
Computational Logic in the Undergraduate Curriculum
Rex Page

University of Oklahoma
School of Computer Science

Norman, OK 73019 USA
+1 450 325 4042

page@ou.edu

ABSTRACT
Logic provides the mathematical basis for hardware design and
software development. In fact, digital circuits and computer
programs are logic formulas expressed in a formal language.
Accordingly, educated computer scientists should have
experience in reasoning about the formulas that their digital
circuits and programs represent. An exemplary way to get this
experience is to use computational logic in support of such
reasoning. This paper searches the typical undergraduate
curriculum in computer science for opportunities to include
material on computational logic in the context of hardware and
software design and implementation. It explains how
computational logic has been included as an element of two
courses required in most computer science programs. It discusses
some successes and a few missteps that the author has
experienced over the past nine years in developing this material
and using it in the classroom, and it suggests opportunities for
similar efforts in other courses.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/program verification –
correctness proofs, formal methods.

K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms
Design, Reliability, Languages, Verification.

Keywords
Formal methods, theorem provers, ACL2, software engineering,
computer science curriculum.

1. RATIONALE
Logic provides the mathematical basis for hardware design and
software development. In fact, digital circuits and computer
programs are logic formulas expressed in a formal language.

Accordingly, educated computer scientists should have
experience in reasoning about the formulas that their digital
circuits and programs represent. An exemplary way to get this
experience is to use computational logic in support of such
reasoning.

Using ACL2 [10] as a computational logic engine for exposing
students to this technology provides some advantages over other
choices. It employs the widely used syntax of Common Lisp and
smoothly integrates its theorem proving system within this syntax.
This is important because it alleviates problems that come with
introducing radically new elements into the curriculum. One such
problem is resistance from students, computer science faculties,
and outside advisors of academic programs. A programming
notation in widespread use over a long period is easier to sell than
one that has seen less use. Practical applications of ACL2 in
industry and government are important in this regard.

Another problem has to do with the steepness of the learning
curve. Many computational logic systems require a substantial
investment of intense study before they begin to pay off. ACL2
presents a relatively simple basis for stating properties of software
(and of hardware models), one that most students recognize from
their knowledge of predicate calculus. Furthermore, the reasoning
engine of ACL2 automatically generates inductive proofs of many
correctness properties. This makes it possible for students to
succeed early. Once they understand how to state properties as
formulas in logic, ACL2 delivers proofs of many of those
properties without assistance.

The following sections describe experience with computational
logic in three courses required of all computer science majors at
the University of Oklahoma, discuss the impact of particular
choices in material and projects, survey typical curricula for other
opportunities to include similar material, and point out related
efforts to put computational logic in baccalaureate courses. Some
of the material in this paper has appeared in other forms in
previous publications [13][14][15][16].1

2. SOFTWARE ENGINEERING
In my experience over the past five years of using ACL2 in
software engineering courses, I have found that almost all

1 This work has been supported by two grants from the National Science

Foundation (http://www.nsf.gov/). The work in the area of software
engineering was done in collaboration with Matthias Felleisen and some
of his students at Northeastern University, NSF Grant 0633664. The
discrete math/logic work was supported by NSF Grant 0082849.

students adapt to the programming methods that ACL2 requires
within the first few weeks of the course, and that they learn to
state software properties as part of that experience. Grumbling is
common, but no more so than with any new computer system, and
the high success rate dampens this reaction as the course
progresses. There have been a few hard cases (students who
grumble loudly and never stop), but they comprise less than 2%
of over 200 students who have used ACL2 as their programming
environment over the past five years in my software engineering
courses.

The high level of acceptance has surprised me. It may be that
students embrace the idea because it is one of the few things they
learn in software courses that they didn’t know in high school.

An even greater surprise has been the support of the advisory
board of the School of Computer Science at OU. Most of them
have reacted positively to the idea of focusing on correctness in
software development and on using a theorem proving engine as
an aid in this process. A contingent from the board attends final
presentations by student teams of their software product at the end
of the second semester of software engineering. Many of them
comment positively on the use of ACL2 in the course. For
example, Stephen Mercer, a lead developer on the LabVIEW
team for National Instruments, observed that “one group showed
the true power of this concept by writing a 3D rendering engine
and then proving that their engine had no bit plane errors.”

The material on computational logic in the two-semester,
required, fourth-year course focuses primarily on correctness
properties for functions and comprises about a third of the course
content. The remaining content covers software design,
architecture, and processes. First semester software development
projects range from 50-line to 300-line individual exercises (five
to seven projects) to thousand-line team projects (one or two
projects). Project descriptions provide informal specifications for
programs and properties the programs are expected to satisfy.
Students formalize these specs as ACL2 code, theorems, and tests.

In the second semester of the software engineering course, student
teams develop a software product over the course of the semester.
There are a dozen or more separate deliverables spread more-or-
less uniformly across the semester, culminating in a documented
software product, usually comprising 2,000 to 6,000 lines of
ACL2, including theorems and theorem-based test specifications.
Project details can be found in [14] and some of its references.

For the future, I would like to design a multi-year series of
projects with software security as a common theme. My intent is
that the projects would lead to a body of software security
components that continues to grow over the years. John Allen
conjectures that security could be a killer application stimulating
widespread use of formal methods in software development [1]. If
so, this series of projects could tap into that opportunity.

Students learn to state correctness properties by generalizing tests
for correctness that they would design as a standard part of a
software development effort. For example, while the associativity
of the append operation for lists is an important one in some
contexts, the basic correctness of the operator can be stated as an
equality between the first n elements of its result and its first
argument, and an equality between its second argument and the
elements of its result, excluding the first n of them (where n is the

number of elements in the first argument). This is the kind of
property that students verify using the ACL2 theorem prover.

Early on, students used ACL2 directly. They now use it from the
Dracula programming environment [15][16] in the DrScheme
system [8]. This environment provides the type of point-and-click
interface that most students are accustomed to and extends ACL2
i/o to include graphics and interactions with keyboard and
pointing devices and includes an automated testing facility that
generates random tests based on statements of theorems [15]. In
addition, a modern module facility [6], important for software
engineering, is under development. A prototype is now in use.

The trickiest part of developing course material lies in designing
projects. Students must define functions in a form that facilitates
reasoning. Fortunately, the design patterns in the text of Felleisen,
et al, How to Design Programs [7], provide good examples to
follow. Students need a few tips on idioms that ACL2 handles
well, such as counting down to zero when termination is triggered
by a counter, rather then counting between general limits in either
direction, but with this kind of instruction almost all students
succeed in developing code to meet project requirements.

The greatest care must be taken in designing projects in which
ACL2 will succeed in verifying the properties students specify for
the functions they define. In early projects, ACL2 must succeed
on its own, without hints or lemmas. In later projects, students can
tolerate projects in which ACL2 needs help.

Students need guidance in choosing correctness properties to
verify. Early projects describe properties in considerable detail.
As the course progresses, detail declines but never disappears. I
have not found a way to teach the material that enables most
students to specify correctness properties entirely on their own.

Students acquire varying levels of ability in specifying useful
properties, of course, and the abilities of the top quartile are
entirely satisfactory. The bottom ten percent fail to grasp these
concepts, and the rest fall somewhere in between.

The success rate in using the theorem prover to verify properties
has a similar distribution. About five percent of the students
acquire a facility with the theorem prover well beyond my
expectations, and most students acquire a basic understanding
that, at least, would provide a basis for learning to use a theorem
prover effectively if they found themselves in a software
development organization that encouraged or required it.
Resources for getting started with ACL2 in this context are
available via internet.2 I would, of course, welcome collaboration
with instructors who want to use or expand these resources.

I conclude that the primary obstacle to success in the introduction
of computational logic in software development courses is the
will to do it on the part of the computer science faculty.

3. DISCRETE MATHEMATICS / LOGIC
Prior to beginning the work on software engineering education
described in Section 2, I spent four years developing material for
the logic portion of a standard discrete mathematics course
required of all baccalaureate students in computer science. The
goal of this material was to apply the principles of logic and

2 http://www.cs.ou.edu/~rlpage/SEcollab/tsc/tscsched.html

mathematical induction covered in most such courses directly to
hardware and software artifacts, rather than using the contrived
examples one sees in most discrete mathematics texts. While the
material does not employ mechanized logic, it does serve to
introduce students to stating and verifying properties of software
and circuits through rigorous, mathematical reasoning.

During the period of development of this material, OU offered
two sections of discrete mathematics per semester. This provided
an opportunity to measure differences in the effects of the
standard approach to the subject and an approach applying logic
to the task of verifying properties of digital circuits and software
components. Data gathered over a period of three years on the
performance of students from the two versions of discrete math in
a subsequent software development course showed a statistically
significant difference favoring the applied logic approach [13].

The primary content of the logic component of the discrete math
course, which comprised about two thirds of the course material,
focused on reasoning about digital circuit designs and software
components expressed in an equation-based notation, namely the
programming language Haskell, chosen because its syntax closely
resembles standard algebraic notation. Other formal languages
can be equally effective. For example, the TeachLogic Project,
which covers similar material, employs Scheme.3

Students learn to use logic and induction to verify properties of
computing artifacts. They exhibit their abilities by solving about a
hundred homework exercises and a couple dozen exam questions,
about 90% of which require mathematical proofs.

Proofs are carried out by hand, rather than by way of a
computational logic. Students use an automated proof checker in
the propositional logic portion of the course, and they see a
demonstration in which the ACL2 theorem prover succeeds (in
microseconds) in proving some of the properties the students have
been recently struggling with. This leaves a positive impression
and motivates students for ACL2 usage in software engineering.

After completion of the project comparing the effects of the
standard approach to logic in discrete math and the applied logic
approach, the OU faculty decided to expand logic coverage by
splitting discrete math into two courses, one in which all of the
subject matter is logic applied to verification of hardware and
software properties, and another covering the remaining discrete
math topics (combinatorics, relations, functions, computational
complexity, recurrences, and graph theory).

The new course goes by the name “Applied Logic for Hardware
and Software” and acts as the prerequisite for both discrete math
and computer organization. Properties verified in lectures include
the usual properties of the list concatenation operation
(associativity and the proper relationships between operands and
result), several properties of merge sort (ordering, element and
length preservation, computation time), correctness and time
consumption of the Russian peasant algorithm, full correctness for
a formal model of a combinational circuit for a ripple-carry adder,
and dozens of other useful computational components.

Students apply the ideas in homework and exam problems similar
to examples covered in lectures. In the end students have seen

3 http://www.teachlogic.org

logic in action in a hardware design and software development.
One benefit is that students are well motivated to study logic
because they see its relevance to computer science. Another is
that students can apply logic in subsequent course work.

Early in the course, function definitions appear as ordinary
algebraic equations expressing simple properties of operations on
data structures. I do not point out until later that these simple
properties actually define functions. Instead, I focus on using
logic, equation-based reasoning, and induction to derive more
complex properties from the simple ones expressed in the
equations (which happen to be definitional).

Later, students discover that the equations do, in fact, define
functions and that collections of functions comprise software
specifying complex computations. The course is not about
functional programming. It is not about programming at all.
Students learn just enough about Haskell to manipulate formulas
in reasoning about properties of engineering artifacts. It is in
subsequent courses, such as software engineering, where students
apply these ideas to their own software designs.

As with the introduction of computational logic in software
engineering, the primary obstacle to the application of logic to
engineering artifacts in the discrete math curriculum is the desire
of the faculty to do use this approach. It requires careful
preparation, but resources are available as a starting point [11].4

4. RELATED WORK
Evidence of the use of computational logic in undergraduate
computer science courses is hard to find. Manolios uses ACL2,
via the ACL2 Sedan [4], in a lower division logic course
introduced experimentally by Felleisen [5]. Tinelli5 has included
assignments in the use of KeY [2], a tool for theorems and proofs
about programs written in a subset of Java. Courses employing
Haskell often use QuickCheck [3], which gives students practice
in stating properties as logic formulas, an important skill in using
computational logic systems. Jackson´s Alloy system is used in
undergraduate classes and exposes students to logic as a tool for
stating and verifying properties of software components [9].

5. CURRICULUM OPPORTUNITIES
What courses provide the best opportunities to introduce
computational logic to undergraduate computer science students?
Designing a new course specifically for that purpose or choosing
an existing course in formal methods is a straightforward path,
and probably the easiest path to follow because the faculty seldom
puts obstacles in the way of new courses or reasonable changes in
the content of elective courses.

However, if knowledge of computation logic is important for
computer scientists, it must occupy a place in the required core of
the computer science curriculum. That is, computational logic
must be integrated into required courses. One way to look for
productive targets would be to focus on courses that almost all
computer science programs require.

To get an idea of what those courses are, one could take a random
sample of baccalaureate computing programs and make a list of

4 http://www.cs.ou.edu/~beseme/
5 http://www.cs.uiowa.edu/~tinelli/classes/181/Spring08/

the most frequently offered courses. As an initial attempt in that
direction, I chose ten computer science programs at random.6

Seven courses were required in 90% or more of the surveyed
programs and no other courses were required in over 60% of the
programs. The high-probability courses were programming i/ii,
discrete math, computer organization, data structures, operating
systems, and software engineering.

We have a start on introducing computational logic in discrete
math and software engineering. Programming i/ii and data
structures are difficult targets because most computer science
faculties jealously guard the content of those courses [12]. That
leaves computer organization and operating systems.

Computer organization is an inviting target because
computational logic is widely used in practice to verify properties
of digital circuits, which comprise a part of the content of most
computer organization courses. Probably there would not be a lot
of space for hands-on practice with computational logic in a
computer organization course, but there might be space for some
lecture material, a homework problem, and an exam question.

Operating systems are a tempting target because of the security
issue. The idea of equation-based software for programming
operating system components would be hard to sell, but ACL2
models of certain operating system functions might be feasible.

Therefore, I expect that the use of computational logic would be
feasible in at least four courses required in almost all
baccalaureate CS curricula without changing course descriptions
(computer organization, operating systems, software engineering,
discrete math). Of these, discrete math and software engineering
are the easiest targets because they are rarely micromanaged by
the faculty, and they have a lot of space for applications of logic.

The choice of a formal language for expressing predicates about
software and hardware artifacts carries no special importance for
intellectual content, but practicalities do matter. ACL2 has the
advantage of fitting within the confines of a widely used and easy
to learn syntax (Common Lisp). It also has an extremely powerful
theorem prover, which flattens the learning curve and allows
students to succeed early without overburdening them with details
that fall outside normal course content.

It is fair to ask whether computational logic belongs in any course
in the undergraduate curriculum, since its coverage must displace
other topics. My assumption is that software and hardware
implementation cannot reach acceptable standards of reliability
without a sound basis in principles [1]. Since software and
hardware designs are, literally, formulas in logic, logic provides
an obvious body of principles suited to the purpose.

To be used effectively in designing software and hardware, logic
must be checked through the last detail, and that is feasible only
with mechanization. Fortunately, modern computational logics
are up to the task, and at least one of them is a useful tool for
some standard undergraduate courses.

6 The “random” universities were those with Division 1A football titles in

2008: Virginia Tech (ACC), Oklahoma (Big 12), Cincinnati (Big East),
Penn State (Big Ten), East Carolina (C-USA), SUNY Buffalo (MAC),
Utah (Mtn West), USC (PAC 10), Troy (Sun Belt), Florida (SEC), Boise
State (WAC). Troy’s website lacked CS curriculum information.

6. REFERENCES
[1] Allen, J. 2008. "Whither software engineering", Workshop

on Phil. and Engr. (London, UK, Nov 10-12, 2008) 48-49
http://www.raeng.org.uk/policy/philosophy/pdf/abstract_papers.pdf

[2] Beckert, B., Hähnle, R., and Schmitt, P.H., Eds. 2007.
Verification of Object-Oriented Software: the KeY approach.
LNCS 4334. Springer-Verlag.

[3] Claessen, K. and Hughes, J. 2000. "QuickCheck: a
lightweight tool for random testing of Haskell programs",
Proc. of the 5th ACM SIGPLAN International Conference
on Functional Programming (Montreal, Canada, Sep 18-21,
2000) 268-279.

[4] Dillinger, P.C., Manolios, P., Moore, J.S., and Vroon, D.
2006. "ACL2s: the ACL2 sedan", User Interfaces for
Theorem Provers Workshop (Seattle, WA, August, 2006) In:
Electronic Notes in Theoretical Computer Science, 174,2, 3-
18. http://www.sciencedirect.com/science/journal/15710661

[5] Eastlund, C., Vaillancourt, D., and Felleisen, M. 2007.
"ACL2 for freshman: first experiences", Proc. of the 7th
International Workshop on the ACL2 Theorem Prover and
Its Applications (Austin, TX, Nov. 15-16, 2007) 200-211.

[6] Eastlund, C. and Felleisen, M. 2009. "Toward a practical
module system for ACL2", Proc. of the 11th International
Symposium on Practical Aspects of Declarative Languages
(Savannah, Georgia, Jan 19-20, 2009) 46-60.

[7] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S.
2001. How to Design Programs. MIT Press.

[8] Findler, R.B., Clements, J., Flanagan, C., Flatt, M.,
Krishnamurthi, S., Steckler, P., and Felleisen, M. 2002.
"DrScheme: a programming environment for Scheme", J. of
Functional Programming 12, 2 (Mar. 2002) 159-182.

[9] Jackson, D. 2006. Software Abstractions. MIT Press.

[10] Kaufmann, M., Manolios, P., and Moore, J. 2000. Computer
Aided Reasoning: An Approach. Kluwer.

[11] O´Donnell, J., Hall, C., and Page, R. 2006. Discrete
Mathematics Using a Computer, 2nd edition, Springer.

[12] Page, R. 2001. "Functional programming ... and where you
can put it", ACM SIGPLAN Notices 36,9 (Sep. 2001) 19-24.

[13] Page, R. 2003. "Software is discrete mathematics", Proc. of
the 8th ACM SIGPLAN International Conference on
Functional Programming (Uppsala, Sweden, August 25-27,
2003) 79-86.

[14] Page, R. 2007. "Engineering software correctness", J. of
Functional Programming 17, 6 (Nov. 2007) 675-686.

[15] Page, R., Eastlund, C., and Felleisen, M. 2008. "Functional
programming and theorem proving for undergraduates: a
progress report", Proc. of the Workshop on Functional and
Declarative Programming in Education (Victoria, B.C.,
Canada, Sep. 21, 2008) 21-29.

[16] Vaillancourt, D., Page, R., and Felleisen, M. 2006. "ACL2 in
DrScheme", Proc. of the 6th International Workshop on the
ACL2 Theorem Prover and Its Applications (Seattle, WA,
Aug. 15-16, 2006) 107-116.

