
The Common Criteria, Formal Methods and ACL2

Raymond Richards, David Greve, Matthew Wilding
Rockwell Collins Advanced Technology Center

Cedar Rapids, Iowa 52498 USA
{rjricha1,dagreve,mmwildin}@rockwellcollins.com

and

W. Mark Vanfleet
U.S. Department of Defense

Abstract
The “Common Criteria” is an international standard for evaluating secure
computer systems. The Common Criteria defines seven distinct Evaluation
Assurance Levels (EALs). The three highest EALs, the so-called high-
assurance levels, require some degree of formalism in development. This
paper discusses requirements for formalism in the high-assurance levels and
our initial experiences in satisfying these requirements using ACL2.

1. Introduction
The Common Criteria for Information Technology Security Evaluation [1], often referred
to as simply the Common Criteria, is an international standard for the evaluation of
security related computing technology. The intention is to provide a lingua franca for
consumers, developers and evaluators of such technology, which allows a standard way
of comparing evaluations. The Common Criteria defines seven Evaluation Assurance
Levels (EALs). The EALs range from EAL 1 (functionally tested) to EAL 7 (formally
verified design and tested). To allow flexibility, the Common Criteria can be tailored for
a class of applications (e.g. Real-Time Operating Systems) with a Protection Profile
document and/or for a single application (e.g. Windows NT) with a Security Target
document.

The Common Criteria defines requirements for certification that are categorized into
classifications. Some examples of classifications are Configuration Management,

Assurance Maintenance, and Development. The classifications are identified by a three
letter identifier such as ADV for Development. Each requirement may have multiple
definitions, generally increasing in stringency. The requirements are also identified by a
three letter identifier and appended to its classification with an underscore. (e.g.
ADV_HLD for the High Level Design requirement in the Development classification.)
The level of each requirement is
identified with a numeral, starting at 1
and increasing with the stringency. (e.g.
ADV_HLD.2.) An EAL definition
specifies the set of requirements and
which definition is used for each
requirement.

The EALs are generally used as
guidelines. Any system that is to be
certified must conform to either a
Protection Profile or a Security Target. These documents define the set of requirements
and level of definition for each requirement. These documents are not required to follow
the Common Criteria specification for an EAL level, often they call out stricter
definitions for one or more requirements.

The higher EAL levels (5, 6 and 7) are sometimes referred to as the high-assurance
levels . These levels require some
application of formal methods to
demonstrate that the appropriate level
of assurance has been met. The
requirements of interest are in the
Development classification and allow
the formalism to range from informal
to semi-formal to formal, depending on
the EAL level. We discuss in this paper
these formalism requirements and how
those requirements have been met
using ACL2 in Rockwell Collins
projects.

The Development classification of
requirements contains seven
requirements, which are shown in Table 1. Of these seven requirements, two have no
direct formalism requirement. “Internals” is concerned with design modularity and
reduction of complexity and “Implementation” is concerned with the implementation
artifacts (source code).

Requirement Name Identifier
Functional Specification ADV_FSP

High-Level Design ADV_HLD
Implementation ADV_IMP
Internals ADV_INT
Low-Level Design ADV_LLD
Representation Correspondence ADV_RCR
Security Policy Modeling ADV_SPM
Table 1: Development Classification Requirements

ADV_SPM

ADV_FSP

ADV_HLD

ADV_LLD

ADV_IMP

ADV_RCR

Figure 1: Design Assurance Architecture

Code-to-Spec
Review

Figure 1 shows the Common Criteria design assurance architecture. At the top level, the
Security Policy defines the characteristics of the system that must be demonstrated. The
functional specification is a high-level description of the user-visible interface to the
system. The high-level design decomposes the system into modules, or subsystems,
which provide the functionality described in the functional specification. The low-level
design provides a specification of the internal workings of each module. The
representation correspondence demonstrates the correlation between each adjacent level
in the architecture, with the exception of the correspondence between the low-level
design and the implementation. This correspondence is provided by an evaluation activity
known as a ‘code-to-spec review’. A code-to-spec review is an intensive walk-through in
the presence of certification authority evaluators, comparing the low-level design model
to the implementation so as to demonstrate their correspondence.

The Common Criteria requirements that dictate the use of formality are shown in Table 2
for the high-assurance EALs. It should be noted that the representation correspondence
requirement between a pair of representations only holds if both layers are of at least that
level of formalism, otherwise the rigor of correspondence needs to be only the lesser
level of the two layers. For example, in EAL7, the correspondence between the high-level
design and the low-level design need only be semiformal, since the low-level design is
only represented semiformally.

Requirement EAL5 EAL6 EAL7
ADV_SPM Formal TOE Security

Policy Model
Formal TOE Security
Policy Model

Formal TOE Security
Policy Model

ADV_FSP Semiformal Functional
Specification

Semiformal Functional
Specification

Formal Functional
Specification

ADV_HLD Semiformal High-
Level Design

Semiformal High-
Level Explanation

Formal High-Level
Design

ADV_LLD Descriptive Low-Level
Design

Semiformal Low-
Level Design

Semiformal Low-
Level Design

ADV_RCR Semiformal
Correspondence
Demonstration

Semiformal
Correspondence
Demonstration

Formal
Correspondence
Demonstration

Table 2: High assurance requirements

The Common Criteria specifies three levels of rigor in the Development class of
requirements. These three levels are informal, semiformal and formal. Informal
representations may be represented in the prose of a natural language. Formal
representations must be represented in a notation based upon well-established
mathematical concepts. The formal level also requires that there is evidence that it is
impossible to derive contradictions and all rules supporting the notation need to be
defined or referenced.

The semiformal level of rigor requires representation in a ‘restricted syntax’ language.
This can include natural language, with restrictions placed on sentence structure and
keywords. This can also include graphical languages. The notion of a semiformal
representation can take a great number of forms. However, since the final goal is
certification of the system, it is important that a semiformal representation be rigorous
enough to satisfy the certification authority evaluators. Also, consideration must be given
to how correspondence between semiformal representations will be achieved, and if there
will be any future need to fully formalize that representation.

2. Meeting the Requirements
This section will focus on how requirements with semiformal or formal levels of rigor are
satisfied in Rockwell Collins projects; we will not discuss the informal level of rigor.

The layered design assurance architecture presented in the previous section provides
increasing levels of abstraction as you move upward in the layers. ACL2 has been
demonstrated to be a tool adept at layering specifications with increasing levels of
abstraction, as shown in the CLI short stack [2]. In the CLI short stack, a series of
machines are defined that describe hardware implementation and specification,
compiler/assembler implementation and specification, and application implementation
and specification. Each layer is proved to implement its specification, assuming the
correctness of the layers beneath it. ACL2 is well suited to address the formal and
semiformal requirements of the Common Criteria by stacking layers with increasing
abstraction, much as was described for the short stack. Later in the document we describe
how the Common Criteria requirements form a layered proof architecture, the ability to
prove each layer implements its specification is part and parcel of the certification effort.
Moreover, ACL2 facilitates the composition of larger systems from certified components
by allowing the properties of one component to be used as assumptions of a higher-level
component. This ability facilitates the so-called “MILS Architecture” being developed by
a consortium of companies. The layers of this architecture (such as an RTOS, middleware
and applications) can be developed and certified independently, relying on the soundness
of all layers below. For this composition, the formal security policy of one layer becomes
an assumption made by all layers above it. Just as the implementations “stack”, so too do
the correctness statements and proofs.

Either a Protection Profile or a Security Target document describes the security function
of a system. Deriving a formal security policy specification for the security function
described by these documents is a challenging task. A description of such a security
policy (known as the GWV security policy) is given in [4]. What makes this problem
challenging is that it is difficult to know if the formal specification adequately captures
the intent of the security function. To provide assurance that the security policy
specification is appropriate, it can be helpful to use this specification as a property in a
larger system. Proving the correct operation of such a higher-level system increases
confidence that the formal security policy has been correctly captured.

The Common Criteria is explicit in stating that each representation does not need to be a
separate document. One ACL2 model may satisfy more than one of the required
representations, which has the benefit of making correspondence between these layers
trivial. We present two representation architectures, one from a past project and one that
is proposed for future projects. Both of these representation architectures have a single
representation that satisfies more then one requirement.

The 2-model representation architecture shown in Figure 2 has been used in the Rockwell
Collins AAMP7 verification project [3]. The security policy is modeled by a theorem that
states the separation property that must hold for this system. The ADV_FSP and
ADV_HLD requirements are satisfied by a single abstract formal ACL2 model. The
ADV_LLD requirement is satisfied by a detailed formal ACL2 model. In this project all
models and correspondences are represented formally, which meets EAL 7 requirements
plus satisfies ADV_LLD.3.

The representation shown in
Figure 3 has been proposed for
future Rockwell Collins projects.
The Security Policy is modeled by
a theorem that states the important
separation property to be proved
on this system. The requirements
of ADV_FSP, ADV_HLD and
ADV_LLD are all satisfied by a
single ACL2 model. The rigor of
this model would depend on the
certification requirements to be
satisfied.

We proved that the AAMP7’s formal security policy held over its low-level model. We
claim its proof over the high-level
design does not add any certainty
to the validation. We will argue
that we could have used this 1-
model representation architecture
for the AAMP7 program. Figure 4
contrasts the two theorems needed
to be proved for the 2-model
representation architecture with
the one theorem to be proved in
the 1-model representation
architecture.

Formal Security Policy
(ADV_SPM)

Formal Abstract Model
(ADV_FSP, ADV_HLD)

Formal Detailed Model
(ADV_LLD)

Implementation

Proofs
(ADV_RCR)

Figure 2: Representation Architecture 1

Figure 3: Representation Architecture 2

Formal Security Policy
(ADV_SPM)

Formal Model
(ADV_FSP, ADV_HLD, ADV_LLD)

Implementation

Proofs
(ADV_RCR)

Levels of Formality
The AAMP7 verification used fully formal representation of all layers of the assurance
architecture. Most verifications will require only semiformal representations of various
levels of the assurance architecture. Therefore, validating this system with a single model
requires a model with a level of formalism equal to the highest in any of the

(defthm lift -next-commute
 (implies
 (and
 (hld::secure -configuration spex)
 (spex-hyp :any :trusted :raw spex lld::st))
 (equal (lift -raw spex (lld::next spex lld::st))
 (hld::next spex (lift -raw spex lld::st)))))

(defthm hld -separation
 (implies
 (let ((dia (raw -dia-from-abstract seg st1)))
 (and
 (equal (raw -selectlist dia st1)
 (raw-selectlist dia st2))
 (equal (raw -select '(:external) st1) (raw -select '(:ex ternal) st2))))
 (iff (equal (raw -select seg (next spex st1))
 (raw-select seg (next spex st2))) t)))

(defthm lld-separation
 (implies
 (and
 (secure -configuration spex)
 (spex-hyp :any :trusted :raw spex lld::st1)
 (spex-hyp :any :tr usted :raw spex lld ::st2))

 (implies
 (let ((hld::st1 (lift -raw spex lld ::st1))
 (hld::st2 (lift -raw spex lld ::st2)))
 (and
 (let ((segs (intersection -equal
 (dia -fs seg hld ::st1)
 (segs-fs (current hld::st1) hld ::st1))))
 (equal (raw -selectlist segs hld ::st1)
 (raw -selectlist segs hld ::st2)))
 (equal (current hld ::st1)
 (current hld ::st2))
 (equa l (raw-select seg hld ::st1)
 (raw-select seg hld ::st2))))
 (equal
 (raw-select seg (l ift-raw spex (lld::next spex lld ::st1)))
 (raw-select seg (l ift-raw spex (lld::next spex lld ::st2)))))))

Figure 4: The two theorems lift-next-commute and hld-separation are needed to satisfy the Common Criteria
requirements when using a 2 -model Representation Architecture. The lift-next-commute theorem demonstrates
that the two models are equivalent. The hld-separation theorem shows t hat the GWV separation policy holds for
the high -level model. In contrast, if the 1 -model representation Architecture is used then only the lld-separtion
theorem needs to be proved.

requirements. The added formalism may seem like unnecessary work, but this is more
than compensated by the fact that the correspondence between the high and low-level
models becomes trivial, since they are one and the same.

ACL2 is a good choice for semiformal representations. The strategic use of axioms can
be viewed as semiformalism, under the condition that compelling informal/semiformal
rationales on the validity of the axioms is provided. This has the advantage of providing a
pathway to fully formal representations by later providing proofs of the axioms. The
resulting representations still maintain the stackability property, allowing the
development of assurance architectures and component composition. It is unclear how
other restricted syntax languages would support these notions. Furthermore, using ACL2
for semiformal representations provides justification that the representations are
internally consistent, which is required for Common Criteria semiformal representations.

3. Conclusion
The Common Criteria does not prescribe the use of any particular tool or notation to
satisfy either its formal or semiformal representation requirements. However, ACL2 is
well suited to provide either formal or semiformal representations in a Common Criteria
certification context. ACL2 is adept at stacking models with increasing levels of
abstraction. Not only does this directly support the Common Criteria design assurance
architecture, it supports the use of properties of a certified system as assumptions in a
higher level system. Furthermore, using ACL2 with a reasonable set of axioms for a
semiformal presentation provides the ability to make the presentation fully formal by
providing formal proofs of the axioms.

References
[1] Common Criteria for Information Technology Security Evaluation, Version 2.1,

August 1999, CCIMB-99-031, http://csrc.nist.gov/cc/CC-v2.1.html.

[2] Special Issue on System Verification, with W.R. Bevier, W.A. Hunt, and W.D.
Young. Journal of Automated Reasoning, Kluwer Academic Publishers, 5(4), 1989,
pp. 461-492.

[3] David Greve, Raymond Richards and Matthew Wilding, A Summary of Intrinsic
Partitioning Verification, Fifth International Workshop on the ACL2 Prover and Its
Applications (ACL2-2004), Austin, TX.

[4] David Greve, Matthew Wilding and W. Mark Vanfleet, "A Separation Kernel Formal
Security Policy", Fourth International Workshop on the ACL2 Prover and Its
Applications (ACL2-2003), Boulder, CO, July 2003.

