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ABSTRACT 
Logic provides the mathematical basis for hardware design and 
software development. In fact, digital circuits and computer 
programs are logic formulas expressed in a formal language. 
Accordingly, educated computer scientists should have 
experience in reasoning about the formulas that their digital 
circuits and programs represent. An exemplary way to get this 
experience is to use computational logic in support of such 
reasoning. This paper searches the typical undergraduate 
curriculum in computer science for opportunities to include 
material on computational logic in the context of hardware and 
software design and implementation. It explains how 
computational logic has been included as an element of two 
courses required in most computer science programs. It discusses 
some successes and a few missteps that the author has 
experienced over the past nine years in developing this material 
and using it in the classroom, and it suggests opportunities for 
similar efforts in other courses.   

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/program verification – 
correctness proofs, formal methods. 

K.3.2 [Computers and Education]: Computer and Information 
Science Education – computer science education, curriculum. 

General Terms 
Design, Reliability, Languages, Verification. 

Keywords 
Formal methods, theorem provers, ACL2, software engineering, 
computer science curriculum. 

1. RATIONALE 
Logic provides the mathematical basis for hardware design and 
software development. In fact, digital circuits and computer 
programs are logic formulas expressed in a formal language. 

Accordingly, educated computer scientists should have 
experience in reasoning about the formulas that their digital 
circuits and programs represent. An exemplary way to get this 
experience is to use computational logic in support of such 
reasoning. 

Using ACL2 [10] as a computational logic engine for exposing 
students to this technology provides some advantages over other 
choices. It employs the widely used syntax of Common Lisp and 
smoothly integrates its theorem proving system within this syntax. 
This is important because it alleviates problems that come with 
introducing radically new elements into the curriculum. One such 
problem is resistance from students, computer science faculties, 
and outside advisors of academic programs. A programming 
notation in widespread use over a long period is easier to sell than 
one that has seen less use. Practical applications of ACL2 in 
industry and government are important in this regard. 

Another problem has to do with the steepness of the learning 
curve. Many computational logic systems require a substantial 
investment of intense study before they begin to pay off. ACL2 
presents a relatively simple basis for stating properties of software 
(and of hardware models), one that most students recognize from 
their knowledge of predicate calculus. Furthermore, the reasoning 
engine of ACL2 automatically generates inductive proofs of many 
correctness properties. This makes it possible for students to 
succeed early. Once they understand how to state properties as 
formulas in logic, ACL2 delivers proofs of many of those 
properties without assistance. 

The following sections describe experience with computational 
logic in three courses required of all computer science majors at 
the University of Oklahoma, discuss the impact of particular 
choices in material and projects, survey typical curricula for other 
opportunities to include similar material, and point out related 
efforts to put computational logic in baccalaureate courses. Some 
of the material in this paper has appeared in other forms in 
previous publications [13][14][15][16].1 

2. SOFTWARE ENGINEERING 
In my experience over the past five years of using ACL2 in 
software engineering courses, I have found that almost all 
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students adapt to the programming methods that ACL2 requires 
within the first few weeks of the course, and that they learn to 
state software properties as part of that experience. Grumbling is 
common, but no more so than with any new computer system, and 
the high success rate dampens this reaction as the course 
progresses. There have been a few hard cases (students who 
grumble loudly and never stop), but they comprise less than 2% 
of over 200 students who have used ACL2 as their programming 
environment over the past five years in my software engineering 
courses. 

The high level of acceptance has surprised me. It may be that 
students embrace the idea because it is one of the few things they 
learn in software courses that they didn’t know in high school. 

An even greater surprise has been the support of the advisory 
board of the School of Computer Science at OU. Most of them 
have reacted positively to the idea of focusing on correctness in 
software development and on using a theorem proving engine as 
an aid in this process. A contingent from the board attends final 
presentations by student teams of their software product at the end 
of the second semester of software engineering. Many of them 
comment positively on the use of ACL2 in the course. For 
example, Stephen Mercer, a lead developer on the LabVIEW 
team for National Instruments, observed that “one group showed 
the true power of this concept by writing a 3D rendering engine 
and then proving that their engine had no bit plane errors.” 

The material on computational logic in the two-semester, 
required, fourth-year course focuses primarily on correctness 
properties for functions and comprises about a third of the course 
content. The remaining content covers software design, 
architecture, and processes.  First semester software development 
projects range from 50-line to 300-line individual exercises (five 
to seven projects) to thousand-line team projects (one or two 
projects). Project descriptions provide informal specifications for 
programs and properties the programs are expected to satisfy. 
Students formalize these specs as ACL2 code, theorems, and tests. 

In the second semester of the software engineering course, student 
teams develop a software product over the course of the semester. 
There are a dozen or more separate deliverables spread more-or-
less uniformly across the semester, culminating in a documented 
software product, usually comprising 2,000 to 6,000 lines of 
ACL2, including theorems and theorem-based test specifications. 
Project details can be found in [14] and some of its references. 

For the future, I would like to design a multi-year series of 
projects with software security as a common theme. My intent is 
that the projects would lead to a body of software security 
components that continues to grow over the years. John Allen 
conjectures that security could be a killer application stimulating 
widespread use of formal methods in software development [1]. If 
so, this series of projects could tap into that opportunity. 

Students learn to state correctness properties by generalizing tests 
for correctness that they would design as a standard part of a 
software development effort. For example, while the associativity 
of the append operation for lists is an important one in some 
contexts, the basic correctness of the operator can be stated as an 
equality between the first n elements of its result and its first 
argument, and an equality between its second argument and the 
elements of its result, excluding the first n of them (where n is the 

number of elements in the first argument). This is the kind of 
property that students verify using the ACL2 theorem prover. 

Early on, students used ACL2 directly. They now use it from the 
Dracula programming environment [15][16] in the DrScheme 
system [8]. This environment provides the type of point-and-click 
interface that most students are accustomed to and extends ACL2 
i/o to include graphics and interactions with keyboard and 
pointing devices and includes an automated testing facility that 
generates random tests based on statements of theorems [15]. In 
addition, a modern module facility [6], important for software 
engineering, is under development. A prototype is now in use. 

The trickiest part of developing course material lies in designing 
projects. Students must define functions in a form that facilitates 
reasoning. Fortunately, the design patterns in the text of Felleisen, 
et al, How to Design Programs [7], provide good examples to 
follow. Students need a few tips on idioms that ACL2 handles 
well, such as counting down to zero when termination is triggered 
by a counter, rather then counting between general limits in either 
direction, but with this kind of instruction almost all students 
succeed in developing code to meet project requirements. 

The greatest care must be taken in designing projects in which 
ACL2 will succeed in verifying the properties students specify for 
the functions they define. In early projects, ACL2 must succeed 
on its own, without hints or lemmas. In later projects, students can 
tolerate projects in which ACL2 needs help. 

Students need guidance in choosing correctness properties to 
verify. Early projects describe properties in considerable detail. 
As the course progresses, detail declines but never disappears. I 
have not found a way to teach the material that enables most 
students to specify correctness properties entirely on their own. 

Students acquire varying levels of ability in specifying useful 
properties, of course, and the abilities of the top quartile are 
entirely satisfactory. The bottom ten percent fail to  grasp these 
concepts, and the rest fall somewhere in between.  

The success rate in using the theorem prover to verify properties 
has a similar distribution. About five percent of the students 
acquire a facility with the theorem prover well beyond my 
expectations, and most students acquire a basic understanding 
that, at least, would provide a basis for learning to use a theorem 
prover effectively if they found themselves in a software 
development organization that encouraged or required it. 
Resources for getting started with ACL2 in this context are 
available via internet.2 I would, of course, welcome collaboration 
with instructors who want to use or expand these resources. 

I conclude that the primary obstacle to success in the introduction 
of computational logic in software development courses is the 
will to do it on the part of the computer science faculty. 

3. DISCRETE MATHEMATICS / LOGIC 
Prior to beginning the work on software engineering education 
described in Section 2, I spent four years developing material for 
the logic portion of a standard discrete mathematics course 
required of all baccalaureate students in computer science. The 
goal of this material was to apply the principles of logic and 
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mathematical induction covered in most such courses directly to 
hardware and software artifacts, rather than using the contrived 
examples one sees in most discrete mathematics texts. While the 
material does not employ mechanized logic, it does serve to 
introduce students to stating and verifying properties of software 
and circuits through rigorous, mathematical reasoning. 

During the period of development of this material, OU offered 
two sections of discrete mathematics per semester. This provided 
an opportunity to measure differences in the effects of the 
standard approach to the subject and an approach applying logic 
to the task of verifying properties of digital circuits and software 
components. Data gathered over a period of three years on the 
performance of students from the two versions of discrete math in 
a subsequent software development course showed a statistically 
significant difference favoring the applied logic approach [13]. 

The primary content of the logic component of the discrete math 
course, which comprised about two thirds of the course material, 
focused on reasoning about digital circuit designs and software 
components expressed in an equation-based notation, namely the 
programming language Haskell, chosen because its syntax closely 
resembles standard algebraic notation. Other formal languages 
can be equally effective. For example, the TeachLogic Project, 
which covers similar material, employs Scheme.3 

Students learn to use logic and induction to verify properties of 
computing artifacts. They exhibit their abilities by solving about a 
hundred homework exercises and a couple dozen exam questions, 
about 90% of which require mathematical proofs. 

Proofs are carried out by hand, rather than by way of a 
computational logic. Students use an automated proof checker in 
the propositional logic portion of the course, and they see a 
demonstration in which the ACL2 theorem prover succeeds (in 
microseconds) in proving some of the properties the students have 
been recently struggling with. This leaves a positive impression 
and motivates students for ACL2 usage in software engineering. 

After completion of the project comparing the effects of the 
standard approach to logic in discrete math and the applied logic 
approach, the OU faculty decided to expand logic coverage by 
splitting discrete math into two courses, one in which all of the 
subject matter is logic applied to verification of hardware and 
software properties, and another covering the remaining discrete 
math topics (combinatorics, relations, functions, computational 
complexity, recurrences, and graph theory).  

The new course goes by the name “Applied Logic for Hardware 
and Software” and acts as the prerequisite for both discrete math 
and computer organization. Properties verified in lectures include 
the usual properties of the list concatenation operation 
(associativity and the proper relationships between operands and 
result), several properties of merge sort (ordering, element and 
length preservation, computation time), correctness and time 
consumption of the Russian peasant algorithm, full correctness for 
a formal model of a combinational circuit for a ripple-carry adder, 
and dozens of other useful computational components.  

Students apply the ideas in homework and exam problems similar 
to examples covered in lectures. In the end students have seen 
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logic in action in a hardware design and software development. 
One benefit is that students are well motivated to study logic 
because they see its relevance to computer science. Another is 
that students can apply logic in subsequent course work. 

Early in the course, function definitions appear as ordinary 
algebraic equations expressing simple properties of operations on 
data structures. I do not point out until later that these simple 
properties actually define functions. Instead, I focus on using 
logic, equation-based reasoning, and induction to derive more 
complex properties from the simple ones expressed in the 
equations (which happen to be definitional). 

Later, students discover that the equations do, in fact, define 
functions and that collections of functions comprise software 
specifying complex computations. The course is not about 
functional programming. It is not about programming at all. 
Students learn just enough about Haskell to manipulate formulas 
in reasoning about properties of engineering artifacts. It is in 
subsequent courses, such as software engineering, where students 
apply these ideas to their own software designs. 

As with the introduction of computational logic in software 
engineering, the primary obstacle to the application of logic to 
engineering artifacts in the discrete math curriculum is the desire 
of the faculty to do use this approach. It requires careful 
preparation, but resources are available as a starting point [11].4 

4. RELATED WORK 
Evidence of the use of computational logic in undergraduate 
computer science courses is hard to find. Manolios uses ACL2, 
via the ACL2 Sedan [4], in a lower division logic course 
introduced experimentally by Felleisen [5]. Tinelli5 has included 
assignments in the use of KeY [2], a tool for theorems and proofs 
about programs written in a subset of Java. Courses employing 
Haskell often use QuickCheck [3], which gives students practice 
in stating properties as logic formulas, an important skill in using 
computational logic systems. Jackson´s Alloy system is used in 
undergraduate classes and exposes students to logic as a tool for 
stating and verifying properties of software components [9]. 

5. CURRICULUM OPPORTUNITIES 
What courses provide the best opportunities to introduce 
computational logic to undergraduate computer science students? 
Designing a new course specifically for that purpose or choosing 
an existing course in formal methods is a straightforward path, 
and probably the easiest path to follow because the faculty seldom 
puts obstacles in the way of new courses or reasonable changes in 
the content of elective courses. 

However, if knowledge of computation logic is important for 
computer scientists, it must occupy a place in the required core of 
the computer science curriculum. That is, computational logic 
must be integrated into required courses. One way to look for 
productive targets would be to focus on courses that almost all 
computer science programs require. 

To get an idea of what those courses are, one could take a random 
sample of baccalaureate computing programs and make a list of 
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the most frequently offered courses. As an initial attempt in that 
direction, I chose ten computer science programs at random.6 

Seven courses were required in 90% or more of the surveyed 
programs and no other courses were required in over 60% of the 
programs. The high-probability courses were programming i/ii, 
discrete math, computer organization, data structures, operating 
systems, and software engineering. 

We have a start on introducing computational logic in discrete 
math and software engineering. Programming i/ii and data 
structures are difficult targets because most computer science 
faculties jealously guard the content of those courses [12]. That 
leaves computer organization and operating systems.  

Computer organization is an inviting target because 
computational logic is widely used in practice to verify properties 
of digital circuits, which comprise a part of the content of most 
computer organization courses. Probably there would not be a lot 
of space for hands-on practice with computational logic in a 
computer organization course, but there might be space for some 
lecture material, a homework problem, and an exam question. 

Operating systems are a tempting target because of the security 
issue. The idea of equation-based software for programming 
operating system components would be hard to sell, but ACL2 
models of certain operating system functions might be feasible.  

Therefore, I expect that the use of computational logic would be 
feasible in at least four courses required in almost all 
baccalaureate CS curricula without changing course descriptions 
(computer organization, operating systems, software engineering, 
discrete math). Of these, discrete math and software engineering 
are the easiest targets because they are rarely micromanaged by 
the faculty, and they have a lot of space for applications of logic. 

The choice of a formal language for expressing predicates about 
software and hardware artifacts carries no special importance for 
intellectual content, but practicalities do matter. ACL2 has the 
advantage of fitting within the confines of a widely used and easy 
to learn syntax (Common Lisp). It also has an extremely powerful 
theorem prover, which flattens the learning curve and allows 
students to succeed early without overburdening them with details 
that fall outside normal course content. 

It is fair to ask whether computational logic belongs in any course 
in the undergraduate curriculum, since its coverage must displace 
other topics. My assumption is that software and hardware 
implementation cannot reach acceptable standards of reliability 
without a sound basis in principles [1]. Since software and 
hardware designs are, literally, formulas in logic, logic provides 
an obvious body of principles suited to the purpose.  

To be used effectively in designing software and hardware, logic 
must be checked through the last detail, and that is feasible only 
with mechanization. Fortunately, modern computational logics 
are up to the task, and at least one of them is a useful tool for 
some standard undergraduate courses. 

                                                                 
6  The “random” universities were those with Division 1A football titles in 

2008: Virginia Tech (ACC), Oklahoma (Big 12), Cincinnati (Big East), 
Penn State (Big Ten), East Carolina (C-USA), SUNY Buffalo (MAC), 
Utah (Mtn West), USC (PAC 10), Troy (Sun Belt), Florida (SEC), Boise 
State (WAC). Troy’s website lacked CS curriculum information. 
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