Reducing Invariant Proofs to Finite Search via Rewriting

ACL2 Workshop 2004

Austin, Texas, November 18, 2004

Rob Sumners and Sandip Ray

robert.sumners@amd.com,
sandip@cs.utexas.edu
What are Invariants?

- A Term is either a variable symbol, a quoted constant, or a function application

 - Example:
 \[(\text{cons} \ (\text{binary--} \ x \ (\text{quote} \ 1)) \ \text{'(t . nil)\}]

 - Every function is either a function symbol or a lambda expression

- A Predicate is a term with a single variable symbol \(n\) and is interpreted in an iff context

 - This is our non-standard definition of Predicate

- An Invariant is a predicate which we wish to prove is non-nil for all values of \(n\).

 - The variable \(n\) is intended to range over all values of natural-valued “time”
Importance of Proving Invariants

• Most properties of interest about concurrent, reactive systems can be effectively reduced to the proof of a sufficient invariant

• Invariants can be very difficult and tedious to prove for larger systems.

 — Many examples of this phenomenon from the ACL2 community and other formal methods communities
Example Invariant: Mutual Exclusion

(encapsulate (((i *) => *))
 (local (defun i (n) n)))

(define-system mutual-exclusion

 (in-critical (n) nil
 (if (in-critical n-)
 (/= (i n) (critical-id n-))
 (= (status (i n) n-) :try)))

 (critical-id (n) nil
 (if (and (not (in-critical n-))
 (= (status (i n) n-) :try))
 (i n)
 (critical-id n-)))

 (status (p n) :idle
 (if (/= (i n) p) (status p n-)
 (case (status p n-)
 (:try (if (in-critical n-)
 :try :critical)
 (:critical :idle)
 (t :try)))))
Specifying Mutual Exclusion

- Property: No two distinct processes a and b can be in the \texttt{critical} state at the same time

- Codified as the invariant (ok n):

$(\text{encapsulate } ((a) \Rightarrow *) ((b) \Rightarrow *))$
$(\text{local } (\text{defun } a () 1))$
$(\text{local } (\text{defun } b () 2))$
$(\text{defthm } a-=/=b \ (\text{not } (\text{equal } (a) (b)))))$

$(\text{defun } ok (n))$
$(\text{not } (\text{and } (= (\text{status } (a) n) \text{critical})$
$(= (\text{status } (b) n) \text{critical}))))$
• Define and prove an *inductive invariant* which implies the target invariant.

 – For complex systems, the definition and/or proof of an inductive invariant is a non-trivial exercise

• For our mutual exclusion example:

 \[
 \begin{align*}
 (\text{defun} & \ ii-ok-for1 \ (n \ i) \\
 (\text{iff} & \ (= \ (\text{status} \ i \ n) :\text{critical}) \\
 (\text{and} & \ (= \ (\text{critical-id} \ n) \ i))))
 \end{align*}
 \]

 \[
 \begin{align*}
 (\text{defun} & \ ii-ok \ (n) \\
 (\text{and} & \ (\text{ii-ok-for1} \ n \ (a)) \ (\text{ii-ok-for1} \ n \ (b))))
 \end{align*}
 \]

 \[
 \begin{align*}
 (\text{defthm} & \ ii-ok-is-inductive-invariant \\
 (\text{and} & \ (\text{ii-ok} \ (t0)) \\
 (\text{implies} & \ (\text{ii-ok} \ n) \\
 (\text{and} & \ (\text{ok} \ n) \ (\text{ii-ok} \ (t+ \ n)))))
 \end{align*}
 \]

 \[
 (\text{defthm} \ ok-is-invariant \ (\text{ok} \ n))
 \]
• Explore an “effective” finite state graph of a system searching for failures

 – Specification is usually provided by a temporal logic formula: e.g. an invariant in CTL would be $AG(\text{ok})$

 – System definition languages: Verilog HDL, VHDL, SMV, Murϕ, SPIN, Limited variants of C/C++, etc.

 – Model checkers are generally classified into explicit-state and implicit-state

 – Several algorithms exist to reduce large-state systems to effectively finite *abstract* state systems: symmetry reductions, partial order reductions, etc.

• Hybrid approaches: too many to enumerate, but most involve some form of abstraction.
Our Approach - Phase 1

- Assume the definition of a term rewrite function \texttt{rewrt} which takes a term as an input and produces the rewritten term.

- For a predicate \(\phi \), denote \(\phi' \) as the term:
 \[
 \texttt{(rewrt '((lambda (n) ,\phi) (t+ n)))}
 \]

- Assume the following function definition:
 \[
 \text{(defun state-ps (trm)}
 (\text{cond}}
 \begin{align*}
 & (\text{"(or (atom trm) (quotep trm)) ()")} \\
 & (\text{"(eq (first trm) 'if)")} \\
 & (\text{"(union-equal (state-ps (second trm))")} \\
 & (\text{"(union-equal (state-ps (third trm))")} \\
 & (\text{"(state-ps (fourth trm)))")})
 \\
 & (t (\text{"(and (state-predp trm) (list trm)))")})
 \end{align*}
 \]

- Compute the least set of predicates \(\Psi \) s. t.:
 \(a \) the target invariant predicate \(\tau \in \Psi \), and
 \(b \) for every \(\phi \in \Psi \), \(\text{(state-ps \phi')} \subseteq \Psi \).
• From the ϕ', we compute a finite set of input (non-state) predicates Γ

 — For each predicate α in $\Psi \cup \Gamma$, define a boolean variable $bv(\alpha)$

• For each ϕ in Ψ, we replace the predicate sub-terms α in ϕ' with $bv(\alpha)$

 — This gives us a next-value function for computing the next value of $bv(\phi)$ in terms of the current values of the boolean variables

• Explore the abstract graph defined by the next-value functions for $bv(\Psi)$

 — nodes in the graph are valuations of the variables $bv(\Psi)$ and an edge exists from one node to the next if a valuation of $bv(\Gamma)$ exists
 — If no path is found to a node where $bv(\tau)$ is nil, then return Q.E.D.
 — Otherwise, return a pruned version of the failing path to the user for further analysis
Our Approach - Elaborations

- The function `(state-predp trm)` is essentially defined as:

```
(defun state-predp (trm)
  (and (not (intersectp-eq (all-fnnames trm) '(t+ hide)))
       (equal (all-vars trm) '(n))))
```

- Thus, the user can introduce an input predicate by introducing a `hide`

- We chose to define our own term rewriter for numerous reasons

 - The rewriter does extract rewrite rules from the current ACL2 world

- Our “model checker” is a compiled, optimized (to an extent), explicit-state, breadth-first search through the abstract graph

- The prover also supports assume-guarantee reasoning through the use of `forced` hypothesis
• Beginning with $\tau = (\text{ok } n)$, the prover generates the following set of predicates Ψ:

\[
\begin{align*}
(\text{ok } n) \\
(\text{equal } (\text{status } (a) \ n) \ '':\text{critical}) \\
(\text{equal } (\text{status } (b) \ n) \ '':\text{critical}) \\
(\text{equal } (\text{status } (a) \ n) \ '':\text{try}) \\
(\text{equal } (\text{status } (b) \ n) \ '':\text{try}) \\
(\text{in-critical } n) \\
(\text{equal } (\text{critical-id } n) \ (a)) \\
(\text{equal } (\text{critical-id } n) \ (b))
\end{align*}
\]

• The resulting abstract graph has 20 nodes and verifies that $(\text{ok } n)$ is never nil.

• We can further reduce the graph to 6 nodes by hiding $:\text{try}$ terms:

\[
\begin{align*}
(\text{defthm } \text{coerce-try-status-to-input} \\
(\text{equal } (\text{equal } (\text{status } p \ n) \ '':\text{try}) \\
(\text{hide } (\text{equal } (\text{status } p \ n) \ '':\text{try})))
\end{align*}
\]
• Another example: a high-level definition of the ESI cache coherence protocol

• System defined by following state variables:

 – (mem c n) – shared memory data for cache-line c

 – (cache p c n) – data for cache-line c at proc. p

 – (valid c n) and (excl c n) – sets of processor id.s which define the ESI cache states

• We will need a few constrained functions:

\[
\text{(encapsulate } (((\text{proc } *)) => *)) ((\text{op } *)) => *) \\
\quad ((\text{addr } *)) => *) ((\text{data } *)) => *)
\]

\[
\text{(local (defun proc (n) n)) (local (defun op (n) n))} \\
\quad \text{(local (defun addr (n) n)) (local (defun data (n) n))}
\]

\[
\text{(encapsulate } (((\text{c-l } *)) => *)) \text{(local (defun c-l (a) a)))}
\]
(define-system mesi-cache
 (mem (c n) nil
 (cond ((/= (c-l (addr n)) c) (mem c n-))
 ((and (= (op n) :flush)
 (in1 (proc n) (excl c n-))
 (cache (proc n) c n-))
 (t (mem c n-))))
)
(cache (p c n) nil
 (cond ((/= (c-l (addr n)) c) (cache p c n-))
 ((/= (proc n) p) (cache p c n-))
 ((or (and (= (op n) :fill) (not (excl c n-)))
 (and (= (op n) :fille) (not (valid c n-))))
 (mem c n-))
 ((and (= (op n) :store) (in1 p (excl c n-)))
 (s (addr n) (data n) (cache p c n-)))
 (t (cache p c n-))))
(excl (c n) nil
 (cond ((/= (c-l (addr n)) c) (excl c n-))
 ((and (= (op n) :flush)
 (implies (excl c n-)
 (in1 (proc n) (excl c n-)))
 (sdrop (proc n) (excl c n-))))
 ((and (= (op n) :fille) (not (valid c n-)))
 (sadd (proc n) (excl c n-)))
 (t (excl c n-))))
(valid (c n) nil
 (cond ((/= (c-l (addr n)) c) (valid c n-))
 ((and (= (op n) :flush)
 (implies (excl c n-)
 (in1 (proc n) (excl c n-)))
 (sdrop (proc n) (valid c n-)))
 ((or (and (= (op n) :fill) (not (excl c n-)))
 (and (= (op n) :fille) (not (valid c n-))))
 (sadd (proc n) (valid c n-)))
 (t (valid c n-))))
(t (valid c n-))))

13
• Property: the value read by a processor is the last value stored.

• A codification in ACL2 of this property as the target invariant \((\text{ok } n)\):

\[
\text{(encapsulate } (((p) \Rightarrow *) ((a) \Rightarrow *)) \\
\text{ (local (defun p () t)) (local (defun a () t)))}
\]

\[
\text{(define-system mesi-specification} \\
\text{ (a-dat (n) nil} \\
\text{ (if (and (= (addr n) (a))} \\
\text{ (= (op n) :store) } \\
\text{ (in1 (proc n) (excl (c-l (a)) n-)))} \\
\text{ (data n) } \\
\text{ (a-dat n-))))}
\]

\[
\text{(ok (n) t} \\
\text{ (if (and (= (proc n) (p))} \\
\text{ (= (addr n) (a))} \\
\text{ (= (op n) :load) } \\
\text{ (in (p) (valid (c-l (a)) n-)))} \\
\text{ (= (g (a) (cache (p) (c-l (a)) n-)) (a-dat n-))} \\
\text{ (ok n-))))}
\]
• Key rewrite rule to introduce case splits on the exclusive set \((\text{excl } c \ n) \):

\[
\text{(defthm in1-case-split} \\
\quad \text{(equal } \text{(in1 } e \ s) \\
\qquad \text{(cond (not } s) \text{ nil) \\
\qquad \quad ((c1 } s) \text{ (equal } e \text{ (scar } s)) \\
\qquad \quad (t \text{ (hide } \text{(in1 } e \ s)))))
\]

• Prover generates following predicate set and explores resulting graph (11 nodes):

\[
\text{(ok } n) \\
\text{(valid } (\text{c-l } (a)) \ n) \\
\text{(in } (p) \text{ (valid } (\text{c-l } (a)) \ n)) \\
\text{(excl } (\text{c-l } (a)) \ n) \\
\text{(c1 } (\text{excl } (\text{c-l } (a)) \ n)) \\
\text{(equal } (\text{scar } \text{(excl } (\text{c-l } (a)) \ n)) \ (p)) \\
\text{(equal } (\text{a-dat } n) \ (g \ (a) \ (\text{mem } (\text{c-l } (a)) \ n))) \\
\text{(equal } (\text{a-dat } n) \ (g \ (a) \ (\text{cache } (p) \ (\text{c-l } (a)) \ n))) \\
\text{(equal } (\text{a-dat } n) \ (g \ (a) \ (\text{cache } (\text{scar } \text{(excl } (\text{c-l } (a)) \ n)) \ (\text{c-l } (a)) \ n))))
\]
Conclusions and Future Work

• Prover can be effective but requires thought:
 – Careful consideration of system definition and specification relative to existing operators and rewrite rules
 – Determination of which terms should be hidden and the possible addition of auxiliary variables

• Improvements to the Prover:
 – Interfaces to external model checkers for Phase 2
 – Better methodology for prover use and user feedback

• Many more example systems and effort to integrate with RTL definitions and existing library

• Need to develop more comprehensive compositional methodology