and moves the old value of 21 to 20. The ounter (n) is maintained on thestak. It is assumed that this ounter is on the top of the stak at the beginning of the program.Note that at eah utpoint, the ounter is the only thing on the stak.The basi funtions for reasoning about arbitrary utpoints in the TINY model are in Figure 2.The at-utpoint funtion aptures several important invariants of our program. First, it heksif our program ounter (prog) is one of the utpoint addresses. Seond, it veri�es that the �bprogram is loaded into memory at the appropriate loation. Third, it makes sure that tiny-stateis indeed a tiny-state stobj. Next, it heks that there is only one item on the stak (whih isour loop ounter). Finally, it veri�es that the loop ounter has the right value (dtos-val gets thevalue o� the top of the stak).Our dummy-state funtion puts all the default �eld values into tiny-state. It does this byreating a fresh loal stobj with with-loal-stobj, whih it opies into the global stobj using theopy-to-tiny-state and opy-from-tiny-state funtions reated by the defstobj+ onstrut.This is equivalent to setting tiny-state equal to (reate-tiny-state).14



Figure 2 Basi utpoint funtions for �b on TINY(defonst *fib-utpoints*(list *prog-start-address* *loop-label* *done-label* *prog-halt-address*))(defun at-utpoint (tiny-state)(delare (xargs :stobjs (tiny-state)))(and (member (prog tiny-state) *fib-utpoints*)(program-loaded tiny-state *fib-prog* *prog-start-address*)(tiny-statep tiny-state)(equal (dtos tiny-state) *init-dtos*)(ond ((equal (prog tiny-state) *prog-start-address*)(< 0 (dtos-val tiny-state 0)))((equal (prog tiny-state) *loop-label*)(<= 0 (dtos-val tiny-state 0)))((equal (prog tiny-state) *done-label*)(= 0 (dtos-val tiny-state 0)))(t t))))(defun dummy-state (tiny-state)(delare (xargs :stobjs (tiny-state)))(let ((ts (with-loal-stobjtiny-state(mv-let (result tiny-state)(mv (opy-from-tiny-state tiny-state) tiny-state)result))))(opy-to-tiny-state ts tiny-state)))(defun at-exitpoint (tiny-state)(delare (xargs :stobjs (tiny-state)))(and (equal (prog tiny-state) *prog-halt-address*)(program-loaded tiny-state *fib-prog* *prog-start-address*)(tiny-statep tiny-state)(equal (dtos tiny-state) *init-dtos*)))(defonst *max-prog-address* (1- (+ *prog-start-address*(len *fib-prog*))))(defun utpoint-measure (tiny-state)(delare (xargs :non-exeutable t))(if (at-exitpoint tiny-state)0(o+ (o* (omega) (nfix (dtos-val tiny-state 0)))(nfix (- *max-prog-address* (prog tiny-state))))))The at-exitpoint funtion is our prediate for reognizing exit states in our program. For the�b example, this funtion veri�es that the tiny-state is at the halt address, that the �b program isloaded in the proper loation in mamory, that tiny-state is in fat a tiny-state, and that there15



is only one value on the stak.The utpoint-measure funtion give us the measure funtion that will allow us to prove termi-nation. Sine there is one loop with a natural number ounter that dereases until it reahes 0, ourmeasure is ! multiplied by the ounter (whih is the value at the top of the stak at eah utpoint)added to the value of the program ounter.These are the only program-spei� funtions neessary for our method. Beyond the rewriterules neessary for reasoning about the TINY mahine, the rest is virtually idential to the mstateexample. The one di�erene is that we don't need to bother with the non-exeutable versionsof steps-to-utpoint and next-utpoint (see our supporting material for details). We do thisbeause ACL2 an just as easily reason about the exeutable versions of these funtions, sine ourdefstobj+ onstrut proves that the opy-to-tiny-state and opy-from-tiny-state funtionsare logially just identity funtions. Thus for the relatively small e�ort required to use defstobj+ andto write out the exeutable version of steps-to-utpoint, we get an eÆient, lokless, exeutablefuntion for running our �b program.5 Related workThere are strong parallels between the method we have presented here to prove termination andJ Moore's work ombining indutive assertions with operational semantis in order to prove thepartial orretness of imperative programs [12℄. Like our method, Moore's work limits reasoning toutpoints, as users need only speify assertions for the utpoints of the program. A partial funtionthat steps the mahine to the next utpoint (if suh a utpoint exists) is then used to push theseassertions through the program points between the utpoints. The partial funtion invariant fromMoore's work applied to our TINY example would take the form(defpun invariant (tiny-state)(if (at-utpoint tiny-state utpoints)(assert state)(invariant (next tiny-state))))and the invariant orretness theorem would take the form(implies (invariant tiny-state)(invariant (next tiny-state)))This is where our work di�ers from Moore's. Instead of de�ning the invariant as a partialfuntion, we de�ne the partial lok funtion. This serves two purposes. First, it allows us to moreeasily extend the method for proving partial orretness to apply to termination proofs. The partiallok funtion gives us the measure neessary to run from utpoint to utpoint. The seond purposeof the partial lok funtion is that it more thoroughly pushes reasoning about the program up tothe utpoint level rather than the single step level. For example, rather than de�ning assertionson utpoints and extending them to invariants on all states, we simply state the invariant as aninvariant over the utpoints and use symboli simulation to prove orretness at the utpoint levelby a theorem of the form(implies (invariant tiny-state)(invariant (utpoint-to-utpoint tiny-state)))16



This helps us verify the guards of the simulation funtion whih runs from utpoint to utpointrather than state to state. However, the result is still equivalent to that of Moore's work. That is,we still get an invariant that implies partial orretness for the program.Both Moore's work and ours are dependent on the existene of partial funtions in ACL2, addedby Manolios and Moore [10℄.Our work is also losely related to Ray and Moore's work on the formal orrespondene be-tween the indutive invariants method and the lok funtions method of proving partial and totalorretness results for state mahines [14℄.Spei�ally, Ray and Moore show that given valid theorems of total (respetively, partial) or-retness in terms of either method, then the required de�nitions and theorems to prove total (partial)orretness using the other method an be generated automatially. Thus both methods have thesame logial strength.Ray and Moore go on to generalize both methods so that they an be used ompositionally. Thisallows, for example, total (partial) orretness results about individually veri�ed software subroutinesto be ombined into a total (partial) orretness result for a lient program that alls the subroutines.Formal orrespondenes are also proved between the generalized methods.In Ray and Moore's approah, di�erent versions of the lok funtion are de�ned, dependingon whether partial orretness or total orretness is being proved. For partial orretness, theirlok funtion is de�ned in terms of Skolem funtions, using the defun-sk maro. In our own work,lok funtions are uniformly de�ned as tail-reursive partial funtions with the defpun pakage.However, this alone is not suÆient to distinguish their lok funtion de�nitions from ours, sinethe ore theorems produed by both defpun and defun-sk rely on the same underlying defhoosefaility of ACL2.However, one lear di�erene with our form of lok funtion is that it has been expliitly designedto satisfy ordinal arithmeti properties that are not onditioned on whether a utpoint or exitpointstate is reahable. This allows the same lok de�nition to be used for proving both partial andtotal orretness properties. We believe, but haven't proved, that Ray and Moore's orrespondeneproofs ould be adapted to use our form of lok funtion.A seond di�erene is that de�ning the lok funtion as a tail-reursive partial funtion gives us away to evaluate the lok funtion on onrete mahine states in ACL2, and to symbolially simulatethem on symboli state expressions. Sine the lok funtion is partial it may not terminate, but ifit does terminate then it returns the orret value. In ontrast, there is no method for evaluatingor symbolially simulating funtions de�ned using defhoose or defun-sk, in general. The abilityto symbolially simulate lok funtions up to the next utpoint or exitpoint signi�antly inreasesproof automation, and paves the way for building eÆient lokless simulators.Termination in ACL2 was a topi in last year's ACL2 workshop with Manolios and Vroon's paperimplementing a new ordinal notation and ordinal arithmeti library whih are now the foundationof termination reasoning in ACL2 [11℄Most theorem provers for higher order logis provide some level of support for admitting well-founded (i.e. terminating) funtion de�nitions. Classial higher order logi is strong enough for thesefuntions to be admitted de�nitionally in terms of a higher-order defhoose-like funtion alled theHilbert hoie operator. Slind has developed a theory and portable library of theorem provingtatis that helps automate these proofs. Given a set of pattern-mathing reursion equations overan indutive datatypes and a well-founded relation, the library attempts to prove that all reursivealls in the pattern mathing equations are applied to smaller values aording to the well-foundedrelation. If suessful, the library generates the pattern mathing equations as theorems, as well as17



a funtion-spei� indution sheme [15, 17℄.These tehniques an be used to model imperative programs in the same way that ACL2 does, asstate-passing funtions. However, many imperative algorithms all themselves reursively multipletimes in suession. A simple example is a funtion that destrutively zeroes out every leaf nodeof a binary tree. In this ase the returned state value of the �rst reursive all is used as the stateparameter to the seond reursive all. These nested reursive funtion de�nitions require morepowerful termination proof tehniques [16℄. Krsti� and Matthews explore using indutive invariantsto takle these proofs in the ontext of verifying imperative Binary Deision Diagram algorithms[8, 9℄.Researhers have studied for deades appropriate ways to struture partial- and total-orretnessproofs for higher-level imperative programming languages. A reent text by de Roever et al [5℄desribes some of these tehniques. It also introdues a general framework based on indutiveassertions that an be diretly adapted to utpoint-based reasoning.There have been several promising methods for automatially proving termination of imperativeprogramming languages. For example, Podelski and Rybalhenko have given a omplete methodfor proving termination for non-nested loops with linear ranking funtions [13℄. Dams, Gerth, andGrumberg have given a heuristi for automatially generating ranking funtions [4℄. Finally, Col�onand Sipma have developed two algorithms for proving termination. One synthesizes linear rankingfuntions, but is limited to programs of few variables. The other is more heuristi in nature, buttends to onverge faster to the invariants whih it an disover [2, 1℄. However, none of these developgeneral methods for reasoning about termination. They instead fous on deidable subsets of thetermination problem by using deision proedures to develop linear ranking funtions.6 ConlusionsWe have presented a variation of Moore's method for proving the partial orretness of programsusing partial funtions and symboli simulation that provides an easy tehnique for verifying thetotal orretness of imperative programs. We presented a way to use this result to de�ne eÆientterminating program simulators in a perfet world, and desribed those features needed in ACL2 tomake this a pratial reality.We intend to apply these tehniques in a ertifying ompiler we are building at Galois Connne-tions, In. for the Cryptol� domain-spei� exeutable spei�ation language [3℄. Cryptol allowsenryption algorithms to be spei�ed delaratively and at a higher level of abstration than anbe done in onventional imperative programming languages, while still allowing eÆient ode to begenerated. Our ertifying Cryptol ompiler will target the instrution set of the AAMP7 seure mi-roproessor, being developed at Rokwell Collins. In addition to objet ode, the ompiler will emita orrespondene proof ACL2 sript that automatially veri�es that the generated ode faithfullyimplements the original program's Cryptol semantis.AknowledgementsWe would like to thank the ACL2 experts at Rokwell Collins, inluding Dave Greve, Dave Hardin,and Matt Wilding, for stimulating disussions and useful ACL2 advie, espeially on the issues thatarise when using ACL2 to reason about real-world mahine models. We would like to thank Matt18



Kaufmann and Bill Young for their ACL2 expertise as well. We also appreiate the advie and helpMatt Kaufmann, Pete Manolios, and J Moore gave us in using the defpun book. Je� Lewis andMark Shields have been of great help as a sounding board for applying our ideas to the ertifyingompiler.Referenes[1℄ M. A. Col�on and H. B. Sipma. Synthesis of linear ranking funtions. In TACAS01: Tools and Algorithmsfor the Constrution and Analysis of Systems, volume 2031 of LNCS, pages 67{81, 2001.[2℄ M. A. Col�on and H. B. Sipma. Pratial methods for proving program termination. In InternationalConferene on Computer Aided Veri�ation, CAV'02, volume 2404 of LNCS, pages 442{454, 2002.[3℄ Information on Cryptol an be found at http://www.ryptol.net.[4℄ D. Dams, R. Gerth, and O. Grumberg. A heuristi for the automati generation of ranking funtions.In Workshop on Advaned Veri�ation, July 2000. See URL http://www.s.utah.edu/wave/.[5℄ W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhneh, M. Poel, and J. Zwiers.Conurreny Veri�ation: Introdution to Compositional and Nonompositional Methods. Number 54in Cambridge Trats in Theoretial Computer Siene. Cambridge University Press, Cambridge, UK,Nov. 2001.[6℄ M. Kaufmann, P. Manolios, and J. S. Moore, editors. Computer-Aided Reasoning: ACL2 Case Studies.Kluwer Aademi Publishers, June 2000.[7℄ M. Kaufmann and J. S. Moore, editors. Fourth International Workshop on the ACL2 Theorem Proverand Its Appliations (ACL2-2003), July 2003. See URL http://www.s.utexas.edu/users/moore/-al2/workshop-2003/.[8℄ S. Krsti� and J. Matthews. Verifying BDD algorithms through monadi interpretation. 2294:182{195,2002.[9℄ S. Krsti� and J. Matthews. Indutive invariants for nested reursion. In 16th International Workshopon Higher Order Logi Theorem Proving and Its Appliations, volume 2758 of LNCS, pages 253{259.Springer-Verlag, 2003.[10℄ P. Manolios and J. S. Moore. Partial funtions in ACL2. Tehnial report, Computer Sienes, Universityof Texas at Austin, 2001. See URL http://www.s.utexas.edu/users/moore/publiations/defpun/%-index.html.[11℄ P. Manolios and D. Vroon. Ordinal arithmeti in ACL2. In Kaufmann and Moore [7℄. See URLhttp://www.s.utexas.edu/users/moore/al2/workshop-2003/.[12℄ J. S. Moore. Indutive assertions and operational semantis. In D. Geist, editor, The 12th AdvanedResearh Working Conferene on Corret Hardware Design and Veri�ation Methods { CHARME 2003,volume 2860 of LNCS. Springer-Verlag, 2003.[13℄ A. Podelske and A. Rybalhenko. A omplete method for the synthesis of linear ranking funtions.In B. Ste�en and G. Levi, editors, Veri�ation, Model Cheking, and Abstrat Interpretation, FifthInternational Workshop, VMCAI 2004, volume 2937 of LNCS, pages 239{251, 2004.[14℄ S. Ray and J. S. Moore. Proof Styles in Operational Semantis. In A. J. Hu and A. K. Martin,editors, Proeedings of the 5th International Conferene on Formal Methods in Computer-aided Design(FMCAD 2004), number 3312 in LNCS, pages 67{81. Springer-Verlag, Nov. 2004.[15℄ K. Slind. Reasoning about Terminating Funtional Programs. PhD thesis, Institut f�ur Informatik,Tehnishe Universit�at M�unhen, 1999. 19



[16℄ K. Slind. Another look at nested reursion. In M. Aagaard and J. Harrison, editors, Theorem Provingin Higher Order Logis, 13th International Conferene, TPHOLs'00, number 1869 in Leture Notes inComputer Siene, pages 498{518, Portland, Oregon, USA, August 2000. Springer-Verlag.[17℄ K. Slind. Wellfounded shemati de�nitions. In D. MAllester, editor, Proeedings of the SeventeenthInternational Conferene on Automated Dedution CADE-17, volume 1831, pages 45{63, Pittsburgh,Pennsylvania, June 2000. Springer-Verlag.

20


