
A Formally Verified Quadratic Unification Algorithm – p. 1/32

A Formally Verified Quadratic Unification Algorithm

J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo and F.-J. Martı́n-Mateos

Computational Logic Group

Dept. of Computer Science and Artificial Intelligence

University of Seville

A Formally Verified Quadratic Unification Algorithm – p. 2/32

Introduction

• A case study: using ACL2 to implement and verify a non-trivial
algorithm with efficient data structures
◦ Implement the algorithm in ACL2, and compare with similar

implementations in other languages
◦ Explore the main issues encountered during the verification effort

• Unification algorithm on term dags
◦ A naive implementation of unification has exponential complexity,

both in time and space
◦ The implemented algorithm: quadratic time complexity and linear

space complexity
• Why this algorithm?
◦ Important in many symbolic computation system
◦ Reuse previous work

• Note: no formal proofs about the complexity of the algorithm

A Formally Verified Quadratic Unification Algorithm – p. 3/32

Unification

• Unification of terms t1 and t2: find (whenever it exits) a most general
substitution σ such that σ(t1) = σ(t2)

• Martelli–Montanari transformation system (acting on unification
problems S;U)
Delete: {t ≈ t} ∪R;U ⇒u R;U
Occur-check:{x ≈ t} ∪R;U ⇒u ⊥ if x ∈ V(t) and x 6= t
Eliminate: {x ≈ t} ∪R;U ⇒u θ(R); {x ≈ t} ∪ θ(U)

if x ∈ X, x /∈ V(t) and θ = {x 7→ t}
Decompose:{f(s1, ..., sn) ≈ f(t1, ..., tn)} ∪R;U ⇒u

{s1 ≈ t1, ..., sn ≈ tn} ∪R;U
Clash: {f(s1, ..., sn) ≈ g(t1, ..., tm)} ∪R;U ⇒u ⊥

if n 6= m or f 6= g
Orient: {t ≈ x} ∪R;U ⇒u {x ≈ t} ∪R;U if x ∈ X, t /∈ X

• We defined a particular unification algorithm by choosing:
◦ a concrete data structure to represent terms and substitutions
◦ a concrete strategy to exhaustively apply the rules of⇒u

A Formally Verified Quadratic Unification Algorithm – p. 4/32

The verification strategy

LOGIC OF DATA

STRUCTURES
EFFICIENCY

IMPROVEMENTS

FINAL

THEOREMS

CONTROL OF

THE PROCESS

THE PROCESS

EXECUTION

IN ACL2

A Formally Verified Quadratic Unification Algorithm – p. 5/32

Proving the essential properties of unification

LOGIC OF DATA

STRUCTURES
EFFICIENCY

IMPROVEMENTS

FINAL

THEOREMS

CONTROL OF

THE PROCESS

THE PROCESS

EXECUTION

IN ACL2

A Formally Verified Quadratic Unification Algorithm – p. 6/32

Martelli–Montanari transformation system

Delete: {t ≈ t} ∪R;U ⇒u R;U
Occur-check:{x ≈ t} ∪R;U ⇒u ⊥ if x ∈ V(t) and x 6= t
Eliminate: {x ≈ t} ∪R;U ⇒u θ(R); {x ≈ t} ∪ θ(U)

if x ∈ X, x /∈ V(t) and θ = {x 7→ t}
Decompose:{f(s1, ..., sn) ≈ f(t1, ..., tn)} ∪R;U ⇒u

{s1 ≈ t1, ..., sn ≈ tn} ∪R;U
Clash: {f(s1, ..., sn) ≈ g(t1, ..., tm)} ∪R;U ⇒u ⊥

if n 6= m or f 6= g
Orient: {t ≈ x} ∪R;U ⇒u {x ≈ t} ∪R;U if x ∈ X, t /∈ X
• Theorem:
◦ If {s = t}; ∅ ⇒u S1;U1 ⇒u . . .⇒u ⊥, the s and t are not

unifiable
◦ If {s = t}; ∅ ⇒u S1;U1 ⇒u . . .⇒u ∅;U , then U is a mgu of s

and t
◦ ⇒u is terminating

A Formally Verified Quadratic Unification Algorithm – p. 7/32

Proving the main properties of⇒u in ACL2

• Prefix representation of terms and substitutions:
(f (h z) (g (h x) (h u)))

• We proved the previous theorem, using the prefix representation of
terms
◦ Reasoning is more “natural” with the prefix representation
◦ We reused results from other verification projects

• After proving the theorem, in order to verify a concrete unification
algorithm, we only have to show that the results computed can be
obtained by the application of a sequence of operators of⇒u

A Formally Verified Quadratic Unification Algorithm – p. 8/32

Formalization of⇒u in ACL2

• ⇒u is not a function, is a relation
◦ Operators: pairs of the form (name . i), where name is one of

the rule names
◦ (unif-legal-p upl op)
◦ (unif-reduce-one-step-p upl op)

• For example:
(defthm mm-preserves-solutions-1

(implies
(and (unif-legal-p upl op)

(solution sigma (both-systems upl)))
(solution sigma

(both-systems
(unif-reduce-one-step-p upl op)))))

A Formally Verified Quadratic Unification Algorithm – p. 9/32

An efficient term representation

LOGIC OF DATA

STRUCTURES
EFFICIENCY

IMPROVEMENTS

FINAL

THEOREMS

CONTROL OF

THE PROCESS

THE PROCESS

EXECUTION

IN ACL2

A Formally Verified Quadratic Unification Algorithm – p. 10/32

Problems with the prefix representation

Exponential behavior

• Problem Un:

p(xn, . . . , x2, x1) ≈ p(f(xn−1, xn−1), . . . , f(x1, x1), f(x0, x0))

• Mgu: {x1 7→ f(x0, x0), x2 7→ f(f(x0, x0), f(x0, x0)), . . .}
• With a prefix representation of terms, every application of the Eliminate

rule requires reconstruction of the instantiated systems

A Formally Verified Quadratic Unification Algorithm – p. 11/32

Unification with term dags

• We represent terms as directed acyclic graphs (dags) stored as pointer
structures

• Thus, the Eliminate rule only updates a pointer in the graph
• In ACL2, we represent a graph by the list of its nodes
• Each node is identified with the index of its position in the list

A Formally Verified Quadratic Unification Algorithm – p. 12/32

Term dags in ACL2

• Example: f(h(z), g(h(x), h(u))) ≈ f(x, g(h(u), v))

11

12 14

f f

h g g

h h h v

ux

z

1 9

2

3

4

5

8

7

6

10

13

6 8

1

(EQU . (1 9))

0

(F . (2 4))

7

(H . (8))

8

(U . T)

9

(F . (10 11))

32

(H . (3)) (Z . T)

10

4

(G . (5 7)) (X . T)

6

(H . (6))

5

1311

(G . (12 14)) (H . (13))

12

(V . T)

14

A Formally Verified Quadratic Unification Algorithm – p. 13/32

Dag unification problems

• Representing terms as dags, a (sub)term can be identified by the index
of its root node

• Dag unification problem: a list (S U g), where
◦ g is a list of nodes, representing the dag
◦ S and U system of equations and substitution (resp.) only containing

indices, instead of the whole term
• For instance, in the previous example the equation
g(h(x), h(u)) ≈ g(h(u), v) is stored as (4 . 11)

A Formally Verified Quadratic Unification Algorithm – p. 14/32

Dag unification

• The key theorem proved in ACL2: the following diagram commutes

UPLp
⇒u,p−→ UPLp

↑ ↑
dp | dp |
| |

UPLd
⇒u,d−→ UPLd

where⇒u,p and⇒u,d denote the transformation relation, defined
respectively on prefix unification problems and on dag unification
problems

• The theorem allows us to easily translate the properties proved about
⇒u, from the prefix representation to the dag representation

A Formally Verified Quadratic Unification Algorithm – p. 15/32

Efficiency improvements

LOGIC OF DATA

STRUCTURES
EFFICIENCY

IMPROVEMENTS

FINAL

THEOREMS

CONTROL OF

THE PROCESS

THE PROCESS

EXECUTION

IN ACL2

A Formally Verified Quadratic Unification Algorithm – p. 16/32

Efficiency improvements

• Even with the dag representation the algorithm could be of exponential
time complexity. We need to:
◦ Improve occur check, avoiding repeated visits to the same subterm
◦ Allow sharing of subterms when they have already been unified

• Sharing: after two subterms have been unified, point the root node of
one of them to the root node of the other

• We specify this operation staying at the rule-based level:
◦ Extend⇒u,d with a new rule: identifications
◦ This rule specifies when it is “legal” to do identifications and how it

changes the graph
◦ But no control issues

A Formally Verified Quadratic Unification Algorithm – p. 17/32

A new rule of transformation: identification

• Operator: (identify i j)
• Applicable to a dag unification problem when the subterms pointed by i

and j are equal
• Results of its application: a new dag unification problem where node i

is updated to point to node j

Theorem: an application of the identification rule does not change the
unification problem in prefix form represented by the dag unification problem

A Formally Verified Quadratic Unification Algorithm – p. 18/32

Applying the rules with control

LOGIC OF DATA

STRUCTURES
EFFICIENCY

IMPROVEMENTS

FINAL

THEOREMS

CONTROL OF

THE PROCESS

THE PROCESS

EXECUTION

IN ACL2

A Formally Verified Quadratic Unification Algorithm – p. 19/32

Applying the rules with control

• Time to define a concrete algorithm: always apply the rule suggested
by the first equation
◦ And prove that its computation can be simulated by a sequence of

applications of⇒u,d (plus identifications)
• For efficiency reasons, the applicability condition of an identification

should not be explicitly checked
◦ But the algorithm must arrange things to ensure that whenever an

identification is done, the identified subterms are already unified
• We extend the system of equations to be solved with some

“identification marks” (id i j)
◦ Whenever we apply the Decompose rule to the equation (i .
j), we place the identification mark (id i j) just after the
equations pairing the arguments of i and j

A Formally Verified Quadratic Unification Algorithm – p. 20/32

ACL2 implementation: one step of the dag transformation (⇒u,d)

(defun dag-transform-mm-q (ext-dag-upl)
(let* ((ext-S (first ext-dag-upl)) (equ (first ext-S)) (R (rest ext-S))

(U (second ext-dag-upl)) (g (third ext-dag-upl)) (stamp (fourth ext-dag-upl))
(time (fifth ext-dag-upl)))

(if (equal (first equ) ’id)
(let ((g (update-nth (second equ) (third equ) g)))

(list R U g stamp time))
(let ((t1 (dag-deref (car equ) g)) (p1 (nth t1 g))

(t2 (dag-deref (cdr equ) g)) (p2 (nth t2 g)))
(cond ((= t1 t2) (list R U g stamp time))

((dag-variable-p p1)
(mv-let (oc stamp)

(occur-check-q t t1 t2 g stamp time)
(if oc nil

(let ((g (update-dagi-l t1 t2 g)))
(list R (cons (cons (dag-symbol p1) t2) U) g

stamp (1+ time))))))
((dag-variable-p p2) (list (cons (cons t2 t1) R) U g stamp time))
((not (eql (dag-symbol p1) (dag-symbol p2))) nil)
(t (mv-let (pair-args bool)

(pair-args (dag-args p1) (dag-args p2))
(if bool (list (append pair-args

(cons (list ’id t1 t2) R))
U g stamp time)

nil))))))))

A Formally Verified Quadratic Unification Algorithm – p. 21/32

ACL2 implementation: one step of the dag transformation (⇒u,d)

dag-transform-mm-q(UPL) =

let* UPL be (S U g stamp time), S be (e . R)

in if first(e) = id then let g be update-nth(second(e),third(e), g)

in (R U g stamp time) Identify
else let* t1 be dag-deref(car(e), g), p1 be nth(t1, g)

t2 be dag-deref(cdr(e), g), p2 be nth(t2, g)

in if t1 = t2 then (R U g stamp time) Delete
elseif dag-variable-p(p1)

let 〈oc,stamp〉 be occur-check-q(t, t1, t2, g, stamp, time)

in if oc then nil Occur-check
else let g be update-nth(t1, t2, g)

in (R ((dag-symbol(p1) . t2) . U) g stamp time+1) Eliminate
elseif dag-variable-p(p2) then (((t2 . t1) . R) U g stamp time) Orient
elseif dag-symbol(p1) 6= dag-symbol(p1) then nil Clash 1
else let 〈pair-args,bool〉 be pair-args(dag-args(p1),dag-args(p2))

in if bool
then (pair-args@((id t1 t2) . R) U g stamp time) Decompose

else nil Clash 2

A Formally Verified Quadratic Unification Algorithm – p. 22/32

Iteratively applying the rules of⇒u

(defun solve-upl-q (ext-upl)
(declare (xargs :measure (unification-measure-q ext-upl)))
(if (unification-invariant-q ext-upl)

(if (normal-form-syst ext-upl)
ext-upl

(solve-upl-q (dag-transform-mm-q ext-upl)))
’undef))

• unification-invariant-q, a very long and expensive condition:
◦ Well-formedness
◦ Aciclicity
◦ Correct placement of the identification marks

• For termination reasons, it has to appear in the body
• Theorem: the computation performed by solve-upl-q can be

simulated by⇒u,d (plus identifications)
◦ The hard part: show that unification-invariant-q is indeed

an invariant of the process

A Formally Verified Quadratic Unification Algorithm – p. 23/32

Execution in ACL2

LOGIC OF DATA

STRUCTURES
EFFICIENCY

IMPROVEMENTS

FINAL

THEOREMS

CONTROL OF

THE PROCESS

THE PROCESS

EXECUTION

IN ACL2

A Formally Verified Quadratic Unification Algorithm – p. 24/32

Execution in ACL2

• The function solve-upl-q is executable in ACL2
• But from the practical point of view its execution is completely unfeasible
• For two reasons:
◦ Accessing and updating the graph is not done in constant time
◦ Expensive well-formedness conditions in the body, needed for

termination, and evaluated in every recursive call

A Formally Verified Quadratic Unification Algorithm – p. 25/32

Using a stobj to store unification problems

(defstobj terms-dag
(dag :type (array t (0)) :resizable t)
...)

• The stobj allows accessing and updating the graph in constant time
• Single-threadedness is naturally met in this algorithm
• We redefine the algorithm, now with the stobj
• But almost no change from the logical point of view

A Formally Verified Quadratic Unification Algorithm – p. 26/32

Using defexec

(defexec solve-upl-st (S U terms-dag time)
(declare (xargs :guard ...))
(mbe
:logic (if (unification-invariant-q

(list S U (dag-component-st terms-dag)
(stamp-component-st terms-dag) time))

(if (endp S)
(mv S U t terms-dag time)
(mv-let (S1 U1 bool terms-dag time1)

(dag-transform-mm-st S U terms-dag time)
(if bool

(solve-upl-st S1 U1 terms-dag time1)
(mv S U nil terms-dag time))))

(mv S U nil terms-dag time))
:exec (if (endp S)

(mv S U t terms-dag time)
(mv-let (S1 U1 bool terms-dag time1)

(dag-transform-mm-st S U terms-dag time)
(if bool

(solve-upl-st S1 U1 terms-dag time1)
(mv S U nil terms-dag time))))))

In general, all the functions traversing the graph are defined using defexec

A Formally Verified Quadratic Unification Algorithm – p. 27/32

Execution in ACL2

LOGIC OF DATA

STRUCTURES
EFFICIENCY

IMPROVEMENTS

FINAL

THEOREMS

CONTROL OF

THE PROCESS

THE PROCESS

EXECUTION

IN ACL2

A Formally Verified Quadratic Unification Algorithm – p. 28/32

Dag unification in ACL2

• The main function dag-mgu:
◦ Input terms in prefix form are stored as dags in the stobj
◦ The Martelli-Montanari transformation rules are exhaustively applied

to the dag (updating pointers)
◦ If unifiable, the mgu is built from the final dag

• Example:
ACL2 !>(dag-mgu ’(f (h z) (g (h x) (h u)))

’(f x (g (h u) v)))
(T ((V . (H (H Z))) (U . (H Z)) (X . (H Z))))
ACL2 !>(dag-mgu ’(f y x) ’(f (k x) y))
(NIL NIL)

• Input and output in prefix form, but the main internal operations of the
algorithm are performed with the dag representation

• The implementation does not use operators (they are only for
reasoning)

A Formally Verified Quadratic Unification Algorithm – p. 29/32

Main theorems proved

(defthm dag-mgu-completeness
(implies (and (term-p t1) (term-p t2)

(equal (instance t1 sigma)
(instance t2 sigma)))

(first (dag-mgu t1 t2))))

(defthm dag-mgu-soundness
(let* ((dag-mgu (dag-mgu t1 t2))

(unifiable (first dag-mgu))
(sol (second dag-mgu)))

(implies (and (term-p t1) (term-p t2) unifiable)
(equal (instance t1 sol) (instance t2 sol)))))

(defthm dag-mgu-most-general-solution
(let* ((dag-mgu (dag-mgu t1 t2))

(sol (second dag-mgu)))
(implies (and (term-p t1) (term-p t2)

(equal (instance t1 sigma)
(instance t2 sigma)))

(subs-subst sol sigma))))

A Formally Verified Quadratic Unification Algorithm – p. 30/32

Execution performance

Un Qn

n Prefix Quadratic C Quadratic Prefix Quadratic C Quadratic
15 0.100 ε ε 4.440 ε ε

20 13.280 ε ε – ε ε

25 – ε ε – ε ε

30 – ε ε – ε 0.001
100 – 0.002 0.002 – 0.002 0.002
500 – 0.052 0.028 – 0.040 0.032
1000 – 0.210 0.127 – 0.147 0.138
5000 – 14.496 14.940 – 11.591 27.696
10000 – 75.627 83.047 – 77.856 113.886

A Formally Verified Quadratic Unification Algorithm – p. 31/32

Proof effort

Phase Definitions Theorems
Properties of⇒u (prefix representation) 24 81
Acyclic graphs 39 101
Diagram commutativity 39 76
Storing the initial terms in the graph 29 206
Extended transformation relation 10 25
Quadratic improvements and invariant 47 184
The stobj implementation and guards 26 102

Total 214 775

A Formally Verified Quadratic Unification Algorithm – p. 32/32

Conclusions

• On the negative side:
◦ The number of theorems and definitions needed may be

discouraging: 214 definitions and 775 theorems
◦ In contrast with a naive implementation (prefix): 19 definitions and

129 theorems
◦ Solution: ¿more reusable books?

• On the positive side:
◦ The performance of the implementation
◦ The successful proof strategy: a rule-based approach clearly

separating the logic, the data structures, the control strategy and the
ACL2 execution details

◦ mbe and defexec greatly benefits our work

	Introduction
	Unification
	The verification strategy
	Proving the essential properties of unification
	Martelli--Montanari transformation system
	Proving the main properties of $Rightarrow _u$ in ACL2
	Formalization of $Rightarrow _u$ in ACL2
	An efficient term representation
	Problems with the prefix representation
	Unification with term dags
	Term dags in ACL2
	Dag unification problems
	Dag unification
	Efficiency improvements
	Efficiency improvements
	A new rule of transformation: identification
	Applying the rules with control
	Applying the rules with control
	ACL2 implementation: one step of the dag transformation ($Rightarrow _{u,d}$)
	ACL2 implementation: one step of the dag transformation ($Rightarrow _{u,d}$)
	Iteratively applying the rules of $Rightarrow _u$
	Execution in ACL2
	Execution in ACL2
	Using a stobj to store unification problems
	Using {	t defexec}
	Execution in ACL2
	Dag unification in ACL2
	Main theorems proved
	Execution performance
	Proof effort
	Conclusions

