User Control and Direction of a
More Efficient Simplifier in ACL2

Rob Sumners
Advanced Micro Devices, Inc.
Austin, Texas, USA
robert.sumners@amd.com

ABSTRACT

We present an efficient term simplifier written in ACL2 and
interfaced with ACL2 as an untrusted clause processor. We
also demonstrate how an advanced user can extend this sim-
plifier in a sound manner by proving rewrite rules with spe-
cial annotations and programmed constraints on their appli-
cation. For problems requiring extensive case analysis, the
simplifier is more efficient than ACL2 built-in simplification
and we demonstrate this on some relevant examples. In ad-
dition, we discuss the issue of user control over predictable
simplification and conclude the paper with the proposed im-
plementation of invariant discovery using the simplifier.
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1. MOTIVATION

In the course of proving theorems in ACL2, the vast majority
of the computational resources are spent in the simplifica-
tion stage of the prover. This is not too surprising when
one considers that the majority of the ACL2 theorem prov-
ing code implementing the “waterfall” is dedicated to the
simplification stage. It is, therefore, relevant to consider al-
ternatives or extensions to ACL2 simplification — especially
in cases in which it takes considerable human and compu-
tational resources to get the ACL2 simplifier to produce the
desired result.

In addition, for many problem domains tackled in ACL2
(e.g. proofs of concurrent program correctness), theorems
are either proven directly by simplification or proven by a
single induction followed by simplification. As an example,

all of the proofs for the correctness of a concurrent deque
in [13] in ACL2 were either proven by simplification or by a
single induction followed by simplification. This highlights
the importance of efficient simplification in the proofs of
theorems about systems and program execution in ACL2.

An alternative to using ACL2 for brute-force simplification
is to use ACL2 to reduce the theorem to be proven to a prob-
lem that can be translated into a decidable logic that can
be solved by an external tool (usually a propositional SAT
checker)[4]. This approach is attractive because it separates
the problem domains of the tools involved. The user may
write high-level definitions in the more expressive language
of ACL2 and use the theorem proving support in ACL2
to manually transform the problem to a tractable domain,
which is handled by a decision procedure that can be written
efficiently to handle problems in the more tractable domain.
In cases where the manual effort required to transform the
problem to the tractable domain is manageable, this process
can certainly be effective, but in cases where this translation
is difficult (i.e. when dealing with a concurrent system with
an unbounded number of processes), then the translation
may require considerable work on proofs and invariant def-
initions. A further issue arises when either the translation
process or the decision procedure is ineffective in handling
the problem efficiently — the user often only has coarse-grain
control or guidance in the process.

In other theorem provers, variations of Nelson-Oppen[7] or
Shostak’s [11, 8, 10] are often used as a method to inte-
grate efficient decision procedures into a more general proof
engine. ACL2 also integrates decision procedures into the
simplification process. In each of these cases, the integration
of decision procedures requires careful translation of results
between procedures to avoid soundness and completeness is-
sues. The proposal of this paper is to implement decision
procedures as sets of rewrite rules with the common term
representation as the translation between decision proce-
dures with no inherent soundness issues or translation issues
between procedures.

The approach we present in this paper can be viewed as an
alternative or extension to ACL2 simplification. We present
an efficient simplifier based on term rewriting using rewrite
rules derived from theorems proven by the ACL2 user — sim-
ilar to the use of rewrite rules in ACL2 simplification. This
new efficient simplifier is written in ACL2 and is used as a
trusted clause processor in certified books. The simplifier



is essentially an optimized term rewriter with support for
fine-grained control provided to the user through annotated
rewrite rules. Through these annotated rewrite rules, the
user can control the simplifier and actually implement local
procedures for simplifying certain types of operations and
logical relationships. The control that the user is given is
principled in that the rewrite rules are derived from proven
theorems and, in theory, cannot break the soundness of the
results of the simplifier.

In support of the control afforded to the user, the simplifier
provides feedback on its execution to the user on several lev-
els. The simplifier always provides statistics on the number
of nodes created, the types of nodes created, and various
rewrite rule applications and attempts. When a theorem
fails, a concise report is generated on the failing case. Fur-
ther, the simplifier itself is designed to be straightforward
and predictable to allow the user to have a more direct im-
pact on its behavior through rewrite rules.

In this paper, we will present the architecture of this sim-
plifier and some example applications. The definition of the
simplifier is provided in the supporting materials and is a
derivative of the work presented in [14] (which includes an
informal argument for soundness and relative completeness).

1.1 Supporting Materials

The supporting materials for this paper consist of two files:
kas.lisp and examples.lisp. The examples.lisp file shows
some applications of KAS on a pipeline example which is de-
tailed in Section 4.1.

The file kas.1lisp contains the code defining the simplifier.
The file is essentially divided into three parts. The first part
of the file is the definition of several macros that are used
to make the main definition section of the simplifier easier
to read and manage but also introduce various type decla-
rations for efficient execution. The second part of the file
is the definition of the simplifier; the main mutual recursive
function clique is entered through the rewrite-node func-
tion. This simplifier definition will be the focus of the next
section. The final part of kas.1lisp is a set of functions that
interface the simplifier to the ACL2 world and state. This
code extracts rewrite rules, function definitions and proper-
ties, and various other pieces of information from the ACL2
world.

We highly encourage the interested reader to look over these
files, load them in ACL2, and play around with the simpli-
fier. The primary example problem provided is a good can-
didate for testing and analyzing the operation of the simpli-
fier. In addition, one of the benefits that we claim about this
simplifier is that it is written in ACL2 and in a manner that
affords examination, understanding, and even extension by
an ACL2 user. In fact, a mechanical proof of the soundness
of the simplifier in ACL2 is an ongoing effort.

It is important that we note that the simplifier definition
requires a 64-bit LISP compiler and runtime. In particular,
the code has been rewritten to take advantage of the larger
fixnums on 64-bit systems. All results in this paper were
achieved running OpenMCL on MacBook with a 2GHz pro-
cessor with 1GB RAM. It is recommended that users run the

simplifier with Clozure CL on the platform of their choice.
Running the simplifier with a Common Lisp that does not
support larger fixnums will likely result in poor performance.

2. SIMPLIFIER ARCHITECTURE

The ACL2 simplifier is written in the ACL2 programming
language in an applicative style.! The applicative style re-
duces the inherent complexity of the functions defining the
simplifier but at the cost of efficiency. Further, the ACL2
simplifier includes several procedures and heuristics to im-
prove the effectiveness and efficiency of the simplifier, but
with the downside of increasing the complexity of the simpli-
fier. To improve control of the prover, most of these proce-
dures and heuristics are extended with mechanisms to sup-
port user-specified directives. Our proposal is to define a
simplifier that is more efficient and less complex and affords
greater control than the ACL2 simplification stage of the
ACL2 prover. Our intent is to make the simplifier as effec-
tive at proving theorems as the ACL2 simplifier, but not at
the cost of the other goals. This simplifier is named KAS
which stands for Kernel Architecture Simplifier. This name
refers to an architecture based on a principle of isolation and
separation analogous in many ways to the kernel architec-
tures of “modern” operating systems.

KAS is best described as an elaborated, optimized, inside-
out, ordered, conditional term rewriter with support for fine-
grained user control. In general, a simple term rewriter
would not be considered a simplifier since its efficiency and
effectiveness would be insufficient for larger theorems requir-
ing analysis of a large number of cases. Part of the proposal
for KAS is an argument for implementing decision proce-
dures and heuristics within the basic language or structure
of extended term rewriting. For this proposal to be reason-
able, the term rewriter needs to provide sufficient optimiza-
tion to approximate the efficiency of decision procedures ap-
plied to the problems that commonly arise in the application
of ACL2. The definition of a simple inside-out, ordered term
rewriter provided in Figure 1 — this simple rewriter is a toy
definition and will merely provide a point of reference in the
presentation of KAS.

The function simple-rewrite is the entry point to the sim-
ple rewriter in Figure 1 and takes a term trm and returns a
term resulting from the rewriting of trm using proven the-
orems as rewrite rules. The function rewrite-term takes a
term trm and a list ctx of equations that hold in the cur-
rent context for rewriting. This context ctx will be extended
when the true branch or false branch of an if term is rewrit-
ten and, in this manner, if terms define the pivot points for
further case splitting. The function rewrite-term returns
the fixpoint in the repeated application of the single-step
rewrite function rewrite-step.

The function rewrite-step takes a term and a context and
splits into different cases. If the current context is inconsis-
tent or the term is a quoted constant, then the input term is
simply returned. Otherwise, if the input term is equated in

The ACL2 simplifier does not extensively utilize single-
threaded objects or arrays, and generally uses constructive
lists for most of the operations it performs. The simplifier
does utilize Common Lisp symbol property lists to provide
fast lookup of properties attached to functions.



(defun variablep (x) (not (comsp x)))
(defun constantp (x) (and (consp x) (eq (first x) ’quote)))
(defun equationp (x) (and (consp x) (eq (first x) ’equal)))

(defun true (x) (and (constantp x) (second x)))
(defun false (x) (and (constantp x) (not (second x))))
(defun not! (x) (list ’equal x ’’nil))

(defun get= (x a)
(cond ((endp a) nil)
((equal x (second (first a))) (first a))
(t (get= x (rest a)))))
(defun add= (trm ctx) (cons trm ctx))
(defun assume= (trm ctx)

(cond ((false trm) ’inconsistent)
((equationp trm) (add= trm ctx))
(t ctx)))

(mutual-recursion
(defun apply-rule (trm rl ctx)
(let ((bnd (unify (rule-lhs rl) trm)))
(if (and (unify-was-success bnd)
(true (rewrite-term (subst (rule-hyps rl) bnd) ctx)))
(subst (rule-rhs rl) bnd)
trm)))

(defun try-rules (trm rls ctx)
(if (endp rls) trm
(let ((trm+ (apply-rule trm (first rls) ctx)))
(if (equal trm+ trm) (try-rules trm (rest rls) ctx) trm+))))

(defun rewrite-if (args ctx)
(let ((tst (rewrite-term (first args) ctx)))
(list tst
(rewrite-term (second args) (assume= tst ctx))
(rewrite-term (third args) (assume= (not! tst) ctx)))))

(defun rewrite-list (lst ctx)
(if (endp 1st) () (cons (rewrite-term (first 1st) ctx)
(rewrite-list (rest 1lst) ctx))))

(defun rewrite-args (args fn ctx)
(cond ((eq fn ’hide) args)
((eq fn ’if)  (rewrite-if args ctx))
(t (rewrite-list args ctx))))

(defun rewrite-step (trm ctx)

(cond

((or (inconsistent ctx) (constantp trm)) trm)

((get= trm ctx)

(rewrite-term (third (get= trm ctx)) ctx))
((variablep trm) trm)
(t (try-rules (cons (first trm)
(rewrite-args (rest trm) (first trm) ctx))

(get-rules (first trm)) ctx))))

(defun rewrite-term (trm ctx)
(let ((trm+ (rewrite-step trm ctx)))
(if (equal trm+ trm) trm (rewrite-term trm+ ctx))))
)

(defun simple-rewrite (trm) (rewrite-term trm ()))

Figure 1: Simple Inside-Out Ordered Term Rewriter

the current context, then the result of rewriting the term it
is matched with in the current context is returned. Other-
wise, if the input term is a variable symbol, then it is simply
returned. If none of these cases apply, we rewrite the term
by first rewriting the arguments of the term and then at-
tempting to apply rewrite rules. Rewriting the arguments
of the term consists simply of rewriting the arguments in
sequence, unless the function symbol is if. In this case,
the true-branch and false-branch terms are rewritten with
appropriately extended contexts.

The function try-rules goes through each of the rewrite
rules attached to a given function symbol in order until a
rule is found that can be applied. A rule can be applied
when its left-hand-side 1hs can be equated with the input
term under a binding bnd of the variables in the 1hs and
where the hypothesis hyps of the rule rewrites to truth in
the current context after a substitution using the unifying
binding bnd. If a rule can be applied, then the right-hand
side rhs of the rule is returned after a substitution using the
unifying binding bnd.

The function simple-rewrite defines a simple, ordered, inside-
out rewriter that applies conditional rewrite rules. The
ACL2 term rewriter component of the ACL2 simplifier bears
some resemblance to this simple term rewriter in the sense
that it operates on ACL2 objects representing terms and
primarily supports ordered, inside-out, conditional rewrit-
ing. The ACL2 term rewriter also maintains a structure
named the type-alist that associates terms with informa-
tion known about the terms and this structure is updated
when rewriting the true and false branches of if terms.

This simple term rewriter also resembles the KAS procedure
we present in this paper. Indeed, KAS operates recursively
on term structures in much the same manner as this sim-
ple rewriter but with several optimizations. The optimiza-
tions in KAS operation fall into three categories: memory
management, memoization and context management, and
miscellaneous optimizations and features. We consider each
group of optimizations in turn and then describe the mecha-
nisms provided in KAS for user control and interfacing with
ACL2. It is important to point out that each optimization
was carefully considered before its addition to KAS. Indeed,
several optimizations were considered and even implemented
only to be removed after analysis demonstrated that the ben-
efit in performance did not outweigh the cost in complexity.
Optimizations can significantly complicate function defini-
tions and one of the primary objectives for KAS is to reduce
complexity to facilitate future maintenance and extensions,
clear predictable operation and control, and, eventually, a
mechanical proof of soundness.

2.1 Terms and Memory Management

The simple rewriter in Figure 1 represents terms in their
syntactic form as ACL2 objects. This representation affords
elegant functions for manipulating terms, but is inefficient
in many ways. First, this representation is not compact.
Second, this representation does not afford the direct “tag-
ging” of terms with information computed about the term.
Finally, this representation may not provide for a sufficient
amount of structure sharing among subterms. We address



these issues with this first group of optimizations focusing on
representations of terms and memory management in KAS.

Managing Representations of Terms. The use of cons
to build lists representing function calls does not afford a
compact representation of a term. In most Common Lisp
implementations, a cons consists of three words of memory.
The first word stores a header field that tags the three words
in memory as a cons structure (along with some auxiliary
information such as traversal bits used during garbage collec-
tion), while the other two words in memory define references
or pointers to the car and cdr. This description of a cons
structure is a generalization and Common Lisp compilers do
differ, but — as of this writing — all Common Lisp compilers
require at least two memory words to store the references
to the car and cdr objects. So, for example, an if func-
tion call in a term will require 4 cons structures and from
8 to 12 words of memory. Furthermore, the cons structures
defining a function call need not be allocated “near” each
other in memory, which will limit the usefulness of caching
structures in modern microarchitectures that leverage this
locality in memory. Further, it is important to make the
representation of a function call as compact as possible to
fit more function calls into a single cache line.

Our direct approach is to represent every function call in a
term as consecutive words of memory forming a node. This
is achieved in ACL2 by creating an array of fixnums node-
arr in a stobj and defining a node as a natural number index
into this array (similar to a pointer to a struct in C). The
fields of a node x are then defined by the fixnums at index x,
(+ x 1), (+ x 2),... (+ x k -1). The first fixnum at index
x identifies the function operator and thus the arity of the
node. The size of the node k then includes fixnums needed to
store the header (some fixed number of indexes depending on
the information stored with the node) and a fixnum storing
a node for each argument in the function call. The next node
stored in the array will start at the index (+ x k) and so
on. This representation reduces by half (at least, and usually
more) the amount of storage required in comparison to cons
structures in current Common Lisp implementations, and
the indexes for the arguments of a node are close in memory
to the node itself. Every node x that is constructed defines
a term in the ACL2 logic (node-to-term x).

While this node representation is more compact, there are
a few downsides that need to be addressed. First, the rep-
resentation is not as elegant as cons structures. This is
simply true, but we can alleviate this downside with the use
of macros to hide the details of the underlying structure.
Second, the stobj containing the array field that stores the
nodes will need to be passed to all functions that access or
update nodes. As we will see later, the use of a stobj was al-
ready required to afford fast access and destructive updates
to arrays within the applicative semantics of the ACL2 pro-
gramming language, and macros can again alleviate much
of the syntactic burden of using stobjs. The final potential
downside to the representation of terms as nodes in KAS is
that KAS will need to perform its own garbage collection of
memory. In the case of KAS, an efficient and elegant scheme
for managing the allocation of nodes is utilized, which will
be more efficient than a generic Common Lisp garbage col-
lection process operating on terms stored as cons structures.

Thus, this downside will actually prove to be a positive of
the KAS approach since the Lisp garbage collector will have
far fewer Lisp objects to manage for collection.

Unique Construction of Nodes. During rewriting, the
same term may be created in several different rewrites and as
a subterm in several different terms. In most cases, these dif-
ferent instances of the same term will not be the same object
in memory, so there is opportunity for structure sharing by
creating a node only once — any time a new term is needed,
it can be looked up in a hashtable that associates a func-
tion symbol and its arguments with a uniquely constructed
node representing this term. This is particularly useful in
contexts in which structure sharing has demonstrated ex-
ponential improvements in space requirements [2, 1]. The
hashtable requires (on average) an additional two words of
memory per node, and some execution time cost is incurred
during the creation of new nodes to determine if the new
node already exists. An additional benefit of unique node
construction is that testing whether two nodes are equiva-
lent reduces to the equality of the two fixnum indexes (of-
ten compiled into a single instruction testing machine word
equality). Further, unique node construction will afford the
direct lookup of any memoized information stored with the
node rather than looking into a separate structure to see if
any memoized information has been stored for an equivalent
node. Even with these benefits of unique construction, the
costs of unique node construction warrant some considera-
tion. In KAS, only a subset of the nodes that are created
will be uniquely constructed. This subset of nodes will be
termed the promoted nodes, and the determination of which
nodes are promoted has effects on several aspects of KAS
operation.

Node Allocation and Promotion. One downside of hav-
ing KAS manage the memory allocation for nodes is the
need to reclaim unused nodes. One strategy would be to
simply never reclaim nodes. This simple strategy might be
reasonable if the need to reclaim nodes were sufficiently mit-
igated by the structure sharing achieved with unique node
construction. In practice, this strategy is ineffective due
to the large number of “junk” nodes that are created during
rewriting in KAS operation. This is especially true given the
philosophy of KAS to use rewriting as the basis for simplifi-
cation with rewrite rules performing node transformations as
the steps of some algorithmic procedure. As an example of
“junk” node creation, non-recursive function definitions will
introduce unconditional rewrite rules that will always fire
unless the user explicitly disables the rules. In many cases,
these rules will be enabled and, thus, any node whose out-
ermost function symbol is a non-recursive function symbol
will be immediately rewritten to the node resulting from the
expansion of the non-recursive function. Another common
source of “junk” nodes arise from normalizations of nodes
that occur through a sequence of rewrites. For example, a
common process for normalizing if structures is by so-called
“if-lifting”, which transforms any term into a term where the
only if subterms are in the true and false branches of other
if terms. In KAS, if-lifting would be implemented using
rewrite rules such as the following:

(equal (if (if x y z) a b) (if x (if y a b) (if z a b))).
If-lifting rules will create numerous intermediate nodes that
will immediately be rewritten into a different node and which



will likely never be created in any other rule application.
Due to these properties, it would be beneficial to reclaim
these intermediate nodes immediately and efficiently after
their construction.

The mechanism we use for managing node allocation and
reclamation is termed promotion. All nodes are initially al-
located as “junk” or transient nodes. Certain transient nodes
may then be promoted while the others will be reclaimed.
A node is promoted if (a) the node represents a quoted con-
stant or a variable symbol, (b) the node cannot be rewrit-
ten (i.e. it is in normal-form) in the current context, or (c)
the node’s arguments are promoted and an equivalent tran-
sient node was previously constructed. An invariant on all
promoted nodes is that their arguments must also be pro-
moted. Promoted nodes are constructed uniquely and are
never reclaimed. Further, promoted nodes have additional
fields stored with them that memoize certain computations.
Transient nodes require minimal storage per node and are
not stored uniquely. Reclamation of transient nodes is ef-
ficient and simple: for certain functions that are known to
return promoted nodes (i.e. the function in KAS which cor-
relates to rewrite-term in Figure 1), the current transient
node allocation index is saved on function entry and then
restored immediately before returning from the function. In
this manner, any transient nodes that were allocated during
the execution of the function are immediately reclaimed on
the return from the function. For most common applications
of KAS, the vast majority of the nodes that are constructed
will be transient and this node promotion strategy will keep
the memory requirements of KAS tractable even for larger
problems. Further, in situations in which the key properties
of promoted nodes (unique construction, memoization, etc.)
were likely to benefit execution time are situations in which
we strongly expect the nodes to satisfy one of the conditions
(a), (b), or eventually (c) necessary for promotion.

2.2 Memoization and Context Management
To avoid repeating numerous previous (possibly long) se-
quences of rewrites, it is important to store results of rewrite
sequences efficiently and recall these results when needed. It
is also important to determine efficiently whether a node is
equated with another node in the current context (as in the
call of get= in the simple rewriter). These two needs can be
addressed with the same mechanism we call a representative
or repnode. A repnode is an index stored in the header of
a promoted node. It is an invariant that at all times dur-
ing execution, a node is equivalent to its repnode assuming
the current context. We describe how repnodes are used to
store contextual information and memoize results of previ-
ous rewrites.

Storing and Accessing Contexts. When the simple
rewriter in Figure 1 rewrites the true and false branches
of an if term, it extends the current context ctx using the
function assume=, which takes the current context ctx and
extends it by assuming the current rewritten test argument
tst of an if operator to either be true or false. In the func-
tion rewrite-step, the current context is consulted using
the get= function to determine if the term is known to be
equal to a different term; if so, this term is returned. The
call of get= requires a linear search through the ctx to de-
termine if there is a match to the current term. In KAS, the

extension of the current context performed by the function
(add= x y c) would consist simply of setting the repnode
for the node x to point to the node for y. When the KAS
rewriter reaches a node that has a repnode, then the rewrite
of the repnode is returned.

Memoizing Rewrites in Contexts. During the simpli-
fication of a theorem, a large number of rewrites are per-
formed and many of the rewrites are repetitions of previous
rewrites. It is thus useful to store and retrieve records or
memos of previous rewrites efficiently. In KAS, this memo-
ization is stored in the repnode field of a given node, which
provides fast constant-time lookup for memo results.

The repnode is stored in the header of a promoted node. An
invariant of KAS execution is that the repnode r of a pro-
moted node x is equivalent under the current context. The
context is a stack of assumed equalities under which terms
are rewritten. Similar to the simple rewriter in Figure 1,
when the true or false branch of an if term is rewritten,
then the context is extended with an equality from assuming
the test of the if term is either true or false. A straightfor-
ward approach would be to store any equalities derived from
rewriting in the repnode fields of promoted nodes and then
revert these repnode equations when an equality is popped
from the current context. The problem with this naive ap-
proach is that many equalities derived from rewrites are ei-
ther independent of the context or only dependent on part
of the current context.

In KAS operation, all computed repnode equalities are tagged
with the subset of the assumptions from the current context
that are sufficient for the computed equality to be valid. For
example, when an if-node test is assumed true or false, then
it is tagged with the singleton set with the current depth of
the context stack. These subsets of the context are stored as
bitvectors in the header of a node (along with the repnode)
where each bit position in the bitvector corresponds to a po-
sition in the current context stack. Further, these context
subset bitvectors are returned with every function in the
main mutual recursive function clique in KAS which corre-
sponds to the functions in Figure 1. Each of these rewrite
functions will take a node and return the node resulting from
rewriting and a bitvector encoding the assumptions from the
current context which were used in the rewriting. When a
repnode is stored for a promoted node, the bitvector justify-
ing the equation is also stored in the header of the promoted
node. The bitvector for the composition of rewrite steps is
the union (computed as logior) of the bitvectors for each
step. When rewriting an if node, the resulting bitvector in-
cludes the union of the bitvectors for the rewrite of the true
and false branches but drops the bit position in the context
used for the assumption of the test as true or false. When the
current context is popped, KAS will only revert the repnode
equalities, which are dependent on the assumption that is
popped off the context.

A simple example of rewrites that are independent of con-
text are computed facts about the types of terms. Many
conditional ACL2 rewrite rules will include tests of whether
a certain term is of a certain type (e.g. true-listp) in their
hypothesis; in many cases, these tests are either true or
false properties of the outermost function in the term. In



ACL2 simplification, a type-alist is used to store typing
information computed about terms in the current clauses
with assistance provided by the user in the form of type-
prescription and forward-chaining rules. In KAS, there
is no analogue to the type-alist; instead, it is expected that
terms representing type information (e.g. (type-alist (foo
x))) will rewrite to T independent of the current context.
In KAS, this rewritten equality will be tagged as indepen-
dent of the assumptions in the context, which will cause the
equality to persist through the operation of KAS unaffected
by updates to the context. These operations on repnodes
and context bitvectors are implemented efficiently in KAS,
which is critical since these repnode equations are the pri-
mary mechanism in KAS for memoizing previous computa-
tions.

2.3 Additional Optimizations in KAS

We briefly highlight some of the additional optimizations
and efficiency concerns in the implementation of KAS. There
are several optimizations in KAS we do not detail in this
paper, but the discussion here will provide an idea of the
types of efficiency issues that have been addressed.

Avoiding Overhead of Lisp Execution. Execution of
functions written in applicative Common Lisp incurs cer-
tain costs due to the nature of applicative Lisp evaluation.
Compared to programs written in C, programs in applica-
tive Lisp require more space for less compact structures such
as lists instead of arrays and boxed integers instead of ma-
chine words. Programs in applicative Lisp also require more
execution time due to inefficient data structures, overhead
for function calls, and overhead for garbage collection. Each
of these costs is minimized in the definition of KAS. Sto-
bjs with arrays are used to avoid the costs associated with
allocating, accessing, and managing lists. Careful type dec-
larations and limits on integer variables avoid the use of
boxed integers and allow for efficient operations directly on
machine words encoding integers, bitvectors, etc. Function
calls are removed through the use of macros to inline smaller
non-recursive functions and the writing of recursive func-
tions to be tail-recursive when feasible. The KAS main loop
only uses arrays, integers, and booleans (i.e. no consing),
which not only ensures the use of efficient data structures
but avoids the creation of garbage that would otherwise re-
quire collection.

Specialized Data Structures. Several specialized data
structures are utilized in the implementation of KAS. These
structures are optimized to match the frequency of certain
necessary operations performed on the structures. As an
example, we consider the implementation of the undo-stack,
a key component of the implementation of contextual mem-
oization in KAS. In KAS, a single large stobj 1s$ called
the logic state is passed around all of the functions defin-
ing KAS. The logic state includes the storage of the nodes
along with all of the data structures needed to implement
KAS operation including the undo-stack. When the context
is extended in order to rewrite the true and false branches
of an if node, the 1s$ stobj is destructively updated to
include the assumption of the equality defined by the test
node. Further, whenever a rewrite is memoized, the repnode
of a node is destructively updated. After rewriting the true
or false branch of an if node, any repnode updates associ-

ated with the assumption of this test as true or false must
be rescinded, and this is where the undo-stack is utilized.
The undo-stack is structured as a separate stack of entries
for each integral position in the current context. When a
repnode is updated, the context dependence set is examined
to determine which stack in the undo-stack is used to store
the entry marking the repnode update. When the context is
reverted, the entries in the undo-stack corresponding to the
assumption of the test node will be undone to restore the
logic state to a consistent state before the assumption of the
context. The design of the undo-stack affords constant-time
updating and reverting of repnode updates in KAS while
maintaining a logic state consistent with the current con-
text.

Avoiding Repeated Computation. We presented the
use of the repnodes in KAS as a mechanism to memoize pre-
vious rewrite results. The KAS implementation supports ad-
ditional mechanisms to avoid repeating computations. As an
example, after rewriting the arguments for a node, if the ar-
guments have not changed and the node has been rewritten
to normal form previously, and the only rewrite rules that
might be applied are unconditional, then the original node
is returned immediately since no rewrite rules will match
the node. This mechanism does not effect the relative com-
pleteness of KAS since the rewrite rules which would have
been attempted would not have matched. The user can also
cause this optimization to be enabled for functions with con-
ditional rewrite rules, but this may effect completeness since
the procedure may not attempt a rewrite that would have
succeeded in the current context. Due to this optimization,
it is beneficial for users to try to avoid conditional rewrite
rules for operators that will occur frequently in proofs.

2.4 User Control and Interfacing with KAS

The user of ACL2 generally proves theorems of the form

(implies a (equal 3 <)) and these theorems are then used
as conditional rewrite rules in subsequent proof efforts. ACL2
provides extensions of the basic treatment of a theorem as

a conditional rewrite rule through the use of various forms

of tagging. For instance, the user might tag the theorem

with a different rule class and cause the theorem to be used

for type prescription or forward chaining. The ACL2 user

can also use the special operators syntaxp and bind-free to

attach a user-defined function call to a rewrite rule, which

can provide an additional test on whether the rewrite rule

should fire beyond the unification of the 1hs and relieving

of the hyps. The ACL2 user can also control the current

set of enabled rewrite rules used to prove a theorem (or a

specific subgoal) by enabling and disabling certain rewrite

rules. The control afforded an ACL2 user is varied and pow-

erful, but it is also complex and somewhat incomplete (e.g.

the user cannot enable or disable a rewrite rule as a side

effect of applying another rewrite rule).

Similar to ACL2, KAS uses previously proven theorems as
conditional rewrite rules, but KAS only supports conditional
rewrite rules. The other rule classes supported by ACL2
(e.g. type prescription) have no counterpart in KAS. KAS
does not directly support the mechanisms provided in ACL2
to control the current enabled rewrite rules or the extended



operation side effect

bind a free variable in a rewrite to a node
modify the current filters attached to a rule
enable or disable a rewrite rule

modify counter for number of rule applications
set-node-step set node allocation incremental step
set-node-limit set node allocation limit (junk and promoted)
change-rule-order change the order of rewrite rules
set-rule-traced enable or disable trace output of a rule
set-user-mark set or clear a boolean mark on a node

set-var-bound
set-rule-sieves
set-rule-enabled
set-rule-ctr

Figure 2: Permitted Side Effects from Filter at-
tached to Rewrite Rule

application of certain rewrite rules. KAS does support the
special hide operator, which effectively disables the rewriter
on a given term.

Instead of the variety of control mechanisms that ACL2 sup-
ports, KAS only supports fine-grained user control through
the tagging of certain conditional rewrite rules with filters in-
troduced with the sieve operator. A sieve can be seen as an
extension of the syntaxp and bind-free special operators in
ACL2. In ACL2, the syntaxp operator allows the user to at-
tach the non-NIL evaluation of a user-defined predicate as an
additional requirement on the application of a rewrite rule.
The sieve operator in KAS also allows the user to attach
a user-defined predicate (or filter) to a rewrite rule but ex-
tends this syntaxp principle in several facets. First, a filter
function can efficiently query the current logical state stobj
to determine which nodes are equated, how many times a
rule has fired, etc. Second, a filter function can use a stobj
to implement efficient data structures (e.g. hash-tables) and
to store information for subsequent calls of any filter func-
tion. Further, filter functions can return a list of commands
that can be used to modify the logical state stobj — but the
modifications of the logical state are restricted to ensure the
logical soundness of KAS. The possible modifications of the
logical state are restricted to the operations listed in Fig-
ure 2. We will demonstrate the use of a key filter function
for case splitting in Section 4.

3. EXAMPLE 1: BDDS

The sole propositional logic operator in KAS is if and, gen-
erally, the most common operator arising in nodes created
and manipulated during KAS operation is the if opera-
tor. The proper management of if nodes through rewrite
rules and sieves is essential for the effective usage of KAS. A
straightforward approach is to use if-lifting where a term is
rewritten to a form where all if tests have no if subterms
and no functions other than if have an if subterm. In this
form, all tests are rewritten to normal form and all branches
of the if are rewritten to normal form with complete context
information.

If-lifting is straightforward and may be sufficient, but is often
far too inefficient for use in theorems with a large number of
cases. In some situations, the problem with simple if-lifting
is that it does not normalize the structure of the if terms
sufficiently to afford the potential savings achieved in struc-
ture sharing and memoization. For propositional terms with
more regular structure, the potential benefit from structure
sharing can be significant, and often the best option in these

(defun bv (x) (if x t nil))

(defun bits-equiv (x y)

(if (endp x) (endp y)
(and (comsp y) (iff (car x) (car y))
(bits-equiv (cdr x) (cdr y)))))

(defthm bits-equiv-nil-reduce
(equal (bits-equiv () () t))

(defthm bits-equiv-cons-reduce
(equal (bits-equiv (cons a x) (cons b y))
(and (iff a b) (bits-equiv x y))))

(defthm bits-equiv-symmetric-5
(let ((x (list (bv x4) (bv x3) (bv x2) (bv x1) (bv x0)))
(y (list (bv y4) (bv y3) (bv y2) (bv y1) (bv y0))))
(equal (bits-equiv x y) (bits-equiv y x))))

Figure 3: BDD Example Application

(defthm bdd-if-lift-test
(equal (if (if x y 2z) m n) (if x (if y m n) (if z m n))))

(defthm bdd-bv-then-split
(equal (if x (bv y) z) (if x (if (bv y) t nil) z)))

(defthm bdd-bv-else-split
(equal (if x y (bv 2z)) (if x y (if (bv z) t nil))))

(defthm bdd-reorder-then
(implies (sieve (bdd-order a x))
(equal (if x (if a b c) y)
(if a (Gf x b y) (Af x ¢ y)))))

(defthm bdd-reorder-else
(implies (and (sieve (bdd-order a x)) (sieve (bdd-order a y)))
(equal (if x y (if a b ¢))
(if a (Gf x y b) (if x y ¢)))))

Figure 4: Binary Decision Diagram Rewrite Rules

cases is the use of so-called Reduced Ordered Binary Deci-
sion Diagrams[2] or BDDs. BDDs are a normal-form rep-
resentation of propositional formulae consisting of if nodes
in which the sequence of propositional variables that are
reached along any path from the top node to a terminal
node is consistent with a total order on all propositional
variables. With the appropriate ordering on variables and
utilizing structure sharing, BDDs afford compact represen-
tations of many common operations on bitvectors encoun-
tered in hardware description and low-level software. For
example, consider the theorem bits-equiv-symmetric-5 in
Figure 3. With the variable order x4,x3,...,y4,y3,..., the
BDD generated from the term (bits-equiv x y) will af-
ford no structure sharing and lead to a BDD roughly of size
2%, With the variable order x4,y4,...,x0,y0, the generated
BDD does support structure sharing and is roughly of size
2 % 5.

The rewrite rules in Figure 4 will normalize an if term to
satisfy the BDD variable ordering property. The particular
order is defined by the filter function bdd-order and a de-
fault ordering scheme is provided that can be modified by
the user to target the term structure of a specific theorem.
The rewrite rules from Figure 4 are attempted in reverse
order, which allows us to remove the second filter of (bdd-
order a y) in the theorem bdd-reorder-then.



4. EXAMPLE 2: CASE SPLITTING

For theorems requiring extensive case analysis, the unre-
stricted use of if-lifting, BDD, or other normalizing rules
would lead to excessive and inefficient rewriting of if nodes.
Unless the target theorem has certain structure that the user
can leverage, the blind normalization of if structures will
not scale effectively to larger and more complex theorems.
Most theorems that arise will require efficient case analysis
without normalizing the propositional structure of the terms
created. This is one of the primary benefits of propositional
satisfiability checkers implementing variants of the Davis-
Putnam procedure[15, 6, 12]. These checkers operate on
unnormalized representations of propositional formulae by
iteratively splitting on propositional variables and reducing
the resulting formula under the assumption of the proposi-
tional variable as either true or false. Satisfiability checkers
have become the most robust and efficient means to solve
propositional theorems and problems that can be encoded
into propositional theorems|[3].

This approach has the significant additional benefit of po-
tentially returning sooner on failed proof attempts. This
early failure property is far more important in the con-
text of ACL2 theorems for two reasons. First, most of the
ACL2 theorems that require significant case analysis will
also require significant user interaction; any delay in report-
ing failed proofs will be amplified considerably in the time
the user requires to complete the proof. Second, as the def-
initions and lemmas for a complex theorem are adjusted to
fix previous failures, the speed of simplification will often
increase considerably. The reason for this speedup is that
many of the cases which that previously led to failures will
now resolve to truths much sooner in the rewriting process.
This avoids unnecessary and costly expansion of unnecessary
nodes and case analysis due to if subterms.

We support an efficient case-splitting heuristic through the
use of rewrite rules tagged with filters. The primary rewrite
rules supporting case splitting are provided in Figure 5. The
rewrite rules operate as follows. The user triggers case split-
ting by wrapping the target term a with the prv opera-
tor to create (prv «). When KAS attempts to rewrite the
term (prv a), it will first rewrite a to a normal form and
will then attempt (due to reverse chronological rule order-
ing) the use the rule prv-case-split. The prv-case-split
rule calls the filter function case-split, which determines
if there are any candidate nodes to choose for case splitting.
If such a candidate node is found, then the free variable C
in the rewrite rules is bound to this candidate node and the
rewrite rule is applied. Otherwise, the rewrite is not ap-
plied and (prv «) rewrites to a by the application of the
prv-evaporates rule. If prv-case-split was applied, then
we have a node of the form (prv2 (if 8 (prv3 «) (hide
@))). Due to inside-out rewriting, (prv3 «) is rewritten
first under the assumption of (. If assuming 3, a reduces to
T, then (prv3 «) will reduce to T via the rule prv3-drop-
if-T. In this case, the rule prv2-then-pass-shift will ap-
ply to the prv2 node and replace the hide around the else
branch with a prv. Otherwise, with the assumption of 3,
a did not reduce to T, and the rule prv2-if-gen-prv is ap-
plied to replace the prv3 on the then branch with a prv
to enable further case-splitting in the then branch. If nei-
ther prv2-if-gen-prv nor prv2-then-pass-shift can be

(defun prv (x) x) (defun prv2 (x) x) (defun prv3 (x) x)
(defthm prv3-drop-if-t (equal (prv3 t) t))

(defthm prv2-evaporates
(equal (prv2 (if x y z)) (if x y 2)))

(defthm prv2-then-pass-shift
(equal (prv2 (if x t (hide z))) (if x t (prv z)))

(defthm prv2-if-gen-prv
(equal (prv2 (if x (prv3 y) z)) (prv2 (if x (prv y) z))))

(defthm prv-evaporates (equal (prv x) x))

(defthm prv-case-split
(implies (sieve (case-split C))
(equal (prv x) (prv2 (if C (prv3 x) (hide x))))))

(in-theory (disable prv prv2 prv3))
Figure 5: Case Splitter Rewrite Rules

applied, then the prv2-evaporates is applied to remove the
prv2 operator. Through the application of these rules, a
term is rewritten by case-splitting into an if tree whose
leaves are either T, an application of hide, or the current
node, which is being targeted through prv.

It remains for us to describe the case-split filter function.
We first note that the user may modify this (or any) filter
function without affecting the soundness of the subsequent
results from KAS. In the current implementation, the case-
split filter function attempts to select the if test that will
most quickly reduce the resulting terms. The case-split
filter traverses the node (prv «) and selects the if test
(equal [hs rhs) such that lhs has the greatest number of
weighted occurrences in (prv «) in comparison to the lhs
of the other if tests — weighted by proximity to the root
node (prv a). The code defining this search uses the user
stobj provided to all filter functions to store a hash-table
used to record and lookup weighted counts from the traver-
sal of the (prv a) node. This heuristic is a first cut and
subsequent efforts will certainly lead to more efficient and
robust heuristics, but this simple heuristic has proven suf-
ficient for the current applications of KAS, and specifically
the pipeline application in Section 4.1.

The case-splitting rules work in tandem with a separate set
of rules that extract the failing case of a failed proof attempt.
This failing case — the conjunction of the tests encountered
along a path to an irreducible non-T node — is reported to the
user. These rules are triggered by the gfl function, which
tags the node as a failure for KAS (using the fail operator)
and then proceeds to dive through the if term resulting
from prv and prints the if-tests and leaf node along the first
failing path that it finds using the filter function report-
to-cw, which simply prints a term to the comment-window
and returns T. These rules are provided in Figure 6. The
defthmk macro will take a term « to be proven and will call
the KAS rewriter on (gfl (prv o)).

4.1 Case Splitting Application: Pipeline

We use a simple pipeline example derived and modified from
the pipeline in [4]. The goal of this example is to demon-
strate the capacity and limitations of KAS rewriting. The



(defthm rfl-leaf-case
(implies (sieve (report-to-cw leaf))
(equal (rfl leaf x) x)))

(defthm rfl-if-tbr-case
(implies (sieve (report-to-cw tst))
(equal (rfl (if tst tbr fbr) x)
(rfl tbr x))))

(defthm rfl-if-fbr-case
(implies (and (sieve (non-nilp tbr))
(sieve (report-to-cw (mot tst))))
(equal (rfl (if tst tbr fbr) x)
(rfl fbr x))))

(defthm gfl-creates-rfl (equal (gfl x) (fail (rfl x x))))
(defthm gfl-reduce-t (equal (gfl t) t))

(in-theory (disable gfl rfl))

Figure 6: Failure Reporting Rewrite Rules

pipeline example is simple enough to comprehend quickly
while still being representative of the case analysis often
required in analyzing real systems. Additionally, the case
analysis for the pipeline example explodes quickly as you
add more steps of the system, which provides a good relative
comparison between ACL2 simplification and KAS simplifi-
cation. The pipeline example is included in the supporting
materials.

The simple pipeline consists of the five stages: instruction
fetch, decode, execute, write to memory, and write to reg-
ister file. The goal is to demonstrate a stuttering refine-
ment[13] between the pipeline and a single-step instruction
set architecture or isa. The state of the isa is composed of
an instruction memory, program counter, register file, and
data memory. The pipeline updates the program counter in
the fetch phase, but updates the data memory and register
file in later stages. Further, the pipeline microarchitecture
ma may stall an instruction if the register destination for a
preceeding instruction matches one of the register sources
for a succeeding instruction, which can lead to a bubble in
the pipeline. In principle, we would like to verify that a step
of ma matches a step in isa but, because of these bubbles,
we have to allow for stuttering. Thus, the goal becomes
to prove the function ma-matches-isa in Figure 7 where,
for committed states, the ma step will match the isa step,
and otherwise will stutter with a strictly decreasing natural-
valued rank function.

The rep function maps the ma state to a corresponding isa
state and is defined essentially as producing an isa state
with program counter, data memory, and register file cap-
tures just before they are updated in the ma state. Thus,
the program counter is stored for 4 ma steps and the data
memory is stored for 1 ma step before being mapped to an
isa state through rep.

The standard stuttering refinement proof would normally
involve the definition, assumption, and proof of an invariant
on the ma states. Following an approach similar to [4], we
will instead prove that the refinement holds for a certain
number of steps from a “flushed” state — the £1lush function
merely clears out the pipe stage valid bits in a given ma state.
The theorem ma-proof is a proof of the refinement in four ma

(defun ma-matches-isa (x)
(if (commit x)
(equal (rep (ma x)) (isa (rep x)))
(and (equal (rep (ma x)) (rep x))
(< (rank (ma x)) (rank x)))))

(defun maX4 (m) (ma (ma (ma (ma (flush m))))))
(defun maX5 (m) (ma (maX4 m)))
(defun maX6 (m) (ma (maX5 m)))
(defun maX7 (m) (ma (maX6 m)))
(defun maX8 (m) (ma (maX7 m)))

(defthmk maX4-proof (ma-matches-isa (maX4 m)))
(defthmk maX5-proof (ma-matches-isa (maX5 m)))
(defthmk maX6-proof (ma-matches-isa (maX6 m)))
(defthmk maX7-proof (ma-matches-isa (maX7 m)))
(defthmk maX8-proof (ma-matches-isa (maX8 m)))

(defthmk ma-proof (ma-matches-isa (ma (ma (ma (ma x))))))

Figure 7: Stuttering Refinement

steps from an arbitrary state with no need for an invariant.
Still, our goal in this example is to keep the definition of
what we are proving simple and also provide some metric
for capacity of KAS rewriting in comparison to ACL2 and
other tools that could be applied to this type of problem.

For ACL2 simplification, the maX4-proof is dispatched im-
mediately, the maX5-proof takes several minutes, but maX6-
proof blows up rapidly and can take several hours to prove
(the author did not let the proof finish). For KAS, each of
the proofs for maX4-proof through maX7-proof are take no
more thant a few seconds to prove. The proof for maX8 jumps
up to 2-3 minutes and maX9 takes hours. Further, the statis-
tics provided by KAS demonstrate how rapidly the cases
explode with each successive ma step. The maX7 proof re-
quires about 15 thousand promoted nodes and a few million
transient nodes, while the maX8 proof requires about 700
thousand promoted nodes and more than a hundred mil-
lion transient nodes — please note that this is the number
of transient nodes created throughout the entire proof; the
total number of transient nodes created at any given time
during the proof is only in the tens of thousands.

Thus, for problems that require significant case analysis,
KAS can be far more efficient than ACL2 simplification.
Additionally, for problems that can be encoded in decidable
theories, KAS simplification can take more time than effi-
ciently implemented decision procedures. It is worth men-
tioning that we purposely made no attempt in this example
to try to control the terms that were being expanded in suc-
cessive ma steps. Indeed, with some additional theorems, you
could control how ma steps were expanded and reduce the
case explosion considerably, but this would not be as effec-
tive in demonstrating KAS operation in comparison to ACL2
simplification and efficient decision procedures. The inter-
ested reader is encouraged to experiment with this simple
pipeline example to better understand how KAS operates —
it is particularly illustrative to change the definition of ma to
create a failed proof and observe the resulting output from
KAS.



5.  CONCLUSIONS AND CURRENT WORK

We have presented the architecture and definition of a new
simplifier based on optimized, ordered, inside-out, condi-
tional rewriting with extensions for user-defined heuristics
and decision procedures. This simplifier is termed KAS and
its implementation affords efficient construction and manip-
ulation of a large number of nodes and rewrite rule applica-
tions. KAS provides efficient memory management, unique
construction of promoted nodes, and contextual memoiza-
tion. The KAS simplifier is written in less than four thou-
sand lines of ACL2 source code and this includes code for in-
terfacing with ACL2 and various supporting definitions and
macros. Further, the definition of KAS is structured to sup-
port a subsequent formal mechanical proof of its soundness
in the ACL2 theorem prover.

We are currently attempting to integrate our work on au-
tomating invariant discovery[9] into KAS as a set of rewrite
rules and filter functions. The straightforward integration of
these efforts is complicated by the use of compiled functions
in the invariant discovery process. In addition, the previous
work used explicit state search; a more symbolic approach
may be feasible using KAS. We are also working on a proof
of soundness of KAS in ACL2. The basic outline of the
soundness proof is to first prove a “model” of KAS is sound
under the assumption that all rewrite rules currently in the
world are valid, and then prove that KAS is equivalent to
this “model”. Defining and proving sufficient invariants of
the “model” and KAS itself will be significant components
in the work. In addition, we are always looking at ways to
improve the efficiency of KAS operation and provide more
examples of its application. Of course, any potential op-
timization or change in code must be weighed against the
costs of additional complexity and potential effects on the
predictability, soundness, or completeness of KAS operation.
Throughout the development of KAS, many optimizations
and features have been considered and even implemented,
only to be removed after evaluation demonstrated that the
benefits were not sufficient.
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