
Symbolic Simulation in ACL2

Robert S. Boyer
ForrestHunt, Inc.

Austin, TX
boyer@centtech.com

Warren A. Hunt, Jr.
Centaur Technology and UT Austin

Austin, TX
hunt@centtech.com
hunt@cs.utexas.edu

ABSTRACT
We have created an experimental extension to ACL2 that
provides a means to symbolically evaluate ACL2 expres-
sions. This modified implementation can be used to compute
the ’general’ application of an ACL2 function to generalized
data. In particular, we use uBDDs to represent functions
from Boolean variables to finite sets of ACL2 objects, and
for guard-checked ACL2 functions we can automatically cre-
ate corresponding generalized functions to operate on such
generalized data.

The DEFTHM hint mechanism has been extended to permit
the direct application of symbolic simulation as a part of
a proof attempt. This extension made it possible to di-
rectly verify the Legato Challenge using only symbolic sim-
ulation; this challenge involves proving the correctness of
a 6502 assembly-language program that performs an 8-bit
by 8-bit multiplication through repeated addition. We need
only provide the initial symbolic data, i.e., two 8-bit, sym-
bolic numbers, and we symbolically simulate the assembly-
language program by symbolically simulating an ISA-level
6502-program interpreter that produces a symbolic result
that we compare to its specification.

General Terms
ACL2, symbolic simulation, uBDDs

1. INTRODUCTION
Using the ACL2 theorem prover to prove the correctness of
deeply-embedded system representations often requires sig-
nificant amounts of symbolic simulation. Currently, to get
ACL2 to perform symbolic simulation, the ACL2 rewriter is
used to unroll functions and to simplify the results. Staged
simplification has been used to help orchestrate this process,
but the capacity and speed of such symbolic simulations is
limited both by the size of the expressions being simulated
and by the rewrite rules enabled to effect the symbolic sim-
ulation and simplification.

We have developed an experimental extension to ACL2 that
provides a means to symbolically evaluate ACL2 symbolic
expressions. We perform symbolic simulation by represent-
ing generalized ACL2 objects, and then manipulate such
data with generalized versions of ACL2 functions. A user
may access this capability through an extended version of
the ACL2 DEFTHM hint mechanism or by escaping the ACL2
loop and evaluating the generalized version of the function.
For any guard-verified ACL2 function definition, a user may
request that the corresponding generalized version of the
function be created. For every ACL2 primitive, we have im-
plemented such generalized functions. A user may execute
any generalized function on suitable generalized or explicit
input objects at the Common Lisp prompt level.

We have used this extension for both hardware and soft-
ware verification. We have verified the Legato Challenge;
this verification demonstrated the correctness of an assem-
bly program that implements multiplication. Although not
discussed here, we have verified the floating-point addition
and subtraction instructions of Centaur’s floating-point me-
dia unit using symbolic simulation of our integer-based spec-
ification [2]. We begin by describing our internal data rep-
resentation format for generalized data. Next, we define a
evaluator of IF expressions with Boolean variables, and we
show how symbolic simulation of this evaluator implements
a tautology checker. Finally, we use symbolic simulation to
solve the Legato Challenge.

2. SYMBOLIC SIMULATION
The symbolic simulation capability we have developed per-
mits the application of an ACL2 function to generalized
data; this involves defining a generalized version of each
ACL2 function that operates on generalized data and a means
to represent finite sets of ACL2 objects.

We describe a finite set of ACL2 data objects by general-
izing the underlying Common-Lisp representation of ACL2
constants. Our data generalization approach is to general-
ize each binary digit (bit) of the underlying Common-Lisp
representation for each object. We use a uBDD [1] to rep-
resent each generalized bit; a specific object is identified by
an explicit assignment of Boolean values for each Boolean
variable, evaluating each uBDD involved and finally yielding
an explicit value. For example, the Common-Lisp represen-
tation of an integer is composed of binary digits (bits); we
generalize an integer by generalizing each bit in its represen-
tation with a uBDD. The set of values represented by such

a generalized integer is found by considering all possible as-
signments of values to the variables of the uBDD(s) used to
represent each underlying bit; particular integers in such a
set are identified by assigning each uBDD variable a value
which yields a collection of the binary digits of the integer in
question. Thus, we map uBDD variable assignments, which
are just a list of Boolean values, to particular explict values.

Consider the representation of the integers from zero to
seven using three uBDDs, one to represent each of the least-
significant three binary digits. For instance, by using a dis-
tinct uBDD variable for each digit, we can represent the
collection of the integers values from zero to seven. Thus,
uBDD variable values are the domain of a function that
maps to integers; we assign each uBDD variable a value by
giving a list of Boolean values, one for each variable. Given
that the first three uBDD variables are used to represent
(in least-significant order) the first three binary digits of a
positive integer, we would have a mapping (represented by
an association list) of uBDD variables to values as follows
where ... represents the values of other uBDD variables.

’(((nil nil nil ...) . 0)

((t nil nil ...) . 1)

((nil t nil ...) . 2)

((t t nil ...) . 3)

((nil nil t ...) . 4)

((t nil t ...) . 5)

((nil t t ...) . 6)

((t t t ...) . 7))

For this example, the assignment (nil ? t ...) to the
first three uBDD variables yields the set of integers {4,6},
where ? represents free assignment. To represent two sets
of the integers from zero to seven would require six uBDD
variables. Thus the first three uBDD variables might repre-
sent the integers from 0 to 7 as shown above and the second
set of integers might be represented using the next three
uBDD variables as follows where ? represents an unknown
assignment for each of the first three uBDD variables.

’(((? ? ? nil nil nil ...) . 0)

((? ? ? t nil nil ...) . 1)

((? ? ? nil t nil ...) . 2)

((? ? ? t t nil ...) . 3)

((? ? ? nil nil t ...) . 4)

((? ? ? t nil t ...) . 5)

((? ? ? nil t t ...) . 6)

((? ? ? t t t ...) . 7))

Thus, uBDD variables are the domain of functions that map
uBDD variables to collections of finite sets of ACL2 objects.

Using ’g-<’ symbol for the generalized less-than predicate

(g-< {(? nil t ? ? ?)} ; Set 1, range {4,5}

{(? ? ? ? t t)} ; Set 2, range {6,7}

)

always evaluates to T; for every assignment of uBDD vari-
ables, the image of under the first function is less than that

of under the second function. Or, more informally, the (first
set of) integers {4,5} are everywhere less than the (second
set of) integers {6,7}. If we symbolically execute (g-< {5,6}

{6,7}), we produce a uBDD that is NIL when the assign-
ment of uBDD variables maps each function range to 6 and
is otherwise T.

A finite set of ACL2 objects is represented as a CONS pair
where its CAR is one of nine symbols from the ACL2_INVISIBLE
(abbreviated I) package; otherwise, it represents pair of pos-
sibly general ACL2 objects. Each symbolic object is of the
form (CONS I::object type object); such BAD-ATOM symbols
cannot be created by an ACL2 user and are internally used
to identify symbolic objects. For the descriptions below,
a uBDD is recognized by the NORMP function and a list of
uBDDs by NORM-LISTP. Function call (EVAL-BDD bdd lst)

produces the value of bdd given variable assignment lst,
which, in turn, identifies one element of the function range.

• BIT: A general bit g has the form (LIST* ’i::bit n)

and represents (EVAL-BDD n lst).

• INTEGER: A general integer g has the form (LIST*

’i::integer cadr cddr) and represents the integer
n whose sign is what (CADR g) represents and whose
absolute value is what (CDDR g) represents, viewing
(CDDR g) as an unsigned nonnegative integer, in bi-
nary, least significant bit first, with T meaning binary
1 and NIL meaning binary 0. (NORM-LISTP (CDR g))

is required. T means ’negative’ as a sign.

• CHARACTER: A general character g has the form
(LIST* ’i::character c) and represents the result
of calling function CODE-CHAR on what c represents,
which must be a nonnegative integer.

• STRING: A general string g has the form (LIST*

’i::string s) and represents the result of calling COERCE

upon (a) what s represents, which must be a true list
of characters, and (b) ’STRING.

• SYMBOL: A general symbol g has the form (LIST*

’i::symbol p n) and represents the result of calling
INTERN$ on (a) what n represents, which must be a
string and (b) the result of calling FIND-PACKAGE on
what p represents, which must be a string that is the
name of an ACL2 package.

• RATIO: A general ratio g has the form (LIST* ’i::ratio

n d) and represents the result of calling division (/) on
(a) what n represents, which must be an ACL2 integer,
and (2) what d represents, which must be a positive
ACL2 integer.

• IF: An general if-expression g has the form (LIST*

’i::if c tb fb), where c is a NORMP and tb and fb

are general objects. g represents what fb represents
if c represents NIL; otherwise, it represents what tb

represents.

• UNEVALUATED: A general UNEVALUATED g

has the form (LIST* ’i::unevaluated x) and repre-
sents an ACL2 object, but we assume nothing about
which ACL2 object. Of course, two UNEVALUATED
objects that are equal represent the same thing.

Given an ACL2-accepted, Common-Lisp compliant, guard-
checked function, say FN, the user may symbolically com-
pute the value of the automatically generated generalized
version of FN, call it G-FN, on such generalized objects by
escaping from the ACL2 read-eval-print loop. This modifi-
cation greatly reduced the complexity of writing the Centaur
floating-point specifications as we did not need to create a
bit-level specification; our integer-based specification was di-
rectly symbolically simulated. We used this approach in our
verification of the floating-point addition/subtraction oper-
ations for the Centaur CN media unit [2].

For the 31 ACL2 primitives, we have defined their sym-
bolic simulation counterparts. For instance, for BINARY-+,
we have implemented something like a symbolic version of
a ripple-carry adder. That is, G-BINARY-+ has been de-
fined to accept two symbolic data arguments and it com-
putes their symbolic sum. Of course, the actual definition
of G-BINARY-+ is somewhat more complicated as it needs to
deal with the various cases that are possible, such as the
arguments being complex numbers.

Perhaps it is simpler to visualize the code for G-NOT, the
symbolic version of NOT. Its implementation starts by asking
if its input argument is symbolic or explicit. If its argument
is explicit, then this argument is provided to a call of NOT

and that result is returned; otherwise, we return a new sym-
bolic object that is T whenever the assignment of Boolean
variables would produce a NIL for the given input argument,
and otherwise T. When given explicit objects, all of our sym-
bolic primitive definitions just call their corresponding ACL2
functions.

The key operation in our symbolic simulator is when we
must deal with an IF expression. If the test argument can be
determined, then we will return either the false (NIL) branch
or the not false branch as appropriate. However, when the
test is itself a symbolic object, then we have to merge the two
(possibly) symbolic return objects into a single object; this
involves computing a new mapping from Boolean variables
to objects that respect the semantics of IF.

For improved performance, we have defined symbolic ver-
sions of a number of non-primitive ACL2 functions. For
instance, the symbolic version of ASH only needs to perform
simple list operations on the CDDR of symbolic integers when
the shift amount is explicit. We spent many hours carefully
tuning the symbolic definitions of a number of non-primitive
ACL2 arithmetic operations, eventually allowing us to build
a uBDD representing the single-precision, floating-point add
function.

For any ACL2 function that does not have a built-in sym-
bolic definition, we compile it by replacing each internal
function call with their corresponding symbolic version. Thus,
creating the G- version of a new ACL2 function is nothing
more than creating a new function where every internal func-
tion call is replaced with its symbolic counterpart.

The ACL2 DEFTHM hint mechanism has been extended so
that a user may specify generalized data to be symbolically
simulated in pursuit of a theorem. For the DEFTHM example
below, we introduce functions AND2 and OR2 so that we can

disable them, thereby avoiding the possibility that ACL2 is
doing the proof using its native reasoning about AND and OR.

(defun and2 (x y) (and x y))

(defun or2 (x y) (or x y))

(in-theory (disable and2 (and2) or2 (or2)))

(defthm and-implies-the-or

(implies (and (booleanp x)

(booleanp y))

(implies (and2 x y) (or2 x y)))

:hints (("Goal"

:clause-processor

(:function

g-clause-processor

:hint

(list

’gs-specs-env ; function to run on

(list ’x ‘(:bit . ,(qvar-n 0)))

(list ’y ‘(:bit . ,(qvar-n 1)))))))

:rule-classes nil)

This lemma looks like an ordinary ACL2 DEFTHM event ex-
cept that the hint instructs the theorem prover to perform
this proof using the G-CLAUSE-PROCESSOR where free vari-
ables X and Y represent two generalized ACL2 Boolean val-
ues. This theorem is proved entirely by symbolic simulation
– no part of the waterfall is used.

3. MINI THEOREM PROVER
Using this symbolic simulation capability, it is possible to
construct a decision procedure for propositional logic with
only a very few lines. IF-TERMP is a recognizer for the IF-
expression language in which propositional logic statements
are to be written.

(defun if-termp (term)

(declare (xargs :guard t))

(if (atom term)

(eqlablep term)

(let ((fn (car term))

(args (cdr term)))

(and (consp args)

(consp (cdr args))

(consp (cddr args))

(null (cdddr args))

(eql fn ’if)

(if-termp (car args))

(if-termp (cadr args))

(if-termp (caddr args))))))

(defun if-evl (term alist)

(declare

(xargs :guard (and (if-termp term)

(eqlable-alistp alist))))

(if (atom term)

(cdr (assoc term alist))

(if (if-evl (cadr term) alist)

(if-evl (caddr term) alist)

(if-evl (cadddr term) alist))))

Now, the validity of an IF expression can be determined by
creating an association list where each variable, recognized
by EQLABLEP in IF-TERMP, is paired with a unique generalized
Boolean value, and then symbolically executing the gener-
alized IF-EVL function. Thus, the function G-IF-EVL is a
decision procedure for propositional logic given that TO-IF2
translates logic expressions into IF expressions.

:q ; exit from ACL2

(maybe-gify ’if-evl) ; creates function G-IF-EVL

; We now show that the created function G-IF-EVL is

; a theorem-prover for the propositional calculus.

(let ((term

(to-if2

’(implies (and x y) (or x y))))

(alist

‘((nil . nil)

(t . t)

(x . ,(make-bit (qv 0)))

(y . ,(make-bit (qv 1))))))

(g-if-evl term alist)) ; Evaluates to T

4. THE LEGATO CHALLENGE
The Legato Challenge, proposed by Bill Legato in around
1990, is to prove the correctness of a multiply algorithm
for the Mostek 6502. In chronological order, J Moore, Matt
Wilding, Robert Krug, and Sandip Ray, have all verified this
program using either NQTHM (Moore) or ACL2. Legato
proposed this problem as a challenge for the automated
theorem-proving community, and it has served as an inter-
esting test for the ACL2 community.

The 6502 multiply assembler program developed the prod-
uct through repeated addition, eventually producing a 16-bit
product given two, eight-bit operands. Each successful ver-
ification has involved modeling each instruction used in the
program as a function, and then showing that the repeated
composition of these functions does indeed perform multipli-
cation. Recently, the authors have also verified the Legato
Challenge using our symbolic simulation capability.

The original Legato Challenge was 10 instructions; one carry-
clear instruction was added so the program worked no-matter
how the carry flag was initialized. We added the third in-
struction to make our final theorem more general; later this
will prevent us from needing to initialize the carry flag.

(defg *mult*

’((LDX 8) ; 1 ; Initialize X to 8

(LDA 0) ; 2 ; Initialize A to 0

(CLC) ; 3 ; Added for Initialization

(ROR F1) ; 4 ; Rotate Carry through F1

(BCC 8) ; 5 ; Branch if Carry Clear

(CLC) ; 6 ; Clear Carry flag

(ADC F2) ; 7 ; Add F2 with Carry to A

(ROR A) ; 8 ; Rotate A right

(ROR LOW) ; 9 ; Rotate Carry into Low reg

(DEX) ; 10 ; Decrement X

(BNE 4))) ; 11 ; Branch not-equal to 4

Legato also produced an ISA-level ACL2 simulator for a
subset of the 6502 that was sufficient to execute the program
above. The core of this ISA specification is a single-step
function that transforms an ISA state to a new ISA state
by updating the state in consideration of the instruction
pointed to by the program counter. The state accessors for
Legato’s 6502 assembly-level model are:

(defmacro icntr (s) ‘(car ,s)) ; program counter

(defmacro c (s) ‘(nth 1 ,s)) ; carry flag

(defmacro a (s) ‘(nth 2 ,s)) ; accumulator

(defmacro low (s) ‘(nth 3 ,s)) ; memory variable

(defmacro x (s) ‘(nth 4 ,s)) ; index register

(defmacro f1 (s) ‘(nth 5 ,s)) ; memory variable

(defmacro f2 (s) ‘(nth 6 ,s)) ; memory variable

(defmacro z (s) ‘(nth 7 ,s)) ; zero flag

(defmacro f1save (s) ‘(nth 8 ,s)) ; shadow value

(defmacro p (s) ‘(nth 9 ,s)) ; the program

Legato’s 6502 ISA-level simulator is a“classic”FM8501-style
instruction interpreter.

(defun mult-stp (s)

(if (or (zp (icntr s))

(< (len (p s)) (icntr s)))

s ;; Get Instruction

(let ((inst (nth (1- (icntr s)) (p s))))

(case (identity (car inst)) ; op code

(LDX (update

(update (nxt s) 4 (getarg s (cadr inst)))

7 (if (zp (getarg s (cadr inst))) 1 0)))

(LDA (update

(update (nxt s) 2 (getarg s (cadr inst)))

7 (if (zp (getarg s (cadr inst))) 1 0)))

(ROR (update

...

(otherwise s)))))

Legato’s challenge was simple – prove that his program mul-
tiplies two 8-bit numbers and produces a correct 16-bit (rep-
resented as two 8-bit values) result. We represent each com-
ponent of the state as a generalized data object. Of course,
the program counter has to be initialized to 1, and the LOW

memory value is 0. The carry and zero flags and the ac-
cumulator can be arbitrary values. The generalized data
objects *F1* and *F2* represent two distinct data objects
where each represents all of the natural numbers from 0 to
255.

(defg *general-start-state-mult*

(list 1 ; program counter

c ; carry flag

a ; accumulator

0 ; memory location LOW

x ; x - counter

f1 ; operand f1

f2 ; operand f2

z ; zero flag

f1save *mult*))

DEFG defines a constant. The symbolic version of the func-
tion RUN-IT is allowed to symbolically execute as many as
67 step, each time RUN-IT recurs, the function MULT-STP is
used once. Our goal theorem is this relationship.

(= (* (f1 *general-start-state-mult*)

(f2 *general-start-state-mult*))

(let ((*last-state*

(run-it 67 *general-start-state-mult*)))

(+ (* 256 (a *last-state*))

(low *last-state*))))

Our specification is the multiplication of the initial symbolic
number *F1* and *F2*. We execute Legato’s program on
generalized data by repeatedly executing MULT-STP symbol-
ically, and when finished, we collect the LOW memory value
to which we add 256 times the A (accumulator) register; this
result is compared to the specification.

5. PROOF DISCUSSIONS
The authors asked each of the people that had previously
verified Legato’s challenge for their recollections about their
efforts. We found these descriptions typical for an ACL2-
style proof, but all were labor intensive. Moore, Wilding,
and Krug didn’t actually verify Legato’s program using the
MULT-STP ISA-level simulator, but instead, wrote functions
that model the state changes each instruction produces. Ray’s
proof actually uses the MULT-STP ISA-level simulator. We
have edited for brevity.

It took J Moore about four days to do his proof. Moore
recalls:

... the thing that made my first proof differ-
ent was that I formalized the ”real” reason it was
correct, which had to do with how it mimics or-
dinary shift-and-add binary multiplication. That
is, I didn’t do an arithmetic proof. I mapped
everything to bit vectors and then established
a simulation between the easy-to-prove correct
shift-and-add and Legato’s algorithm.

I remember arguing with Bill [Legato] about
the approach. He wanted an automatic arithmetic-
based proof. I felt that no sane programmer
would think of it arithmetically, he would think
of it the way I described and that the ”right”
proof was to follow the derivation of the algo-
rithm.

Over the 2001 Christmas break, Matt Wilding thought he
would check out Rockwell’s new SUPER-IHS arithmetic li-
brary on the Legato Challenge. Wilding’s effort mentions:

1. Understanding the algorithm 1 hr

2. Modeling the program in ACL2 2 hrs

3. Lost time before decomposing proof 4 hrs

4. Proving that loop-spec works 3 hrs

5. Proving loop-spec works correctly 3.5 hrs

6. Cleaning and documenting 1.5 hrs

Robert Krug wanted to see how his evolving arithmetic li-
brary would perform on this proof. His effort involved:

1. Trying weakest precondition method 4.5 hrs

2. Trying to imitate Wilding’s proof 2 hrs

3. Writing and testing specifications 2 hrs

4. Constructing the main helper lemma 2 hrs

5. Getting ACL2 to do the proof 4.5 hrs

6. Some clean up 2 hrs

In 2008, Sandip Ray developed a proof that uses the 6502
operational semantics as provided by MULT-STP. This effort
was based on the recently developed cutpoint mechanism for
performing interpreter proofs. Sandip writes:

It took me about 4 hours. Most of the effort
was in looking at failed arithmetic subgoals, and
struggling with arithmetic libraries to determine
what arithmetic lemmas were necessary.

I don’t think Wilding (or Legato, originally)
used an interpreter definition. Rather, they used
their own tools (Legato used his WP generator
and Wilding probably used vFAAT) to spit out
formulas which were then discharged in ACL2.
So, if they wanted to do an operational-semantics-
style proof, it would have taken them longer.

We don’t have anything much to say. We just stated the
theorem and attempted a symbolic simulation. Of course,
it didn’t work the first time – we had bugs in our symbolic
simulator implementation. So instead of trying to debug
our proof attempt, we used Legato’s Challenge to debug
our symbolic simulator! Once we wrung out our bugs, the
symbolic simulator proves the Legato Challenge in just a few
seconds. Finally, may the Legato Challenge rest in peace.

6. CONCLUSIONS
We believe symbolic simulation is a valuable tool for ACL2
users. We have an experimental version of ACL2 with our
symbolic simulation capability; however, given our gradual
transition to using Sol Swords’ approach of embedding sym-
bolic terms directly with user-level, symbolic variables, we
may not further develop this approach.

7. ACKNOWLEDGEMENTS
We want to thank Matt Kaufmann for extending the ACL2
DEFTHM hint mechanism. We wish to acknowledge sup-
port from Centaur Technology and ForrestHunt, Inc.

8. REFERENCES
[1] Robert S. Boyer and Warren A. Hunt, Jr.. Function

Memoization and Unique Object Representation for
ACL2 Functions. In Proceedings of the Sixth
International Workshop on the ACL2 Theorem Prover
and its Applications, ACM Digital Library, Seattle,
Washington, 2006.

[2] Warren A. Hunt, Jr. and Sol O. Swords Centaur
Technology Media Unit Verification. To appear in
proceeding of the 2009 Computer-Aided Verification
Conference (CAV 2009), Lecture Notes in Computer
Science, Grenoble, France, 2009.

