
Automatic Verification for Interactive Graphical Programs

Carl Eastlund
Northeastern University

Boston, MA, USA
cce@ccs.neu.edu

Matthias Felleisen
Northeastern University

Boston, MA, USA
matthias@ccs.neu.edu

ABSTRACT
Modern software applications come with interactive graph-
ical displays. In the past, verification efforts for such pro-
grams have usually ignored the I/O aspects of programs and
focused instead on their core functionality. This approach
leaves open the question of how errors in the interactive part
of the program can affect its overall functionality.

In this paper we present an extension of Dracula (the
ACL2 development environment for DrScheme) with a
simple graphical framework. With Dracula we can automat-
ically prove theorems about interactive graphical programs,
guaranteeing their complete behavior. We have successfully
verified theorems about a number of interactive programs
with Dracula; we have also successfully used Dracula as
a motivational tool to introduce students to the world of
automated theorem proving.

Categories and Subject Descriptors
D [2]: 4—Software/Program Verification; F [3]: 1—Specify-
ing and Verifying and Reasoning about Programs; I [3]: 2—
Graphics Systems

General Terms
Verification

Keywords
ACL2, Dracula, Interactive graphical programs

1. THEOREM PROVERS IN THE AGE OF
GRAPHICAL APPLICATIONS

Modern applications interact with their users via rich graph-
ical interfaces. The complexity of concurrent user interac-
tions makes these applications error-prone. Simultaneously,
the integration of I/O with the fundamental program logic
(often called the model) means even shallow interface bugs

can cause deep, subtle, and persistent errors. Developers
need tools to find and rule out this kind of problem.

Researchers have developed abstract models of interactive
systems [7] and applied automated testing [19] and model
checking [10] techniques to help developers debug their user
interfaces. These methods give developers an assurance of
correctness about their programs. Large test suites check
properties of a finite subset of the program’s inputs; model
checkers verify a model based on the program.

Formal verification has been applied to other forms of
I/O; notably, the Sparkle theorem prover can verify a
model of concurrent filesystem operations [9]. We go even
further and automatically prove correctness theorems about
interactive graphical programs. Our approach relies on an
event loop with functional callbacks, exploits images as
first-class values, and introduces liveness properties. We
use ACL2 [16] because it is the most successful industrial-
strength theorem prover.1 ACL2 has verified large projects
including commercial floating point processors, a complete
micro-processor, and a Java virtual machine.

In this paper we present Dracula, the first tool providing
automatic theorem proving for interactive, graphical pro-
grams. The rest of the paper proceeds as follows. We
describe the language and user interface of Dracula in
section 2 and its graphical toolkit in section 3. Section 4
explains how we prove theorems about Dracula programs,
and section 5 details the projects we have verified. We
conclude with section 6 on related work and section 7 to
summarize our contribution.

2. DRACULA: AN IDE FOR ACL2
Dracula [23] is an extension of the ACL2 theorem prover,
implemented as a language level in the DrScheme integrated
development environment (IDE) [13]. Dracula uses the
DrScheme runtime system to simulate ACL2 programs, and
the ACL2 theorem prover to reason about them. Every
feature of Dracula comes with both an executable behavior
and a logical meaning for ACL2.

ACL2 stands for“Applicative Common Lisp: a Computa-
tional Logic”. It consists of a first-order functional language
(“Applicative Common Lisp”) and a first-order equational
logic (“Computational Logic”). The theorem prover infers
induction strategies to prove a programmer’s conjectures.

Figure 1 shows a small program in ACL2 containing a
function plus of two arguments and a conjecture plus-natp

1campus.acm.org/public/pressroom/press_releases/3_
2006/software.cfm



Figure 1: A verified ACL2 program in the Dracula IDE.

stating that plus performs addition on the natural numbers.
When entered into ACL2, the theorem prover first ensures
that plus terminates on all inputs. Once ACL2 admits
plus, it attempts to verify the statement of plus-natp for all
assignments to a and b. ACL2 proves this claim by induction
on the structure of the natural number a.

DrScheme is an IDE for a collection of programming
languages, ranging from Scheme to Java to Algol 60. Its
implementation and underlying language provide facilities
for easily creating and deploying new languages [5, 14].

DrScheme also provides a wealth of tools for program-
mers using these languages, including online documentation,
stack traces, a syntax checker, and a unit testing framework.
Of special interest are DrScheme’s teachpacks: libraries
of interactive functionality designed for students. These
include the World teachpack, which provides graphical I/O.

Dracula. Figure 1 shows a screenshot of Dracula in
action. The two sides of the Dracula interface reflect the
executable and logical components of the language. The
left-hand side provides two windows for formulating and
executing programs: the definitions window, where users
edit their programs, and the interactions window, where
users try out their functions.

The right-hand side of the display is Dracula’s interface
to the ACL2 theorem prover. It provides buttons to invoke
ACL2 and to send each term from the definitions window
to the theorem prover. Dracula paints functions green, once
shown to terminate on all inputs, and also paints theorems
green once verified; red highlights failures otherwise. Green
terms are locked from further editing to faithfully represent
ACL2’s logical state; users may edit red terms or undo the
admission of green terms to edit them. Below the control
buttons, Dracula shows the theorem prover’s output; above
them, it shows a proof tree naming key checkpoints for quick
diagnosis of a failed proof attempt.

3. INTERACTIVE GRAPHICAL
PROGRAMS FOR ACL2

Dracula incorporates the World teachpack: an interactive,
functional graphics framework originally developed as part

of an undergraduate curriculum to teach program design
principles [12]. The teachpack provides a simple functional
framework for I/O, images as values, and an event loop.

Figure 2 shows a simple interactive graphical program
called Darts based on this framework. The player has three
tries to throw a dart at a target by clicking on it. The game
window shows the target (a big red circle) and the remaining
darts (little blue triangles). A single hit wins the game; three
consecutive misses loses. On the right of figure 2, we see the
player miss twice and finally hit the target.

We represent the current game “world” as the number of
remaining darts, or the symbol ’win. The function win-or-
lose determines the end of the game (0 or ’win); any other
World is an ActiveWorld (a positive integer).

During the game, when the user clicks the mouse the
throw-dart function compares the mouse position to the
target using dart-hits (elided for space). The input signature
of throw-dart includes ActiveWorld ; throw-dart decrements
the value of the world under the assumption that it is
positive. It assumes the player has a dart left to throw,
and relies on win-or-lose to end the game otherwise.

The show function turns the game state into an image
(a first-class value), including an informative message when
the game ends. Otherwise it shows the target and remaining
darts using show-target and show-darts (both elided).

At the end of the program, we start the interactive world
with big-bang, providing an initial value of 3. We instruct
Dracula to end the game should the player win-or-lose, to
throw-dart every time the player uses the mouse, and to
show the game on a 120× 120 canvas.

The World machine. In general, the World teachpack
operates as an “abstract machine” with five instructions.
As in the Darts game, the programmer supplies a data
representation for the state of the world and functions
defining the behavior of each user interaction. The big-
bang command assembles the World machine and sets it
in motion. It accepts five optional function arguments as
shown in figure 3. The machine uses World 0 as the initial
world value; each subsequent clause defines the behavior of
one of the machine’s instructions.



;; win-or-lose : World → Boolean
(defun win-or-lose (w)

(or (equal w ’win) (equal w 0)))

;; throw-dart : ActiveWorld Int Int Action → World
(defun throw-dart (w x y a)

(if (equal a ’button-down)
(if (dart-hits x y) ’win (1− w))
w))

;; show : World → Image
(defun show (w)

(cond ((equal w ’win) (text "You win!" 24 ’blue))
((equal w 0) (text "You lose." 24 ’blue))
(t (show-darts w (show-target)))))

(big-bang 3
(stop-when win-or-lose)
(on-mouse-event throw-dart)
(on-redraw show 120 120))

Figure 2: Source code and frames from the Darts game.

Figure 3: Structure of the World event loop.



(stop-when done)
;; done : World → Boolean

After each event, the World machine checks for a done state.
When the current world satisfies done, no further events are
processed. The event handlers rely on this behavior; their
first input is an ActiveWorld , meaning a World for which
done does not hold.

(on-tick-event tock RATE)
;; tock : ActiveWorld → World
;; RATE : Rational

Every RATE seconds, the clock ticks and the World machine
transforms the world with the tock function.

(on-key-event react)
;; react : ActiveWorld Key → World
;; A Key is a Character or Symbol .

Each time the user presses a key, the World machine reacts
accordingly, producing a new world based on the current
one and the keystroke. Regular keys (e.g., A, 0, or +)
are represented as characters, while special keys (e.g., F1
or Escape) are represented as symbols.

(on-mouse-event click)
;; click : ActiveWorld Int Int Action → World
;; An Action is ’button-up, ’button-down, ’drag,
;; ’move, ’enter, or ’leave.

Whenever the user moves the mouse or presses (or releases) a
button, the World machine updates the world with click . It
produces a new world based on the current one, the mouse’s
x and y coordinates, and the type of action performed.

(on-redraw render WIDTH HEIGHT )
;; render : World → Image
;; WIDTH , HEIGHT : Nat

The World machine opens a canvas of dimensions WIDTH
by HEIGHT for graphical output. It renders the image of
the world to the canvas after each event.

The World machine processes events, updates the canvas,
and keeps track of the current world value until done.
Figure 3 gives a visual depiction of this process. From a
semantic perspective, this form of I/O control is closely
related to Clean’s model of input and output [1]. It is
also somewhat reminiscent of the Yale school of functional
reactive programming [4, 11].

For convenience, the function arguments to big-bang are
optional. The World machine ignores events for which no
handler is provided, allowing the programmer to focus on
events of interest (as seen in Darts). If there is no render
function, the world comes without a visual presentation. If
the done predicate is omitted, the World machine processes
events indefinitely.

Images. Most of the datatypes used by the World
machine already exist in ACL2: numbers, symbols, and
characters. Graphical output introduces a new datatype:
images. The World teachpack includes operations defining
a functional image representation; figure 4 describes some of
the most important operations.

The representation of images in Dracula’s runtime sim-
ulation is complex to support efficient rendering, but to
the user they are essentially two-dimensional vectors of
pixels. They are distinct from other datatypes (not merely
cons-based lists, for instance). Images are compared for

equality pixel-by-pixel, so two images constructed differently
may still be treated as the same. Dracula renders images
graphically (rather than textually) when produced as a
result in the interactions window, so their representation
is never exposed.

4. REASONING ABOUT INTERACTIVE
GRAPHICAL PROGRAMS

Dracula inherits the executable implementation of the World
teachpack from DrScheme. To preserve the system’s duality
of execution and logical reasoning, we must assign to the
World machine a logical meaning in ACL2. Otherwise, it is
impossible to state and prove theorems about interactive
graphical programs. In addition, we establish common
patterns for verifying safety and liveness properties.

As implemented in DrScheme, the World machine event
loop is a potentially non-terminating program. Input events
may never occur, or the world may not reach a final
state. Standard techniques exist for reasoning about non-
terminating state machines in ACL2. For one instance, a
program may model finite prefixes of a computation [3]. For
another, a program may represent a partial, tail-recursive
function with a total function extending its behavior [18].
We choose the former approach.

We model the World machine’s event loop as a function
operating on a fixed list of input events representing a prefix
of the user’s interactions. This function is constructed
automatically by big-bang using the macro facilities of
ACL2 and DrScheme. An event loop with all handlers
provided has this form:

;; event-handler : ActiveWorld Event → World
(defun event-handler (w e)

(cond
((tickp e) (tock w))
((keyp e) (react w e))
((mousep e)
(click w (mouse-x e) (mouse-y e) (mouse-action e)))

(t w)))

;; event-loop : ActiveWorld EventList → World
(defun event-loop (w es)

(declare (xargs :measure (len es)))
(cond
((endp es) w)
((done w) w)
(t (event-loop (event-handler w (car es)) (cdr es)))))

The event-loop function dispatches individual events to
event-handler until the computation is done, or it runs out
of events.2 The done clause is omitted if big-bang has
no stop-when clause. We elide the full representation of
events, but the three disjoint types are recognized by the
predicates tickp, keyp, and mousep. Mouse events support
the accessors mouse-x, mouse-y and mouse-action.

The event-handler auxiliary function processes individual
events. It has one clause per input handler supplied to big-
bang. The event handler updates the world via tock for
timer events; react for keyboard events, passing along the
keystroke; and click for each mouse event, passing in x , y ,

2The declare clause in event-loop helps ACL2 make a
termination argument.



Basic shape constructors
They consume dimensions, a
drawing mode (’solid or ’outline),
and a color (e.g., ’red).

circle : Nat Mode Color → Image
rectangle : Nat Nat Mode Color → Image
triangle : Nat Mode Color → Image
star : Nat Nat Nat Mode Color → Image

Various image constructors
Includes text rendering, lines, blank
scenes, and image overlay with
offset.

text : String Nat Color → Image
line : Int Int Color → Image
empty-scene : Nat Nat → Image
place-image : Image Int Int Image → Image

Predicate and accessors
Support for recognizing images and
computing their dimensions.

imagep : Any → Boolean
image-width : Image → Nat
image-height : Image → Nat

Figure 4: A few image functions from the World teachpack.

and action data. Any events not explicitly handled leave
the world unchanged.

The complete big-bang computation for a sequence of
events es is equal to (event-loop World 0 es). If an on-
redraw clause is given, the image on the canvas after the
same sequence of events is (render (event-loop World 0 es)).

Returning to Darts, big-bang produces the following
event loop:

;; event-handler : ActiveWorld Event → World
(defun event-handler (w e)

(cond
((mousep e) (throw-dart w

(mouse-x e)
(mouse-y e)
(mouse-action e)))

(t w)))

;; event-loop : World EventList → World
(defun event-loop (w es)

(declare (xargs :measure (len es)))
(cond
((endp es) w)
((win-or-lose w) w)
(t (event-loop (event-handler w (car es)) (cdr es)))))

The event loop handles each event until the player manages
to win-or-lose. The handler reacts to mouse events by
calling throw-dart , and ignores other events.

Safety. With an explicit representation of the World
machine, we can begin to verify properties of interactive
graphical programs. Let’s look at a simple safety property:
the event loop preserves some invariant of the world. To
begin, we state the property:

;; invariant : Any → Boolean
(defun invariant (w) . . . )

(defthm event-loop-invariant
(implies (invariant w)

(invariant (event-loop w es))))

(defthm big-bang-invariant
(invariant (event-loop World 0 es)))

The invariant predicate formalizes our invariant; event-loop-
invariant states that the event loop preserves it. The big-
bang-invariant corollary states that the big-bang computa-
tion starting at World 0 satisfies the invariant. These three

pieces constitute a general pattern for safety proofs about
the World machine.

For the Darts game, we use the representation of World
as our invariant. We instantiate the pattern above to state
our conjecture, adding sufficient annotation for the theorem
prover to verify it:

;; dart-gamep : Any → Boolean
(defun dart-gamep (w)

(or (natp w) (equal w ’win)))

(defthm event-loop-dart-gamep
(implies (dart-gamep w)

(dart-gamep (event-loop w es))))

(defthm big-bang-dart-gamep
(dart-gamep (event-loop 3 es))
:hints
(("Goal"

:in-theory (disable event-loop-dart-gamep)
:use (:instance event-loop-dart-gamep (w 3)))))

The dart-gamep predicate recognizes the Darts world: ei-
ther a number of remaining darts or ’win. The event-
loop-dart-gamep conjecture states the preservation of dart-
gamep throughout the event loop; its corollary big-bang-
dart-gamep states that whole World computations satisfy
dart-gamep. ACL2 automatically proves event-loop-dart-
gamep. It requires only two hints to verify big-bang-dart-
gamep, specifying how to apply event-loop-dart-gamep to
the initial world.3

The Dracula World teachpack supports this pattern of
safety proofs with a macro, (world-preserves invariant). It
expands into conjectures of the form described above and
provides appropriate default hints to the theorem prover.

Liveness. Once we can verify properties of the world
representation, we can turn our attention to externally
observable program behavior. We illustrate the point with
a termination property: after some number of events, the
computation must yield a final world with respect to done.
We formulate the conjecture based on the kind of events
that contribute to termination:

;; interesting-eventp : Event → Boolean
(defun interesting-eventp (e) . . . )

3It is common for ACL2 to infer inductive proofs and rely
on hints for corollaries.



;; count-interesting-events : EventList → Nat
(defun count-interesting-events (es)

(cond
((endp es) 0)
((interesting-eventp (car es))
(1+ (count-interesting-events (cdr es))))

(t (count-interesting-events (cdr es)))))

(defthm big-bang-measure
(implies (≥ (count-interesting-events es) MAXIMUM )

(done (event-loop World 0 es))))

The conjecture big-bang-measure requires the world to reach
a final state after MAXIMUM events satisfying interesting-
eventp, counted by count-interesting-events. Other events
are ignored; for instance, keystrokes may advance the world
computation, while moving the mouse may not.

Our statement suggests a more general lemma. At any
point in the computation, there is a measure of “interesting”
events remaining before a final world:

;; measure : World → Nat
(defun measure (w) . . . )

(defthm event-loop-measure
(implies (and (invariant w)

(≥ (count-interesting-events es)
(measure w)))

(done (event-loop w es))))

The event-loop-measure lemma assumes that invariant is
indeed true for all reachable states of the world, and states
that measure computes the maximum number of interesting
events before reaching a final world. The big-bang-measure
conjecture is a corollary, where MAXIMUM is the measure
of World 0 . This pattern captures termination for many
World-based programs; proving other liveness properties is
also possible with variations on this strategy.

By applying this formula to the Darts game, we can verify
that cheating is impossible: the player cannot get more
than three attempts to hit the target. After at most three
mouse clicks, the game must end one way or the other; see
figure 5 for the text necessary to verify this property. The
darts-remaining function computes the number of attempts
the player has left; the clickp predicate recognizes mouse
clicks and count-clicks counts them. The event-loop-darts-
remaining conjecture states that a Darts game w ends after
no more than (darts-remaining w) mouse clicks; big-bang-
darts-remaining says the whole game allows 3 clicks. ACL2
verifies event-loop-darts-remaining automatically, and again
needs only two hints to verify its corollary.

Dracula supports this pattern of termination proofs with
another macro:

(world-ends-after measure interesting-eventp invariant)

This form expands into a count function and conjectures
following the pattern shown above with appropriate hints.

Images. So far we have reasoned about the inputs and
control behavior of our game. It is also important to reason
about our outputs. The Dracula World teachpack includes
an axiomatization of the portable properties of images,
without translating the full details of their implementation
to ACL2. Observations such as the imagep predicate and
the dimensions of basic shapes are guaranteed in the logic.
Others depend on system attributes, such as the font of

;; clickp : Event → Boolean
(defun clickp (e)

(and (mousep e)
(equal (mouse-action e) ’button-down)))

;; count-clicks : EventList → Nat
(defun count-clicks (es)

(cond
((endp es) 0)
((clickp (car es)) (1+ (count-clicks (cdr es))))
(t (count-clicks (cdr es)))))

;; darts-remaining : World → Nat
(defun darts-remaining (w)

(if (natp w) w 0))

(defthm event-loop-darts-remaining
(implies (and (dart-gamep w)

(≥ (count-clicks es)
(darts-remaining w)))

(win-or-lose (event-loop w es))))

(defthm big-bang-darts-remaining
(implies (≥ (count-clicks es) 3)

(win-or-lose (event-loop 3 es)))
:hints
(("Goal"

:in-theory (disable event-loop-darts-remaining)
:use (:instance event-loop-darts-remaining (w 3)))))

Figure 5: Text from which ACL2 can prove that
Darts must end after 3 throws.

text images, and are left abstract. Properties such as the
commutativity and associativity of non-overlapping image
overlay are partially axiomatized based on conservative
bounding box approximations.

Dracula programs can verify output properties such as
the size of images and whether all parts of a rendering fit
on the screen at once; proofs are fully portable and hold on
machines with different graphics drivers and hardware.

5. VERIFIED INTERACTIVE
GRAPHICAL PROGRAMS

To validate the applicability of Dracula and the above
recipes for safety and liveness, we conducted six experiments
proving properties of interactive programs. The first five
are small video games representative of student verification
projects; the last is a simple text editor.

UFO. Our UFO game is a one-enemy version of Space
Invaders. The UFO falls from the top of the screen, weaving
left and right, dropping bombs. Meanwhile, the player
controls a tank at the bottom of the screen, moving left
and right and firing missiles upward. The player wins if a
missile hits the UFO; the player loses if a bomb hits the tank
or the UFO lands.

We can verify that the objects in the game (the UFO,
tank, missiles, and bombs) stay within the visible portion of
the screen (a safety property), and that the game ends in a
fixed amount of time (a liveness property) because the UFO
must eventually land. Figure 6 shows these properties.



;; objects-in-bounds : Any → Boolean
(defun objects-in-bounds (w)

(and (gamep w)
(in-bounds (game-tank w))
(in-bounds (game-ufo w))
(all-in-bounds (game-missiles w))
(all-in-bounds (game-bombs w))))

(defthm objects-always-in-bounds
(implies (objects-in-bounds w)

(objects-in-bounds (event-loop w es))))

;; ufo-distance : World → Nat
(defun ufo-distance (w)

(+ (ufo-lateral-distance w)
(∗ (ufo-vertical-distance w) (1+ ∗WIDTH∗))))

;; count-ticks : EventList → Nat
(defun count-ticks (es)

(cond
((endp es) 0)
((tickp (car es)) (1+ (count-ticks (cdr es))))
(t (count-ticks (cdr es)))))

(defthm ufo-eventually-lands
(implies (and (objects-in-bounds w)

(≥ (count-ticks es) (ufo-distance w)))
(game-over (event-loop w es))))

Figure 6: Excerpts from verified properties about
the UFO program.

Hangman. The player guesses letters in a word; correct
guesses expose more of the word, while incorrect guesses
reveal a condemned stick figure. The game ends when either
the full word or full stick figure becomes visible.

Our Hangman game is proven to terminate after a fixed
number of keystrokes; each advances the player one step
closer to winning or losing.

Worm. In the Worm game, a.k.a. Snake or Nibbles, the
player controls the direction of a worm on a grid. The grid
has walls and, somewhere, a piece of food. If the worm eats
the food, it grows and a new piece of food appears. If the
worm runs into a wall or its own tail, the game ends.

For this game, we can prove that the worm’s tail never
crosses itself; the head can cross the tail, but the game must
end before it gets any further. We can also prove that (for
similar reasons) the worm’s tail is always inside the grid,
and that the segments of the worm are always adjacent to
each other.

Blocks. This is a one-block version of Tetris: single
blocks, rather than formations of four, drop down the screen;
the player must guide them into position. Completed rows
vanish and the blocks above drop down.

We can verify two properties of the correct stacking of
blocks. They never fall off the bottom of the screen, and
never overlap one another.

Bikes. Inspired by the movie TRON, the Bikes game
enables each player to control a bike that leaves a permanent
colored trail behind it. Players are eliminated as their
bikes run into trails (others’ or their own); the last player

Project Lines Conjectures Time (s)
Hangman 365 11 1.48
Blocks 450 16 0.86
UFO 696 23 13.97
Worm 824 34 4.90
Editor 1,117 59 5.04
Bikes 1,354 84 202.11

Figure 7: Statistics about our experiments.

standing wins. Input from multiple players is distinguished
by assigning players different keys. The trails left by bikes
are represented as lists of coordinates of their corners.

In this experiment, we are able to prove that segments
of the bikes’ trails always run in cardinal directions, never
diagonally.

Editor. Our text editor, inspired by a previous case study
on algebraic specifications [21], allows the user to manipulate
a single line of text. The controls include typing, deleting,
selecting text, navigating left and right, and an unbounded
undo history. The editor’s display shows a prefix of the
current text, dropping any characters that do not fit entirely
within the window.

We are able to verify key properties of the controls,
including: typing enters the appropriate text, deleting does
not remove text beyond the selection, undo restores the
text before the last typing operation, and navigation doesn’t
affect the undo history.

This example also allows us to verify two properties of the
editor’s rendered image, namely the displayed text prefix
always fits on the screen, and is always maximal. In other
words, no longer prefix of the typed text fits.

Results. Figure 7 shows statistics on the size of each
project, the theorem proving effort (by counting conjectures,
including both lemmas and main theorems), and how long
the theorem prover takes to verify them. The Bikes game
required the most conjectures, and by far the longest time
for ACL2 to verify, because we used a compact and indirect
representation (leaving out points of the trail between the
corners). An implementation storing each individual point
in the trails might have been easier to verify. However, our
choice of representation demonstrates Dracula’s ability to
scale to nontrivial problems.

For each project, we were able to verify one or more
meaningful properties, including (over all the projects)
safety and liveness conditions, as well as reasoning about
graphical outputs.

There was a class of liveness conditions we were not able
to express, however. Informally, they represent conditions
that “can” happen, rather than “must”. At any point in
the UFO game before the UFO lands, the tank can fire a
missle that destroys the UFO. In the Worm game, the worm
can always make its way to the food, unless it has backed
itself into a corner. With appropriate placement, the Blocks
can always clear a row. These are liveness conditions—they
represent eventualities that must be possible until the end
of the game becomes inevitable—but no single type of event
makes them inevitable. Instead, a sequence of event choices
must be made to bring about these conditions; the game is
not “fair” if these choices are impossible.

Our formulation of liveness is too näive for these condi-
tions. Merely choosing the final condition worm-eats-foodp



(in Worm) is insufficient; no fixed choice of interesting-
eventp expresses the worm’s path to the food. We need new
patterns of proofs to reason about this kind of property.

6. RELATED WORK
Dowse et al. have used the Sparkle theorem prover [20]
to verify a monadic filesystem API augmented with de-
terministic concurrency [8, 9]. Their system permits non-
termination by including a bottom element in all types,
which cannot later be ruled out. Davis reported on
proofs about file I/O in ACL2 [6], which uses an explicit
state-passing style and disallows non-termination. Dracula
allows users to write interactive graphical programs with-
out monads or state passing, and can express both non-
terminating interactions and provable liveness properties,
e.g., termination.

Other work has focused on verifying fully featured in-
teractive systems such as interactive web programs or
hierarchical, event-driven GUIs. Godefroid et al. [2] and
Memon [19] have developed automated testing tools for
these domains. While practical, this method of verification
does not provide the level of assurance of formal reasoning,
as no test suite for a complex program is ever exhaustive.

Krishnamurthi et al. [17] and Dwyer et al. [10] have
applied model checking to interactive (web and GUI) pro-
grams. In this approach, verification systems extract a
model from a source program; this is usually a graph with
nodes representing program states and edges representing
control flow. Each node is annotated with atomic propo-
sitions: simple properties known to hold in the associated
program state. A model checker can then verify properties
of the program expressed as temporal logic propositions
about the model. For instance, verification of a banking web
site might require reaching a state where “PIN submitted”
holds true before proceeding to a “withdrawal approved”
state. Much like our approach, there are methods for model
checking tailored to safety and liveness properties. The set of
properties that can be verified by a model checker depends
on the method of constructing a model, the set of atomic
propositions, the temporal logic used (e.g. computation tree
logic vs. linear temporal logic), and the choice of model
checking algorithm.

There is ongoing work in the verification of operating
systems, such as the Verisoft [15] and L4.verified [22]
projects, that includes automatic verification of interactive
I/O at the hardware and device driver level. This is an im-
portant branch of verification, but we consider interactions
between machine components to play a significantly different
role in programs and correctness criteria from concurrent
interactions with a human user.

7. CONCLUSIONS
We present Dracula, a tool based on the ACL2 theorem
prover, providing automatically verified, executable, inter-
active graphical programs. We have demonstrated Dracula’s
ability to reason about the internal representation of such
programs as well as their inputs and outputs.

Dracula represents another step toward automated formal
verification of complex, real-world interactive programs. We
are already working on an extension of the World teachpack
with traditional GUI widgets, e.g., buttons, sliders, drop-
down menus, etc. Based on a preliminary design, we

conjecture that our technique extends naturally to GUIs
that include these widgets as well as GUIs that use a
hierarchical organization.

In collaboration with Rex Page (Oklahoma U.), we intend
to ensure that Dracula’s support of interactive programming
is accessible to senior students in software engineering
capstone courses. Conversely, we consider the verification
of interactive graphical programs as an ideal tool to prepare
senior and master-level students for positions and courses
where they verify state machines and hardware processors.

Acknowledgements. Many thanks to Pete Manolios for
ideas on verifying state machines, to Dale Vaillaincourt and
Sky O’Mara for their contributions to the implementation,
to Shriram Krishnamurthi for comments on an early draft,
and to the NSF for a research grant supporting this work.

8. REFERENCES
[1] Achten, P. and M. J. Plasmeijer. The ins and outs of

Clean I/O. Journal of Functional Programming,
5(1):81–110, 1995.

[2] Benedikt, M., J. Freire and P. Godefroid. VeriWeb:
Automatically testing dynamic web sites. In
Proceedings of the 11th International World Wide
Web Conference, 2002.

[3] Boyer, R. S. and J. S. Moore. Mechanized formal
reasoning about programs and computing machines.
In Veroff, R., editor, Automated Reasoning and Its
Applications: Essays in Honor of Larry Wos. MIT
Press, 1996.

[4] Cooper, G. H. and S. Krishnamurthi. Embedding
dynamic dataflow in a call-by-value language. In
Proceedings of the 15th European Symposium on
Programming, volume 3924 of Lecture Notes in
Computer Science, p. 294–308. Springer, 2006.

[5] Culpepper, R., S. Tobin-Hochstadt and M. Flatt.
Advanced macrology and the implementation of
Typed Scheme. In Proceedings of the 8th Workshop on
Scheme and Functional Programming, p. 1–14. ACM,
2007.

[6] Davis, J. Reasoning about ACL2 file input. In
Proceedings of the 6th International Workshop on the
ACL2 Theorem Prover and its Applications, p.
117–126. ACM, 2006.

[7] Dix, A. J. and C. Runciman. Abstract models of
interactive systems. In People and Computers:
Designing the Interface, p. 13–22. Cambridge
University Press, 1985.

[8] Dowse, M., A. Butterfield, M. van Eekelen, M. de Mol
and R. Plasmeijer. Towards machine-verified proofs
for I/O. In Proceedings of the 16th International
Workshop on the Implementation and Application of
Functional Languages, Technical Report 0408,
Institute of Computer Science and Applied
Mathematics of the University of Kiel, p. 469–480.
ACM, 2004.

[9] Dowse, M., A. Butterfield and M. C. J. D. van
Eekelen. Reasoning about deterministic concurrent
functional I/O. In Proceedings of the 16th
International Workshop on the Implementation and
Application of Functional Languages, p. 177–194, 2004.

[10] Dwyer, M. B., Robby, O. Tkachuk and W. Visser.
Analyzing interaction orderings with model checking.



In Proceedings of the 19th IEEE International
Conference on Automated Software Engineering, p.
154–163. IEEE, 2004.

[11] Elliot, C. and P. Hudak. Functional reactive
animation. In Proceedings of the 2nd ACM SIGPLAN
International Conference on Functional Programming,
p. 196–203. ACM, 1997.

[12] Felleisen, M., R. B. Findler, M. Flatt and
S. Krishnamurthi. How to Design Programs. MIT
Press, 2001.

[13] Findler, R. B., C. Flanagan, M. Flatt,
S. Krishnamurthi and M. Felleisen. DrScheme: A
pedagogic programming environment for Scheme. In
Programming Languages: Implementations, Logics,
and Programs, volume 1292 of Lecture Notes in
Computer Science, p. 369–388. Springer, 1997.

[14] Flatt, M. Composable and compilable macros: You
want it when? In Proceedings of the 7th ACM
SIGPLAN International Conference on Functional
Programming, p. 72–83. ACM, 2002.

[15] Hillebrand, M. A. and W. J. Paul. On the architecture
of system verification environments. In Hardware and
Software: Verification and Testing, volume 4899 of
Lecture Notes in Computer Science, p. 153–168.
Springer, 2008.

[16] Kaufmann, M., P. Manolios and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, 2000.

[17] Licata, D. R. and S. Krishnamurthi. Verifying
interactive web programs. In Proceedings of the 19th
IEEE International Conference on Automated
Software Engineering, p. 164–173. IEEE, 2004.

[18] Manolios, P. and J. S. Moore. Partial functions in
ACL2. Journal of Automated Reasoning, 31:107–127,
2003.

[19] Memon, A. M. An event-flow model of GUI-based
applications for testing. Software Testing, Verification,
and Reliability, 17(3):137–157, 2007.

[20] Mol, M. D., M. V. Eekelen and R. Plasmeijer.
Theorem proving for functional
programmers—Sparkle: a functional theorem prover.
In The 13th International Workshop on
Implementation of Functional Languages, volume 2312
of Lecture Notes in Computer Science, p. 55–72.
Springer, 2001.

[21] Partsch, H. On the use of algebraic methods for formal
requirements definitions. In Requirements Engineering,
Arbeitstagung der GI, p. 138–158. Springer, 1983.

[22] Tuch, H., G. Klein and G. Heiser. OS
verification—now! In Proceedings of the 10th
Workshop on Hot Topics in Operating Systems, p.
7–12. USENIX, 2005.

[23] Vaillancourt, D., R. Page and M. Felleisen. ACL2 in
DrScheme. In Proceedings of the 6th International
Workshop on the ACL2 Theorem Prover and its
Applications, p. 107–116. ACM, 2006.


