Proving A Specific Type of Inequality Theorems in ACL2

A bind-free experience report

Hanbing Liu
Advanced Micro Devices, Inc.
7171 Southwest Parkway
Austin, Texas, 78735
hanbing.liu@amd.com

ABSTRACT

We describe how we guide ACL2 to follow a divide-and-
conquer strategy for proving inequalities of the type | P(€)| <
C. P(€) is a polynomial in variables € and C is a constant.

Our approach involves (1) writing an ACL2 program to esti-
mate the upper-bound of such polynomials and (2) using the
bind-free mechanism to integrate the upper-bound estima-
tion program to guide rewriting. We think it is interesting
to showcase how we extract the relevant information from
the hypothesis and how such information is used to influence
rewriting.

Techniques like ours can be useful to ACL2 users who want
to better control rewriting when their problems share spe-
cific characteristics with our |P(€)| < C' type problem.

Categories and Subject Descriptors

G.1.0 [Numerical Analysis]: General—error analysis; F.3.1
[Logics and Meanings of Programs|: Specifying and
Verifying and Reasoning about Programs—mechanical ver-
ification; F.4.1 [Mathematical Logic And Formal Lan-
guages]: Mathematical Logic—mechanical theorem proving

General Terms

Algorithm, error analysis, verification, theorem

Keywords
ACL2, bind-free, rewriting strategy, ACL2 free variables

1. PROBLEM

Let P(€) be a polynomial in variables {e;}. Suppose we
know that the |e;| < ¢;. We want to show that some con-
stant C' is the upper bound of the polynomial by proving a
corresponding ACL2 theorem.

If P(€) is simple, one may rely on ACL2’s linear reasoning

together with its arithmetic library to prove directly that
|P(€)] < C. For example, equipped with arithmetic-4 li-
brary, the ACL2 theorem prover can prove the following
theorem p2 easily, where the polynomial is simply e; + e2,
while ¢1 = ¢ = 1.

(include-book "arithmetic-4/top" :dir :system)
(defthm p2
(implies (and (<= (abs el) 1)
(<= (abs e2) 1))
(<= (abs (+ el e2)) 2)))

The ACL2 rewriter and its built-in linear reasoning are no
longer effective when P(€) is complex. Proving p10, a larger
variation of p2, is more time consuming. The p10 theorem is
only proved after ACL2 explores tens of thousands of cases.

(defthm p10
(implies (and (<= (abs el) 1)
(<= (abs e2) 1)
(<= (abs e3) 1)

(<= (abs e9) 1)
(<= (abs el10) 1))

(<= (abs (+ el e2 e3 ... e9 e10)) 10)))

If given a p100 theorem to prove, the ACL2 theorem prover
is likely to either run out of memory or take a very long time
if it were to follow the same strategy that it used to prove
the p10 theorem.

When P(€) is complex, the ACL2 built-in linear procedures
and strategies (as embodied in the its arithmetic library) are
too general to be effective.

We need a more focused strategy to prove such inequalities.

2. DIVIDE-AND-CONQUER STRATEGY

One may attempt to guide ACL2 by first proving the fol-
lowing rules directly. A new ACL2 user may even hope that
the ACL2 theorem prover can use these rules to prove the
p100 theorem automatically.

abs (term) <= di
abs(poly) <= d2

| abs(fact) <= di

|
d1+d2 <= C I

|

|

abs(term) <= d2
dixd2 <= C

=>
abs(fact * term) <= C

=>
abs(term + poly) <= C

To use the first rule, ACL2 first needs to pick suitable bind-
ings for di; and da. Next, ACL2 needs to back-chain deeply
— attempting to first prove that |[term| < di, |poly| < da,
and dy + d2 < C, before it can conclude |term + poly| < C.

Unfortunately, in this case, both di and ds are considered
“free variables” by the ACL2 theorem prover because neither
dy nor dz appears in the left-hand side of the rewrite rule.
When the ACL2 theorem prover attempts to use the rule
to rewrite some term, it “one-way” unifies the term against
the left-hand side of the rewrite rule: abs(term + poly) <=
C'. When the unification is successful, ACL2 finds suitable
substitutions for term, poly, and C. However, because di
and dz do not appear in the left-hand side of the rewrite
rule, the unification does not provide any useful information
for how to pick suitable substitutions for d; and da.

We also want to point out that, in order to prove |poly| < da,
ACL2 needs to follow the same procedure again and again,
thus recurring deeply until the subgoal |poly;| < d2, is simple
enough for it to recognizee. Thus, to follow this focused
strategy successfully, ACL2 needs not only to pick an initial
feasible split of C into d; and d2, but also to pick a sequence
of feasible splits, one for each |poly| < d2 subgoal that would
arise during the recursion.

To nudge the ACL2 theorem prover into following this very
focused back-chain strategy, we now have two separate tasks.
The first task is to define an algorithm that can pick out suit-
able di and d intelligently. The second task is to integrate
such an algorithm to control how the ACL2 theorem prover
does its back-chain reasoning.

In this paper, we present one such simplistic algorithm for
picking out suitable ds for a simple class of | P(€)| < C prob-
lems. We would like to note that how to design an powerful
algorithm is not our focus here. Our focus is on how one
may integrate such an algorithm to control rewriting.

3. ALGORITHM

We need an algorithm that can pick out suitable di and da
so that |term| < di and |poly| < d2 are provable. As a
minimum requirement, we need the algorithm to pick out
some di and dz such that |term| < di and |poly| < da are
true.

An upper-bound estimation algorithm fits the purpose. Such
an algorithm takes two inputs, a description of the polyno-
mial and a description of the constraints, {|e;| < ¢;}. It
returns an upper bound for the polynomial.

A simplistic algorithm may just go over the expression that
represents the polynomial. It recursively calls itself to get

!To be precise, the real left-hand side is abs (term + poly)
> C. The ACL2 theorem prover is trying to rewrite it to nil.

an upper bound on the sub-expressions and combines the
upper bounds on the sub-expressions in a conservative way
to compute an upper bound of the original expression.

We have implemented such an algorithm.

(defun upper-bound-c-or-var (c_or_var bindings)
(if (acl2-numberp c_or_var)
(abs c_or_var)
(if (symbolp c_or_var)
(cdr (assoc-equal c_or_var bindings))
(hard-error ’upper-bound-c-or-var
"Syntax error: ..."))))

(defun upper-bound-expr (expr bindings)
(cond
((not (consp expr)) ;5 (1) var
(upper-bound-c-or-var expr bindings))

((equal (car expr) ’quote) ;5 (2) const
(upper-bound-c-or-var (cadr expr) bindings))

((equal (car expr) ’binary-*) ;; (3) (* x y)
(* (upper-bound-expr (cadr expr) bindings)
(upper-bound-expr (caddr expr) bindings)))

((equal (car expr) ’binary-+) ;; (4) (+ x y)
(+ (upper-bound-expr (cadr expr) bindings)
(upper-bound-expr (caddr expr) bindings)))

((equal (car expr) ’unary--) ;; (5) (- x)
(abs (upper-bound-expr (cadr expr) bindings)))

(t (hard-error ’UPPER-BOUND-EXPR
"Syntax error: “pO0~i%"
expr))))

The upper bound found by a simplistic algorithm like ours
may not be sufficient to establish some difficult |P(€)| < C
results, but for typical problems that we encountered, this
simplistic algorithm works?.

4. INTEGRATION WITH ACL2

When our upper-bound estimation program returns a num-
ber that is no greater than C, we know that |P(€)| < C is
true. However, we prefer to have an ACL2 theorem stating
that |P(€)| < C. This is because we often want to use such
a result as a proven lemma to prove some other results.

Unfortunately, getting a positive answer to a |P(€)] < C
question, via a program run, does not give us an ACL2 the-
orem about the polynomial itself. We integrate the upper
bound estimation algorithm as a heuristic to guide ACL2 to
prove such a theorem.

’In our work, P(€) typically represents the relative error
in the output of some approximation algorithm. These al-
gorithms are self-correcting, in that, rounding errors intro-
duced in the early iterations will dissipate quickly in later
iterations. This must have something to do with why our
simplistic algorithm works.

Our integration technique is simple. We first define a func-
tion bind-d1-with-hints.

(defun bind-dl-with-hints (expr hints)
(list (cons ’d1
(1ist ’quote
(upper-bound-expr expr hints)))))

The function returns a >((d1 . <upper bound>)), where
<upper bound> is a constant returned by upper-bound-expr
on ACL2’s representation of the polynomial expr. We ex-
pect that the constraints are encoded in the hints variable
as a list of pairs of form (varname . «c¢).

We then prove a few carefully chosen rewrite rules. There
are only five of them. Each corresponds to a branch in the
upper-bound-expr algorithm. Two of them are listed here®.

(defthm over-estimate-rule-var-leaf
(implies
(and (syntaxp (symbolp x))

(bind-free (bind-di-with-hints x hints) (d1))

(less_equal_than (abs x) d1)
(<= d1 C))
(less_equal_than_with_hints (abs x) C hints)))

The rewrite rule says: if we are trying to prove |z| < C, and
we know that x is a symbolp, we will first compute its upper
bound d; using bind-d1-with-hints, and then try to prove
‘l’| S d1 and d1 S C

(defthm over-estimate-rule-add
(implies

(and (bind-free (bind-dl-with-hints x hints) (d1))
(less_equal_than_with_hints (abs x) dl hints)

(less_equal_than_with_hints (abs y)
(+ (- d1) ©
hints))
(less_equal_than_with_hints (abs (+ x y))
C hints)))

This rewrite rule says: to prove an inequality of form |z +
y| < C, we first compute the upper bound d; for the absolute
value of sub-expression x; we will then attempt to prove that
|z| < dy and |y| < (C —d1).

One might be tempted to think that only the subgoal |y| <
(C — d1) is the interesting while the |z| < di subgoal is
trivial to prove. We would like to emphasize that this is
not the case. To prove |z| < dy, the ACL2 theorem prover
may need to invoke bind-d1-with-hints again to decide on
how to split the constant d; for creating new subgoals and
continue the backchain reasoning. In short, the process of
proving subgoal || < dy is very much like the process of
proving |y| < (C — dy). Furthermore, both processes are
very similar to the process of proving |z + y| < C.

30ne may be more interested in checking out this paper’s
supporting material in the ACL2 2009 workshop archive.

The function less_equal_than_with_hints mentioned in
the previous rules is defined as

(defund less_equal_than_with_hints (x d hints)
(declare (ignore hints))
(<= x d))

A typical |P(€)| < C theorem that we prove is:

(defthm qOu-relative-error-bounded
(implies
(and (rationalp a)
(rationalp b)
(rationalp e)
(not (equal b 0))
(not (equal a 0))
(less_equal_than (abs e) (expt 2 -14))
(rationalp rne2)
(less_equal_than (abs rne2) (expt 2 -64))
(rationalp rne3)
(less_equal_than (abs rne3) (expt 2 -64))
(rationalp rne3)
(less_equal_than (abs rne4) (expt 2 -64)))
(less_equal_than_with_hints
(relative-err
(mylet* ((yO (yO b e))
(e0 (e0 b yO rne2))
(y1 (y1 yO €O rne3))
(y2 (y2 yO y1 e0 rned))
(q0u (qOu a y2)))

qOu)
(xa (/ b)) ;5 |IP(e_bar) |
(expt 2 -41) Y
’((e . 1/16384) ;; hints

(rne2 . 1/18446744073709551616)
(rne3 . 1/18446744073709551616)
(rne4 . 1/18446744073709551616)))))

The theorem says the relative error between qOu and ¥ is
smaller than 27*!, where ¢Ou is computed via a five-step
algorithm (as encoded in the mylet* term)*. Rne2, rne3,
and rned represent rounding errors introduced in the corre-
sponding steps. The mylet* is a macro that we defined. It
eagerly expands a term by replacing occurrences of variables
with their bindings.

There are several interesting aspects of this theorem. First,
the ACL2 theorem prover proves this theorem automatically
after we proved our five rewrite rules. We note that the rela-
tive error term in the left hand side of the conclusion expands
into a 7-degree polynomial of four variables with 27 terms.
Many of the terms have more than three multiplicative fac-
tors. Without our technique of invoking an upper bound
estimation algorithm to find bindings for free variables in
our rewrite rules, the plain ACL2 will not be able to prove
this inequality.

4This is Algorithm 8.8 from the text book IA-64 and ele-
mentary functions: speed and precision by Peter Markstein
[2]. QOu is an unrounded approximation of ¢. The later
steps round the value to produce a single-precision IEEE
result.

Second, let us look at the left-hand side of our conclusion.
We are able to write relerr(v,a/b) < 27*!' in the theo-
rem instead of writing |[the expanded form| < 27*!. Lemma
such as over-estimate-rule-add is attempted automati-
cally after ACL2 has expanded the non-recursive definitions
of relative-err, y0, €0, y1, y2, and qOu and has normalized
the expression into the form (less_equal_than_with_hints
(abs ...) ...).

Third, we also note how the hints are supplied. We see that
(less_equal_than e (expt 2 -14)) is in the hypothesis.
We know that |e| < 27, We extract this assumption and
encode it as a pair in the hints, (e . 1/16384). We check
that 1/16384 = 27'*. This ensures that the description of
the constraints (i.e., hints) matches the actual constraints
(i.e., the theorem’s hypothesis). This ensures that the value
returned by upper-bound-expr is, in fact, an upper bound
of the polynomial.

5. CONCLUSION
A |P(€)| < C type problem has the following characteristics:

e P(&) has an internal structure. It can be constructed
from sub-components via a small set of operators. In
the case of polynomials, such operators include binary-
+, binary-*, and unary-. Each sub-component is simi-
lar to P(€) in that they have similar internal structure.

e (, on the other hand, has no apparent internal struc-
ture. It is not obvious how to pick out a suitable split
of C' that matches the natural decomposition of P(€),
even if we know that such a suitable split exists.

As a result, there is no obvious “divide-and-conquer” strat-
egy for the ACL2 theorem prover to follow in proving results
of this type.

In this paper, we described a way for ACL2 to find and
follow such a “divide-and-conquer” strategy. Instead of sup-
plying the many explicit hints on how to split C' to match
the decomposition of P(€), we use an algorithmic method to
compute the suitable split of C' by examining the decompo-
sition of P(€). We provide the split of C' as bindings for free
variables in a set of rewrite rules. It is done via the ACL2
bind-free mechanism.

The approach is both simple and effective. It works well
with ACL2’s existing arithmetic library.

6. FUTURE WORK

We want to note that the approach is also extensible.

For example, one may allow the hints variable to hold a
user-defined data structure instead of just a list of pairs. One
can design a different upper bound estimation algorithm to
use such a data structure. One may even introduce suitable
rewrite rules that update the data structure as the rewriting
and back-chaining are in progress.

We think that an approach similar to ours can be used to
prove other types of theorems as long as they share the char-
acteristics that we described earlier.

7. AFTERWORD

At Advanced Micro Devices,Inc., we use ACL2 to verify
floating point arithmetic designs. A part of this work is
to verify that certain iterative div/sqrt algorithms are cor-
rect. To prove such an algorithm correct, we often need to
show that the relative error between some approximation
and the true value is smaller than some threshold after a
fixed number of iterations.

We considered several meta-level approaches in guiding ACL2
to prove this type of inequality®.

Our first thought is to prove a “metatheorem.”

However, it is difficult to come up with a suitable metafunc-
tion and/or hypothesis metafunction that we can prove to
be correct. Furthermore, for each new improvement of the
upper-bound estimation algorithm, we need to prove a new
metatheorem again.

We also note that in our current approach, we don’t even
need our upper-bound estimation algorithm to be correct.
We only need that the specific runs of the algorithm return
correct upper bounds. If a specific run of the algorithm re-
turns a wrong result, the conjecture will not be proved. If
we were to prove the metatheorem, we would have to de-
fine a complicated hypothesis metafunction to identify and
reject all cases in which the upper-bound estimation algo-
rithm may return a wrong result.

Another idea is to use the computed-hints facilities in ACL2.
We are not familiar with writing computed hints. We are
concerned that, because the P(€) is complex, we may need
to insert too many :use hints to be useful to ACL2. We
also need to decide to when to insert these hints, possibly
by controlling the case split using :cases hints.

In the end, we think our approach of using the upper-bound
estimation in a bind-free hypothesis is both simple and
effective. The trick of using a “dummy” variable hints in the
conclusion of the conjecture to supply context information
worked out nicely. This avoided the complexity of examining
the actual ACL2 state to collect constraint information.

Acknowledgments

Sincere thanks for the encouragement and support from my
colleagues at Advanced Micro Devices, Inc.. Many thanks to
our reviewers for their helpful advices and recommendations.

8. REFERENCES

[1] W.A. Hunt Jr., M. Kaufmann, R.B. Krug, J Moore,
and E.W. Smith. Meta reasoning in ACL2. In J. Hurd
and T. Melham, editors, 18th International Conference
on Theorem Proving in Higher Order Logics: TPHOLs
2005, number 3603 in Springer Lecture Notes in
Computer Science, pp. 163-178, 2005.

[2] P. Markstein. IA-64 and elementary functions: speed
and precision. Hewlett-Packard professional books.
Prentice Hall PTR, 2000.

For a discussion of available meta-level reasoning mecha-
nism in ACL2, see [1].

