DoubleCheck Your Theorems

Carl Eastlund
Northeastern University
Boston, MA, USA
cce@ccs.neu.edu

ABSTRACT

Theorem proving in ACL2 is a complex undertaking. Initial
attempts to admit a lemma often fail, in which case the
programmer must either redirect ACL2’s efforts or change
the lemma. ACL2’s output does not always indicate whether
the formulation of the lemma or the proof process is at fault.

In this paper we present the automated testing framework
DoubleCheck as an extension of Dracula, the ACL2 devel-
opment environment for DrScheme. DoubleCheck creates
randomized inputs for ACL2 conjectures and uses those to
test the conjecture. If these tests fail, the programmer is
presented with a list of counterexamples to the conjecture.
DoubleCheck can be used to guide the theorem proving
process or, in a classroom setting, as a gentle introduction
to automated program verification.

Categories and Subject Descriptors

D [2]: 4—Software/Program Verification; D [2]: 5— Testing
and Debugging; F [3]: 1—Specifying and Verifying and
Reasoning about Programs

General Terms
Reliability, Verification

Keywords
ACL2, Dracula, QuickCheck, Randomized testing

1. SEEING IS DISBELIEVING

Program verification in ACL2 is an iterative process. Kauf-
mann, Manolios, and Moore [4] present “The Method” for
tackling a large proof in four steps. First, write down a to-
do list of lemmas. Second, submit the first lemma to the
theorem prover. Third, if the theorem prover verifies the
lemma, remove it from the list and repeat. Fourth, if the
theorem prover fails, adjust the lemmas in the list to try to
correct the lemma that failed, and repeat.

8ene even.lisp - DrScheme (=]
even.lisp ¥ (defun ..)¥ Debug @ Check Syntax @, Run & Stop @
; sqgr : Integer -> Integer (DEFTHM EVEN-SQUARES ...) m
(e e (6 sxwmrins FA|LED ¥reeeess
* x x)) 1 Goal preprocess
1| Goal' simp .
- c 0 | Goal"PUSH =1 Y
; All squares are even:
(defthm even-sgquares stop M To Cursor P4
(implies (integerp x)

Reset € Undo € Admit b AL

(evenp (sgr x))))

Language: ACL2

i No induction schemes are
> (sgr -3) m

suggested by *1. Consequently, the m

9 . proof a
> - attempt has failed. v
AcLz > 5:2 [P

Figure 1: The Dracula graphical user interface.

Step four is the trickiest part of using ACL2: when the
theorem prover does not arrive at a proof as expected, does
the problem lie in the soundness of the lemma or in the proof
search heuristics? The programmer must choose to debug
one fault or the other, but the wrong choice might waste
hours or days attempting to prove an unsound lemma or
find nonexistent bugs in the program or the conjecture.

This problem is exacerbated in a classroom setting.
Students are often unfamiliar with formal reasoning and
discouraged by the task of deciphering the theorem prover’s
output. In 2007, Eastlund et al. experimented with teaching
ACL2 to freshmen [3]. Their report demonstrated a need for
quick diagnosis of a failed proof attempt.

The course used Dracula [9], the ACL2 programming en-
vironment for DrScheme. Figure 1 shows its user interface.
The program is on the top left, with output from interactive
evaluation below. Controls for ACL2 are on the right, with
a proof tree above and detailed output below.

Figure 1 shows a simple program with a flawed conjecture:
the square of any integer is even. The theorem prover rejects
this claim with the message, “No induction schemes are
suggested.” This describes where ACL2’s proof search went
wrong, but is equivocal about the lemma. Students (and
others) need concrete suggestions of how to proceed.

Libraries such as QuickCheck [2] provide a way for
programmers to find concrete counterexamples to properties
expressed as predicate functions. QuickCheck’s testing
framework generates random inputs for predicates and
presents a report to the programmer of how many trials
were run, how many failed, and the specific inputs for which
each property failed (if any).

We present DoubleCheck, an adaptation of QuickCheck
for ACL2, as an extension of the Dracula programming
environment. DoubleCheck allows ACL2 programmers

(s NONS] SchemeUnit
wDoubleCheck M even-squares m
vewln-squams (in DoubleCheck)

2 Total: 18 successes, 32 failures

3

B Failures (15/50)

5 4 failed on check-acl2-true

6 5 failed on check-acl2-true

7 6 failed on check-acl2-true

R \L) | 9 failed on check-acl2-true

;' 10 failed on check-acl2-true

14 failed on check-acl2-true

1o 15 failed on check-acl2-true

1 18 failed on check-acl2-true

12 20 failed on check-acl2-true

13 22 failed on check-acl2-true

14 23 failed on check-acl2 -true

15 24 failed on check-acl2 -true

16 29 failed on check-acl2 -true

17 30 failed on check-acl2-true

18 31 failed on check-acl2-true

19

20 Errors (17/50)

1 |34 threw an exception of type exn:fail

4 | with message: even-squares: Out of

22 v | random values. 3
m m 35 threw an exception of type exn:fail =3
— — %

Figure 2: Summary of a property’s trials.

to quickly check whether a lemma is sound or unsound,
generating a high degree of confidence in the former case
and concrete counterexamples in the latter.

DoubleCheck may be used as a supplement to “The
Method”, aiding during step four in determining how to
change the to-do list of lemmas when a proof attempt
fails. It can also be used as a lightweight form of software
verification. This is especially compelling in a classroom set-
ting, where DoubleCheck presents the benefits of automatic
validation without the burden of a full logical proof.

2. CHECK AND DOUBLECHECK

DoubleCheck is provided as a “teachpack” in Dracula. A
teachpack is similar to an ACL2 book, but with additional
interactive behavior (such as graphics) when run in Dracula.

To use DoubleCheck, a program must include it as a book:

(include-book "doublecheck" :dir :teachpacks)

The book provides facilities for declaring randomly-tested
properties, distributions for generating random data, and
tools to construct new distributions.

Properties are declared with the defproperty form. In
the simplest case, the programmer translates a defthm
conjecture to an equivalent property. For example, the
conjecture even-squares from figure 1 can be rewritten as
the following property:

(defproperty even-squares
(z :where (integerp z))
(evenp (sqr z)))

This translation expresses the same conclusion from the
same premise. The key difference is that defproperty
requires z and its precondition to be declared explicitly.

DoubleCheck records properties until the programmer
gives the directive to check them:

(check-properties)

®0O0 SchemeUnit
wDoubleCheck M| 4 M
veven-squares in even-squares
1
2 The test case failed on check-aclz-true.
3
4 Check location: unknown:#f:#f
5
6 Backtrace of check failure: [from
7 mzscheme
8 w Message:
J |Check failure |
10
11 b]
12 arameters:
13 0 |
14
15 Additional information:
16 key x:
17 [s01 |
18 key check-expect:
19 (check-expect (let ((x '501)) (evenp
20 {sqr X)) 1) o
21 -
'y
2z v | Timing: ’]
cpu: 35; real: 37; gc: 0 =3
(Run) (Clear)
— — %

Figure 3: Data gathered from a single trial.

At this point, the body of each property is run repeatedly on
random assignments to its free variables. Dracula displays
a graphical summary of the results to the user.

Figure 2 shows graphical output summarizing 50 trials of
the even-squares property above. The left side of the display
lists the trials in red if they fail and green if they succeed.
On the right, DoubleCheck displays the property’s name,
success and failure counts, and a summary of exceptional
cases. First it lists failures—in this case, 15 trials failed to
satisfy the property; DoubleCheck provides links to more
detailed information. Lastly it lists errors that prevented
running a trial. In 17 trials, DoubleCheck “ran out” of
random values (it failed to produce values satisfying the
precondition in an allotted number of attempts).

To see where the property went wrong, a user can inspect
individual test cases. Selecting trial 4 (the first failure)
changes the display as shown in figure 3. Details of the
trial are displayed on the right. Listed under “Additional
information”, we see the “key” x was 501. This is a concrete
counterexample: (sqr z) does not satisfy evenp when z
is 501. Below that information, the key check-expect
provides an expression that may be copied into the program
as a repeatable (deterministic) regression test using check-
expect [5] (similar to assert-event).

Like the ACL2 theorem prover, DoubleCheck sometimes
needs programmer assistance. The defproperty form has
several options for refining a counterexample search. Its full
grammar (with brackets denoting optional keywords) is:

defproperty name [:repeat count] [:limit max

Y
(var [:where pred] [:value generator] [:limit maz] ...)
expression)

The :repeat option sets the number of trials DoubleCheck
runs. The :limit option sets the maximum number of
attempts DoubleCheck makes to generate random values
that satisfy their preconditions. By default, every property
is given 50 trials with a limit of 2500 attempts to construct
random inputs.

Each free variable of the property may optionally have
:‘where, :value, or :limit keywords. The :where clause sets
a precondition; DoubleCheck discards random inputs that
do not satisfy it. The :value clause provides a generator
expression, selecting a custom random distribution for the
variable. The :limit clause overrides the property’s :limit
number for a single variable. By default, a variable has
no precondition, a distribution including all types of ACL2
data, and uses the property’s generation limit.

Everything in Dracula has two meanings: its executable
behavior (including any interactive content not present
in ACL2) and its logical semantics. DoubleCheck is no
exception. When passed to the theorem prover, each def-
property is interpreted as a logically equivalent defthm.
The variable declarations and random distributions are
stripped off, the hypotheses are joined to the conclusion with
implies, and hints are retained.

Choosing the right distribution of random inputs is critical
for effective random testing. DoubleCheck includes a library
of random data generators. These generators are designed
to produce a wide range of commonly-used value sets with
minimal effort, though at present their distributions are
not necessarily exhaustive or finely tuned. We expect to
improve these distributions in future releases based on our
own experience and feedback from users. In the meantime,
we provide facilities for defining custom distributions.

The following generators produce atomic data:

(random-boolean)
(random-symbol)
(random-char)
(random-string)

(random-natural)
(random-integer)

(random-rational)
(random-number)

The randomly chosen characters, symbols, and strings are
based on a uniform choice of lower-case letters. Natural
numbers are chosen from a geometric distribution with an
average of 1,000; integers, rationals, and complex numbers
are constructed from random natural numbers and signs.
The next two generators provide integer distributions:

(random-data-size) (random-between lo hi)

The sizes of random data structures (strings, symbol names,
lists, and s-expressions) are taken from random-data-size.
Initial attempts to base their size on random-natural
(mean 1,000) produced intractably large values, so we added
random-data-size (mean 4).

The random-between generator provides a uniform
distribution over integers between lo and hi, inclusive.

These generators combine the previous ones to make
distributions of generic atoms and s-expressions:

(random-atom) (random-sexp)

The random-atom function chooses among booleans, sym-
bols, characters, strings, and numbers. The random-sexp
function builds a cons-tree of a random size (based on
random-data-size), with a random atom at each leaf.

The random-element-of generator makes a uniform
choice among the elements of a non-empty list:

(random-element-of Ist)

Parametric distributions of lists and s-expressions are cre-
ated by the random-list-of and random-sexp-of macros,
with members and leaves (respectively) generated by the
given sub-expression:

(random-list-of expr [:size size])
(random-sexp-of expr [:size size])

Each takes an optional size argument which defaults to
(random-data-size). They evaluate expr once for each
list or s-expression element; for instance, (random-list-of
(random-symbol)) might generate '(a b ¢), and (random-
sexp-of (random-symbol)) might generate (a . (b . ¢)).

Finally, the random-case macro provides nondetermin-
istic choice among multiple expressions:

(random-case expr [:weight weight] ...)

Each expression has an associated weight, defaulting to 1.
Programmers can write new generators:

(defrandom name (arg ...) body)

This defines functions like defun, but the function may refer
to generators, and is treated as a generator itself.

For example, the following generator constructs a random
multiset with elements from a provided list:

(defrandom random-multiset (elements)
(random-case
nil :weight 1/4
(cons (random-element-of elements)
(random-multiset elements))))

Our formulation of randomization violates the axioms of
ACL2; for instance, two identical calls to a random function
may generate different values.! To preserve the soundness
of ACL2, generators may only be used in the :value clause
of defproperty or in the definition of other generators.

3. BEHIND THE CURTAIN

Dracula presents a two-part interface to ACL2: for execu-
tion, programs are compiled to PLT Scheme code that sim-
ulates ACL2’s runtime behavior; for verification, programs
are marshalled and submitted to the (unmodified) ACL2
theorem prover. In keeping with this duality, every teach-
pack in Dracula has two parts to its implementation. One
defines its interactive behavior for Dracula’s simulation; the
other is an ACL2 book describing its logical representation.

The runtime implementation of DoubleCheck uses the
SchemeUnit [10] testing framework as a front-end. Dou-
bleCheck constructs the code that generates random inputs,
runs each trial, and annotates failed cases with relevant data.
SchemeUnit provides tools to express hierarchical test suites,
collect annotations, and display a graphical summary.

The defproperty macro constructs a new SchemeUnit
test suite containing one test case for each trial to be run.
DoubleCheck constructs a lazy stream of random inputs for
the property based on its random generators, preconditions,
and repetition limits. The stream generates new values
from the generators when requested, skips (but records) any
that do not satisfy their precondition, and stops when the
repetition limit is reached.

Each trial of a property reads its inputs from the associ-
ated stream. If the stream is empty, the test case reports
an error and describes previously rejected values so the
programmer may adjust the random generators. Otherwise,

"We experimented with sound formulations of randomness
using explicit seed arguments, but found they needlessly
complicated the interface.

if the property fails for a set of (valid) inputs, DoubleCheck
reports a failure to SchemeUnit annotated with the choice
of inputs.

DoubleCheck collects the test suites generated by def-
property until the program calls check-properties. At
this point, the individual properties are collected in one
master test suite and run. SchemeUnit opens a window
with a graphical display of the test suite and runs each trial
in turn. As each trial starts, DoubleCheck’s lazy stream
generates its input; when it finishes, SchemeUnit updates
the display with the new results.

SchemeUnit provides a convenient framework for explor-
ing the results of DoubleCheck properties, but also presents
some design constraints. SchemeUnit tests have a static
layout: the entire test hierarchy must be constructed before
any tests are performed. With a dynamic framework,
DoubleCheck could add random trials as their inputs are
generated and give them informative names based on their
input, so the user could see counterexamples on the top-level
summary page. This would also obviate the need for check-
properties, as DoubleCheck could add each property to the
test suite as it is declared. Finally, SchemeUnit does not
collect any data from successful test cases, so DoubleCheck
cannot help the user compare inputs from failing cases to
those from successful cases.

Generator functions ensure that they are not used in a
logical context by performing a dynamic check each time
they are run. The DoubleCheck random input stream sets
a flag during its execution; if a generator runs with the flag
down, it raises an exception.

The ACL2 book representing DoubleCheck’s logical im-
plementation translates each property to a logical con-
jecture. Random generators and check-properties have
trivial, program-mode definitions.

The defproperty macro assembles a defthm from the
source property’s hypotheses and body. For example,

(defproperty plus-comm :repeat 100 :limit 1000
(z :where (integerp z) :value (random-integer)
y :where (integerp y) :limit 200)
(=Hzy) (+yuz)
thints (("Goal" :in-theory (theory ’minimal-theory))))

expands into this ACL2 code:

(defthm plus-comm
(implies (and (integerp z) (integerp y))
(=(+zy) (+y2)
thints (("Goal" :in-theory (theory ’minimal-theory))))

This definition expresses the logical premises and conclusion
of the source property, but lacks the (logically irrelevant)
randomized testing annotations.

4. PAST WORK, FUTURE DIRECTIONS

There are many other systems in existence for automated
testing and counterexample generation. The example that
initially inspired DoubleCheck was QuickCheck [2], the
randomized testing library for Haskell.

Like DoubleCheck, QuickCheck uses randomized inputs
to test predicate-based properties in an applicative lan-
guage. Unlike DoubleCheck, QuickCheck uses typeclasses
to build random distributions, so that input generation is
type-directed. This means that default distributions in

QuickCheck are more precise than in DoubleCheck and
always match the type portion of a precondition.

The initial QuickCheck implementation had some statis-
tical features, such as marking “trivial” trials, that Dou-
bleCheck has not yet incorporated. QuickCheck has since
developed many new features, such as failure shrinking—
which starts at a failing input and tries to derive the
smallest related input that fails—that should be evaluated
for inclusion with DoubleCheck.

SmallCheck [6] generates test cases for properties exhaus-
tively, rather than randomly, testing all the “small” inputs
for a given type. The hypothesis behind SmallCheck is that
most errors can be found with a small input size. The simple
nature of ACL2’s value set makes SmallCheck-style testing
a natural tool to adopt in addition to random distributions.

There is a precedent for applying QuickCheck-style ran-
domized testing to generate counterexamples for automated
theorem proving, specifically for the Isabelle/HOL theorem
prover [1]. Random distributions are created automatically
for each datatype via polytypic programming, rather than
being customized by the programmer.

The ACL2 community has produced other tools for
automatic counterexample generation; for instance, by using
SAT solving [8] and model checking [7] to generate coun-
terexamples for ACL2 conjectures. These tools automati-
cally inspect the property under consideration to direct their
search; DoubleCheck users must perform this task manually
by choosing appropriate random distributions.

DoubleCheck constitutes the first randomized testing
toolkit for ACL2. It provides a lightweight complement to
formal verification. Random testing is also beneficial for
students learning to use ACL2. As Rex Page stated in a
recent educational report [5], “DoubleCheck helps students
with one of the trickiest task of using logic in programming,
namely, the transition from ideas to formal statements.”
In other words, DoubleCheck provides automatic validation
without the burden of constructing a logical proof.

DoubleCheck is still under development. The simple but
frustrating task of translating conjectures to properties by
declaring free variables and separating hypotheses might be
alleviated by better choice of syntax or incorporation with
defthm itself. Similarly, the arbitrary nature of the built-in
random distributions and the trade-offs of SchemeUnit as a
front-end may be revisited in future releases.

Acknowledgements.

Thanks to my adviser, Matthias Felleisen, for his inspira-
tion and support in developing DoubleCheck; to Rex Page
for putting the tool to good use and providing insightful
feedback; and to Carter Schonwald for the prototype imple-
mentation. This paper is brought to you by the letters ACL,
the number 2, and a research grant from the NSF.

5. REFERENCES

[1] Berghofer, S. and T. Nipkow. Random testing in
Isabelle/HOL. In Proceedings of the 2nd IEEE
International Conference on Software Engineering and
Formal Methods, p. 230-239. IEEE, 2004.

[2] Claessen, K. and J. Hughes. QuickCheck: a
lightweight tool for random testing of Haskell
programs. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming,
p. 268-279. ACM, 2000.

[3] Eastlund, C., D. Vaillancourt and M. Felleisen. ACL2

for freshmen: first experiences. In Proceedings of the
7th International Workshop on the ACL2 Theorem
Prover and its Applications, p. 200-211. ACM, 2007.
Kaufmann, M., P. Manolios and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, 2000.

Page, R., C. Eastlund and M. Felleisen. Functional
programming and theorem proving for
undergraduates: a progress report. In Proceedings of
the 13th Workshop on Functional and Declarative
Programming in Education. ACM, 2008.

Runciman, C.; M. Naylor and F. Lindblad.
SmallCheck and Lazy SmallCheck: automatic
exhaustive testing for small values. In Proceedings of
the First ACM SIGPLAN Symposium on Haskell, p.
37-48. ACM, 2008.

[7]

8]

[9]

(10]

Spiridinov, A. and S. Khurshid. Pythia: Automatic
generation of counterexamples for ACL2 using Alloy.
In Proceedings of the 7th International Workshop on
the ACL2 Theorem Prover and Its Applications, 2007.
Sumners, R. Checking ACL2 theorems via SAT
checking. In Proceedings of the 3rd International
Workshop on the ACL2 Theorem Prover and Its
Applications, 2002.

Vaillancourt, D., R. Page and M. Felleisen. ACL2 in
DrScheme. In Proceedings of the 6th International
Workshop on the ACL2 Theorem Prover and its
Applications, p. 107-116. ACM, 2006.

Welsh, N., F. Solsona and I. Glover. SchemeUnit and
SchemeQL. In Proceedings of the 3rd Workshop on
Scheme and Functional Programming, Technical
Report GIT-CC-02-28, College of Computing, Georgia
Institute of Technology, p. 21-30. ACM, 2002.

