Hypertext Navigation of ACL2 Proofs with XMLEye

_Antonio Francisco Inmaculada
Garcia-Dominguez Palomo-Lozano Medina-Bulo
Escuela Superior de Escuela Superior de Escuela Superior de
Ingenieria Ingenieria Ingenieria
Universidad de Cédiz Universidad de Cadiz Universidad de Cadiz
C/Chile 1, CP 11003 C/Chile 1, CP 11003 C/Chile 1, CP 11003
Cédiz, Spain Cadiz, Spain Cadiz, Spain
antonio.garciadominguez francisco.palomo inmaculada.medina
@uca.es @uca.es @uca.es

ABSTRACT

Difficult problems often require complex solutions, and the
proofs checked by ACL2 are no exception. There are steep
learning curves involved both in producing the proof script
and analyzing its long and complex results. Existing tools,
such as DrACulLa or ACL2s, tend to focus more on the first
aspect than the second one.

We have developed XMLEye, a framework for creating view-
ers for complex structured documents. Upon this frame-
work, we have created a tool which can reorganize ACL2
proofs and present them in a more accessible format. First,
the plain text proof produced by ACL2 is converted into
an intermediate form. Then, it is rendered as hypertext
through a transformation described by a collection of exter-
nal scripts.

We introduce the overall design and implementation of XML-
Eye as a framework and discuss the customizations required
to reorganize and render ACL2 proofs.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Ver-
ification—Formal methods; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—In-
formation filtering; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—Graphical user interfaces
(GUI); 1.7.2 [Document and Text Processing]: Docu-
ment Preparation— Hypertext, markup languages

General Terms
Design, Experimentation

Keywords
Formal methods, ACL2, proof presentation, XML, XSLT,
XHTML

1. INTRODUCTION

As an industrial-strength theorem prover, ACL2 has been
successfully used to prove properties about complex hard-
ware and software. However, new users (both in academia
and industry) are confronted with a steep learning curve be-
cause of its inherent complexity and its text-based interface.

Several projects [8, 24] are already underway to create a
graphical interface to ACL2 (or restricted subsets thereof)
which is more intuitive and aesthetically pleasing. Most of
the new functionality is geared towards making proof scripts
easier to write, though some facilities for browsing their
ACL2 output are also added. Nevertheless, ACL2’s out-
put remains essentially the same: a long, linear and slightly
formatted text describing a series of proofs with goals that
can branch widely and deeply. This is difficult to read by
humans and to process by external tools.

We created XMLEye with this sort of problem in mind.
XMLEye is a generic framework for creating viewers for com-
plex structured document formats. It is licensed under the
GNU GPL and available at [13, 12]. We have used it to
implement a tool which can process a considerable subset
of ACL2’s output and present it in hypertext form, high-
lighting the different parts of the proof, establishing links
between its elements and deriving new information of inter-
est to the end user. Our work on top of XMLEye is divided
into two parts: a Perl program which converts the proof to
XML, and a collection of XSLT stylesheets to reorganize the
proof and render it as XHTML.

This paper is organized as follows. Section 2 briefly intro-
duces the technologies needed to understand the rest of the
text. Section 3 shows how ACL2 proofs are processed by
XMLEye and discusses the work involved. After a qualita-
tive evaluation of the current status of the tool in section 4,
we compare our work with similar approaches and present
some conclusions along with an outline of our future work.

2. TECHNICAL BACKGROUND

At its core, XMLEye rests on top of three technologies from
the W3C (World Wide Web Consortium): XML (eXten-
sible Markup Language) [20], XSLT (eXtensible Stylesheet
Language Transformations) [4], and XPath (XML Path lan-
guage) [5]. In this section we will briefly introduce them and
show some examples of their usage.

2.1 Markup Languages: XML and XHTML

Plain text documents by themselves lack information about
their expected presentation or meaning. We can convey
these by marking parts of the original text with tags. For
instance, a tag could indicate that it should be rendered in
a heavier font (presentation markup), or that some text is a
heading (logical markup).

A markup language defines a set of tags with their own syn-
tax and semantics. In most cases, markup languages are
specializations or vocabularies of metalanguages, which de-
scribe entire families of markup languages. HTML [15] (Hy-
perText Markup Language) itself, which most of the Web is
based on, is an SGML [14] (Standard Generalized Markup
Language) vocabulary.

However, SGML as a whole is overly complex. Most markup
languages in use today are based on an ever-popular sub-
set of it: XML 1.0 [20]. XHTML [21], for example, is an
XML version of HTML. There exist several technologies to
describe XML vocabularies and validate documents against
them, but they lie beyond the scope of this paper. An ex-
ample of a simple XML document describing a point in 3D
space is shown in listing 1.

One important feature of XML is its extensibility. To avoid
name collisions, all element and attribute names can be
qualified with namespaces. Most of the time, we can freely
mix and match elements and attributes from different name-
spaces, including user-defined ones.

XML tools and technologies (such as XSLT and XPath,
described below) usually model structured documents as
rooted trees including nodes of different kinds: element nodes,
text nodes, and so on.

2.2 Transforming XML Documents: XSLT
We will often need to process XML documents and convert
them to another format, be it plain text, HTML, XML or
just about any sequence of bytes. Writing these transfor-
mations using a general-purpose programming language is,
except for some trivial cases, unwieldy and inefficient.

XSLT 1.0 [4] (XSLT hereafter) is a specialized XML vocab-
ulary for describing stylesheets that indicate how the input
XML document should be processed. It favors a declara-
tive and functional style which can be heavily optimized by
most available XSLT processors. It is based on the concept
of a template, which is applied to produce a subtree of the
output when the current node from the input tree matches
some predicate.

A sample XSLT stylesheet for the previous example can be
found in listing 2. It copies the original document, over-
writing the original y-coordinate value with the z-coordinate
value.

2.3 Selecting XML Nodes: XPath

XSLT 1.0 uses another W3C standard: XPath 1.0 [5] (XPath
from now on). This specification defines a language to declar-
atively construct queries on XML documents.

With XPath, we can select one or several nodes from the

<point>
<x>1< /x>
<y>2<[y>
<z>0</z>
< /point>

Listing 1: A sample XML document

< xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!—— When an ’y’ element is found... ——>
<xsl:template match="y">
<!—— Replace y—coordinate with z—coordinate ——>

<y><xsl:value—of select="../z2"/></y>
< /xsl:template>

<!—— Otherwise... ——>
<xsl:template match="x*">
<!—— Copy elements and attributes ——>
<xsl:copy>
<!—— Descend recursively ——>
<xsl:apply—templates/>
< /xsl:copy>
< /xsl:template>

< /xsl:stylesheet >

Listing 2: A sample XSLT stylesheet

XML document tree and optionally compute values from
them. XPath includes a set of predefined functions that can
be extended in an implementation-dependent way. Let us
present some simple queries on the sample XML document
shown in listing 1:

e "/point/x" selects the z-coordinate element from the
point.

e "count(//text())" returns how many text nodes ex-
ist.

e "//x + //y + //2" sums the x, y and z coordinates.

o "//x[. > 1]" selects all coordinates that contain val-
ues higher than 1.

3. ACL2 PROOFS IN XMLEYE

In the previous section, we introduced the main technologies
behind XMLEye. We will now expand on how we used the
XMLEye framework to create a viewer for ACL2 proofs.

XMLEye [13, 12] itself is a graphical Java application that,
by default, can only browse XML documents. To open any
other format, we need to integrate an external converter to
XML. XMLEye supports document format descriptors for
this purpose. They are simple XML documents which asso-
ciate a set of file extensions (i.e., .1lisp and .acl2) with the
proper commands for XML conversion and editing.

To browse ACL2 proofs as such in XMLEye, we have defined
our own document format descriptor, converter and XSLT
stylesheets. Other formats (such as outputs from other the-
orem provers) could be adapted in a similar fashion. In fact,
some [18, 23] already generate XML output.

XMLEye can now open our new document format, but it
will be rendered using generic XML views, which do not
produce good enough results. To illustrate our point, we
will use a modified version of the proof script of the Towers
of Hanoi tutorial [25] as our running example in this section.
We have divided it across three files:

books/hanoi.acl2 Following the recommended approach
to book compilation described in the ACL2 documen-
tation [17], this file establishes the initial world before
certifying the hanoi book. In this case, it just defines
the HANOI package and starts the certification process.
An abridged version is shown in listing 3.

books/hanoi.lisp An ACL2 book defining the MOVE and
HANOI functions to be analyzed, and LEN—APPEND, a
lemma that is later used in the proof of the main the-
orem. See listing 4.

hanoi-use.lisp Includes the hanoi book and uses it to prove
the main theorem, a result about the number of moves
required by the HANOI function defined therein to solve
the problem. See listing 5.

In XMLEye, a collection of graphical widgets manages the
document tree structure and, upon selection, presents the
XHTML rendering of the current node to the user. Viewing
the proof generated by the hanoi-use.lisp script as XML
would look as in figure 1. Soon, one realizes that this struc-
ture is cumbersome to navigate and difficult to understand:
the information is too scattered to be useful.

For this reason, users can install external XSLT stylesheets
to define their own transformations. The stylesheets, which
are able to reorganize the whole document and render nodes
as XHTML, can be freely switched separately at run-time.
Compare with figure 2, where the same information is ap-
plied a different stylesheet.

In short, XMLEye uses a four-stage process (depicted on fig-
ure 3) to browse any document: XML conversion, document
reorganization, node rendering and navigation. We will talk
in more detail about each of these steps in the following
subsections.

3.1 Conversion

Had ACL2 produced the necessary XML output, no con-
version would be needed. However, this is not the case:
ACL2’s plain text output is a mix of natural language de-
scriptions and S-expressions which is difficult to parse au-
tomatically. We first considered modifying ACL2 to have it
produce XML, but we discarded this option. A number of
modifications would have to be done and subtle soundness
bugs could be introduced. Additionally, it would be expen-
sive to maintain these modifications over different versions
of ACL2.

(defpkg "HANOI"
(union—eq *acl2—exports* *common—lisp—|...]*))

(certify—book "hanoi" 1)

Listing 3: books/hanoi.acl2 — initial world

(in—package "HANOI")

(defun move (a b)
(list 'move a ’to b))

(defun hanoi (a b ¢ n)
(if (zpln)
(if (equal n 1)
(list (move a c))
(append (hanoi a ¢ b (1— n))
(cons (move a c)

(hanoi b a ¢ (1— n)))))))

(defthm len—append
(equal (len (append x y))
(+ (len x) (len y))))

Listing 4: books/hanoi.lisp — basic definitions

(include—book "books/hanoi")

(defthm hanoi—moves—required
(implies (and (integerp n)
(<= 0n))
(equal (len (hanoi:hanoi a b ¢ n))
(1= (expt 2 n)))))

Listing 5: hanoi-use.lisp — main theorem

Therefore, we need a converter that can be integrated into
XMLEye. Only a few constraints are imposed by the frame-
work: progress is reported through the standard error stream,
results are sent back through the standard output stream,
and success is indicated through a zero status code. Our cur-
rent approach uses a Perl program that takes the main proof
script and produces an XML version of the proof generated
by ACL2. It follows four steps:

1. Dependency analysis: we need to produce a tree list-
ing, for each proof script file used in the proof, all
books and certification scripts it depends on and the
events defined in it. We start from the main proof
script and analyze their S-expressions, descending re-
cursively through their invocations to INCLUDE—BOOK
and CERTIFY—BOOK.

We require that users provide a certification script for
every book (i.e., a .acl2 file containing the initial cer-
tification world and the appropriate CERTIFY—BOOK
command) or, at least, a cert.acl2 file, according to
the guidelines of the BOOK—MAKEFILES section in the
ACL2 documentation [17].

KMLEEye I = anoi-usetlisp

Eile Browse Preferences Help

= ot ¢ «»

-0

&-£3 summary Name Value

uID INE5606

@MPLIES (AND (NTEGERP N) (<=
0 IN)) (EQUAL (LEN
HANOI:HANGCI A B C N)) (+ -1
EXPT 2 M)

formula

hanoi-use.lisp X X
=l script 4 =]
-0 deps " Ancestors
---D includebook
B defthm 1. script
- 2. defthm
3. subgoal
4. simp
Attributes

(]

Ready |

Figure 1: XMLEye browsing a proof: xml stylesheets

XMLEEye LI = anoi-usetlisp

File Browse Preferences H

B= % ¢«
hanoi-use.lisp X -\Uanni,aclz X

B script :
#-3 includebook BOOKS/HANOI Ancestor events
Eo defthm HANOI-MOVES-REQUIRED
1. SCI‘iIZ_)t
2. defthm HANOI-MOVES-REQUIRED
B Subgoal *1/5
L[Subgoal *1/5° Subgoal *1
-[] subgoal *1/4
-7 subgoal *1/3 Formula
[subgoal *1/2
5"'?5Ubg°ﬂ'*lfl (IMPLIES (AND CINTEGERP N) (<= O N3
""" [Subgoal *1/1 (EQUAL (LEN (HANOI::HANOI A B C M))
""" [summary (+ -1 (EXPT 2 N)I))
Induction

(l

Ready |

(include-book "books/hanci™)

{defthm hanoi-moves-required
(implies (and (integerp nf]
(<= 0 nj)
fequal (len (hanoi::hanoi a b < n))
(1- (expt 2 njjl))

-—:-—- hanoi-use.lisp Top (11,29] Git:master) e ————————————— =

Wrote /Jhome/antonio/Documentos/xmleye-git/ACLZ-Procesador/t/testInpute/hanoi-usee
€.ligp

Figure 2: XMLEye browsing a proof: ppACL2 stylesheets

ACL2 proof script
pprocACL2

(Perl converter)

4

ACL2 and

Conversion
postprocessor

4

ACL2 XML proof
XMLEye

(Java GUI)

4

Preprocessing

Reorganization XSLT stylesheet

Decorated and revised
ACL2 XML proof

Renderin Vitsy LI
g stylesheet
XHTML rendering
of the current node §
Navigation Swing UI widgets

Figure 3: Overall architecture of the tool

Before continuing to the next step, we convert each
dependency to XML through a post-order traversal of
the tree. This allows the converter to link each sym-
bol reused by the main proof to the place where it is
defined.

The XML dependency tree for our running example is
shown in listing 6:

e hanoi-use.lisp defines the main theorem and
depends on the certification script hanoi.acl2,
contained within the relative path books/.

e books/hanoi.acl2 defines the HANOI package and
depends on the book that it certifies, hanoi.lisp,
which is contained in the same directory.

e books/hanoi.lisp defines three events inside the
HANOI package: MOVE, HANOI and LEN—APPEND.
As we can see, it does not depend on any file.

. ACL2 invocation: ACL2 is invoked on each modified
proof script and results are saved to independent .out
files in the corresponding directories.

If the XML version of the proof saved from a previous
conversion run exists and its modification time is more
recent than the modification time of the proof script,
then we can assume that the proof is unchanged. Thus,
we can stop at this point and safely keep the existing
version as is.

This behavior is very similar to that of a makefile.
. Proof analysis: every generated .out file is analyzed

and an in-memory object-oriented representation is con-
structed. Roughly speaking, the proof is divided into a

<deps>
<dep book_dir="books/" book_file="hanoi.acl2">

<deps>
<dep book _dir="" book file="hanoi.lisp">
<deps>
<events>
<event>HANOI:MOVE< /event>
<event>HANOIL:HANOI< /event>
<event>HANOI::LEN—APPEND< /event>
< /events>
< /deps>
</dep>
<events>
<event>HANOI< /event>
< /events>
< /deps>

</dep>
<events>

<event>
ACL2::HANOI-MOVES—REQUIRED
< /event>

< /events>
< /deps>

Listing 6: XML dependency tree for hanoi-use.lisp

list of pairs with each S-expression and its correspond-
ing output, and then converted into an object whose
type depends on the ACL2 command used.

If there is no specific code for analyzing a particular
command, the analyzer will fall back to printing a list
of paragraphs and S-expressions. If present, the sum-
mary will be processed as usual. This is useful, for
instance, when evaluating functions or calling macros.

On the other hand, if the specific code for analyzing
some command fails to parse some part of its output,
a fatal error will be raised. This is important for re-
gression testing: there have been some subtle changes
in ACL2’s output over time, and it would be difficult,
if not impossible, to check manually for them.

. Proof conversion: using the in-memory representation

of a .out file proof, an XML document which reflects
all the extracted information is produced. It includes
an XML representation of the dependency tree ob-
tained in the second step. We have striven to keep
intact as much of the original ACL2 output as possi-
ble, while making more information readily available
to the XSLT stylesheets.

For instance, whitespace in S-expressions is preserved,
and the original text of the ACL2 proof is copied ver-
batim. However, XML markup has been added so the
XSLT stylesheets can tell whether a paragraph con-
tains regular text or an S-expression.

Listing 7 shows the result from converting the output
of the HANOI—MOVES—REQUIRED DEFTHM event. All
information is contained in a defthm node, with at-
tributes detailing the name of the event, the original
S-expression (preserving whitespace) and whether the
:0TF flag is active or not.

<defthm name="HANOI-MOVES-REQUIRED"
otf="NIL"
formula=" (DEFTHM HANOI-MOVES []) ">
<rule_classes>
<rule_class type=":REWRITE">< /rule_class>
< /rule_classes>
<subgoal label="Goal"
formula=" (IMPLIES (AND [..]))">
<simp>
<rules>
<rule name="NIL" type="case analysis" />
< /rules>
<output>
<paragraph>
By case analysis we reduce the conjecture to
< /paragraph>
< /output>
<subgoal label="Goal’" [...]>
< /subgoal>
<subgoal label="Subgoal *1" [...]|>
<induction plan="(AND (IMPLIES [...]>))">
< /induction>
< /subgoal>
< /[simp>
< /subgoal>
<summary>
<warnings> < /warnings>
<time total="0.00" prove="0.00" [...]/>
<rules>
<rule name="HANOI: : HANOI"
type=":DEFINITION" />

< /rules>
< /summary>
< /defthm>

Listing 7: Abridged XML version of a proof

This node is the root of a subtree which includes a
sequence of elements detailing the classes of rules to
be generated, the main goal (labeled Goal) with its
S-expression, and an XML version of the information
contained in the summary (warnings, time elapsed and
rules used).

Each goal includes a node describing the proof tech-
nique used. In turn, each proof technique contains the
subgoals that it produced.

For example, in the main goal, we can see that sim-
plification by case analysis (an unnamed built-in rule)
was used to generate Goal’, which would later become
Subgoal *1 (as only induction could be applied).

After saving the XML document to disk for later runs,
it is dumped to standard output.

It is important to note that the converter is a standalone
program, which does not depend on XMLEye at all.

3.2 Reorganization

Thanks to the converter, we can produce ACL2 proofs in
XML, a format which is more amenable to automatic pro-
cessing and filtering by a computer program. First, we need
to show the user a clear view of the overall structure of the
proof (see XMLEye’s left pane in figures 1 and 2).

We cannot use the XML proof yet as it is: the information is
too scattered to be usable by a human. Data must be inte-
grated into a higher level view which is easier to understand.
We might want to compute derived information useful to the
user, or provide several levels of detail.

These problems can be solved by applying a preprocessing
stylesheet which modifies the whole document right after
opening the proof and before anything is shown to the user.
Besides adding, removing or reordering the elements of the
original XML document, we can hide them or label them
with new captions or icons. All the XSLT stylesheet needs
to do is set the correct XML attributes to the proper values,
and the navigation step will take care of the rest.

Currently, we have defined three stylesheets for browsing
ACL2 proofs. It is important to note that stylesheets can
inherit rules from others and that they can be localized to
several languages, by using the facilities set up in place by
XMLEye. The user can switch back and forth between them
at any time: the document will just need to be reprocessed
when that happens.

PPACL2 This is the main ACL2 stylesheet, from which the
other two are derived. It hides unnecessary clutter, la-
bels elements according to their content and sets icons
to indicate success and failure of each command. It
also caches results for some expensive computations in
hidden nodes, to save on processing time during the
navigation step. For instance, it computes direct and
inverse dependencies between each rule used and the
events where they are defined.

reverse Inherits all the functionality from ppACL2, but it
reverses the order in which commands are shown (last
command is shown first). This is useful if we are han-
dling long proofs and are mostly interested in the last
few events.

summaries Also inherits its functionality from ppACL2. It
strips away all information from the proof except for
the summaries, which list the rules used and process-
ing time required. Users might be only interested in
the relationships between the different elements of the
proof and the rules that they use.

We can also use the predefined xml stylesheet to view the
original, unformatted XML document. This is mostly useful
for debugging and for developing new XSLT stylesheets.

3.3 Rendering

The user can now navigate through a clear view of the struc-
ture of the ACL2 proof. The next problem to be solved is
deciding how to present the details of the particular element
that they have selected. Just as when we were reorganizing
the proof, there is no single best way to do it.

However, this time we want a graphical representation of the
information contained in the selected element. We could
use regular GUI components, but then we would have to
write Java code for each case and lose XMLEye’s application
independence. We will use view XSLT stylesheets instead.

These stylesheets produce XHTML documents which the
user will be able to browse as hypertext in the final navi-
gation step. Links to other elements of the proof are estab-
lished through hyperlinks that follow an addressing scheme
based on a subset of XPointer [6] restricted to XPath’s func-
tionality. These hyperlinks are generated through an exten-
sion XPath function that computes XPath expressions which
uniquely identify any node.

The accepted syntax for these links is F#xpointer(E), where
F is an optional absolute path to another XML file, and E is
an arbitrary XPath expression which uniquely identifies one
of its elements. If F' is unspecified, the current document
will be used. Custom XPath functions have been defined
to easily obtain links to other elements in the current docu-
ment.

Currently, only one view stylesheet has been developed for
ACL2: ppACL2. It has the same name as the main prepro-
cessing stylesheet used for ACL2, as they are meant to be
used together. Likewise, there is an xml stylesheet which
shows the raw information from the XML document. If we
wish to examine reformatted versions of the original XML
source code, we can use the xmlSource stylesheet.

Some of the useful features of the ppACL2 view stylesheet
are:

e From a specific goal, the user can see at a glance the
S-expressions of its direct descendants. This is useful
when the current goal splits into several simpler ones.

For instance, while applying induction at Subgoal *1
in our running example, ACL2 produces five subgoals
called Subgoal *1/5, Subgoal *1/4 and so forth. If
any of them required a reasonably complex proof, we
would have to scroll back and forth a long way to view
all of their S-expressions. With XMLEye, however,
these S-expressions are shown together with links to
their nodes, where we will be able to examine them in
more detail.

e The proof method used in each goal is clearly displayed
and its most relevant information is shown in a sepa-
rate table. For example, when induction is applied, the
induction plan and the rules used to infer it (with hy-
perlinks to their definitions) are displayed in addition
to the original text from ACL2.

e The summary is decorated with hyperlinks to the ori-
gin of each rule, which might be defined in external
books.

In the particular case of HANOI—MOVES—REQUIRED,
there would be links to HANOI::HANOI, HANOI::MOVE
and HANOI::LEN—APPEND. If an user clicked on any of
these, a new tab would show the converted version of
hanoi.lisp (the hanoi book) and automatically select
the correct element.

e Views for the DEFTHM and DEFUN events list all events
in the same ACL2 proof script that use their defini-
tions. We already computed this information using
the ppACL2 preprocessing stylesheet (or any of its de-
scendants).

Suppose we joined into a single file the contents of the
hanoi book with the HANOI—MOVES—REQUIRED theo-
rem from hanoi-use.lisp. If we opened it with XML-
Eye, HANOI, MOVE and LEN—APPEND would display a
link to the above theorem. This is because they belong
to the list of rules used included in the summary for
HANOI—MOVES—REQUIRED.

3.4 Navigation

Once the final document structure and the XHTML render-
ing of the current node have been computed, the final step
is to let the user interact with them. To this effect, a Java
GUI was implemented using slightly customized Swing wid-
gets (see figures 1 and 2). The interface allows for quickly
switching between the preprocessing and view stylesheets,
customizing on a user-by-user basis the document format
descriptors and performing searches on the document.

One important restriction which has been imposed from the
beginning in XMLEye is that it would be strictly a viewer.
There are no plans for integrating an editor into the frame-
work, as each format and each user have their own require-
ments. Instead, XMLEye can invoke the user’s favorite edi-
tor for that document format on the source file from which
the XML document is derived (the main proof script in
ACL2’s case). It will optionally monitor the source file in
the background and automatically reconvert and reload the
document when the modification date changes.

This supports a common workflow in the ACL2 community,
which uses an Emacs window divided into two buffers. One
buffer is used for editing the proof script, and the other is
a shell running ACL2, in which commands are pasted or
loaded through some Emacs-Lisp code. With XMLEye, the
user would open her proof script and then invoke the editor
(i.e. Emacs, as in figure 2). XMLEye would invoke ACL2
with the new contents of the proof script every time that
the user saved her changes. As resubmitting the whole proof
script to ACL2 can be a lengthy process, this feature can be
disabled from the GUL

4. CURRENT STATUS

The current design of the converter was obtained iteratively,
by adding increasingly complex proofs to the automated test
suite. The design and implementation were improved every
time a new proof could not be analyzed. Previous proofs
served as regression tests, making sure that no errors or un-
expected changes in the converter’s output were introduced.
These automated tests have also been useful in adapting the
converter to the changes in newer versions of ACL2, while
staying compatible with older versions. So far, every ACL2
version between 2.9 and 3.4 (latest version at the time of
writing this paper) running on GCL passes all test cases.

At present, a considerable subset of ACL2’s output is sup-
ported, such as that generated by the exercises in [16] or the
tours in the ACL2 website. Proof scripts must consist of S-

expressions interleaved with single line comments: comment
blocks are not supported yet. Multifile ACL2 projects (as
the running example in section 3) including and certifying
books can be converted, though further testing with more
complex proofs is required.

Parsing the output from the following commands and op-
tions (if any) has been tested to work: DEFUN, DEFMACRO,
DEFABBREV, DEFTHM (:OTF—FLG, :RULE—CLASSES includ-
ing cliques), ENCAPSULATE (using LOCAL, but not includ-
ing any books), CERTIFY—BOOK, INCLUDE—BOOK, DEFPKG,
IN—PACKAGE, :PROGRAM, :LOGIC and THM. By design, if
some part of the output for these commands could not be
parsed as expected, a fatal error would be raised. Not all
options for the above commands have been tested: hints or
forcing rounds, for instance.

We have not implemented specific support for other com-
mands yet. The analyzer will fall back upon finding an
unknown command on printing a list of paragraphs and S-
expressions and extracting information from the summary,
if there is any. This allows the analyzer to parse macro and
function calls to a limited degree.

We plan to extend the range of accepted document formats.
We have recently added an XML converter for the YAML
and JSON metalanguages and some generic stylesheets. Some
candidates which would not require much additional work
include Mozilla Firefox 3 bookmark backup files and Prover9
proofs.

Reorganization and rendering are mostly feature-complete
on the side of the XMLEye framework. We expect that their
design will remain mostly the same for the next versions,
except for an upgrade to XSLT 2.0 and XPath 2.0, which
offer significantly more functionality than their 1.0 revisions.
If anything, it is the stylesheets which will need to be kept
up to date against future versions of the converters. Links
to ACL2’s online help could be added, among other things.

We consider navigation to be quite usable, but it could be
improved further. The default rendering engine included
with Swing is rather limited: it only supports HTML 3.2
and a very restricted subset of the CSS standard. It would
be interesting to test some more advanced engines, such as
FlyingSaucer [10] or Cobra [22].

We are considering developing an entirely Web-based inter-
face for XMLEye. This interface could use an embedded
lightweight web server such as Jetty [19], taking advantage
of the fact that the view stylesheets already produce mainly
standard XHTML documents. For added speed, the web in-
terface could remain behind an HTTP cache. This would al-
low for easy exporting and browsing of ACL2 proofs through
the World Wide Web.

This would be a major step ahead in the spirit of math-
ematical knowledge systems. For example, HELM [1] can
translate Coq and (experimentally) NuPRL proof scripts to
an internal XML representation and apply XSLT transfor-
mations to obtain MathML (content and presentation), and
HTML.

S. RELATED WORK

We have already referred to most of the related work in
previous sections. However, we would like to use this section
to collect and analyze them in more depth. We will discuss
each topic related to our tool in the following subsections.

5.1 Graphical interfaces for ACL2

Some graphical interfaces for ACL2 already exist, but their
focus is the opposite to ours: they attempt to be alternative
interfaces to work with ACL2, instead of the usual Emacs
and ACL2 read-eval-print loop combination, which many
newcomers find hard to master.

ACL2s [8] is an Eclipse-based environment which hooks into
a modified version of ACL2 and uses Eclipse’s facilities for
displaying ACL2’s output and proof tree, and editing the
proof script. In this way, it implements “The Method” [16].
The user can switch between different modes, which offer
varying subsets of the full capabilities of ACL2. ACL2s ex-
tends ACL2 with some new features, such as a powerful
termination analysis algorithm.

DrACuLa [24] integrates most of ACL2 into DrScheme, a
Scheme environment which offers additional features such
as an integrated GUI and static analysis. It has been used
with considerable success in university courses. Students can
reason about graphical interactive programs by loading the
proper custom module or teachpack. It has been reported
that this increases their motivation for learning formal meth-
ods.

Our tool happens to be mostly orthogonal to ACL2s and
DrACulLa. Nevertheless, it would be worthwhile to try and
integrate it as one more pane in ACL2s. It would require
some work, though: the interface would have to be reimple-
mented in SWT, the GUI toolkit used by Eclipse. However,
most of the backend code and the XML converter could be
used with few changes.

5.2 XML-Based Tools for ACL2

Ruben Gamboa [11] proposed using XML documents to write
proof scripts. In the spirit of the literate programming ap-
proach proposed by Knuth, they would be augmented with
information that would help readers. He also suggests that,
by using XML, it would be easier to implement external
tools for processing proof scripts.

We could say that our work covers the other end of the
spectrum: rather than helping users read proof scripts, we
are helping users read the proofs themselves. In fact, he pro-
poses rendering the list of theorems used in a proof as XML.
That is precisely one of the things that our XML converter
performs. Our XSLT stylesheets use these lists to compute
direct and inverse dependencies between the available rules
and the events using them.

5.3 Theorem Provers with XML Support

Finally, it is noteworthy that theorem provers with sup-
port for XML output already exist, such as Mizar [2] or
Prover9 [18] (Otter’s successor). The motivation [23] be-
hind Mizar’s switching to XML as the main output format
was easing its integration with external tools for semantic

processing and presentation. Some tools have already ben-
efited from this approach, such as the Alcor interface for
Mizar [3].

We argue that ACL2 could benefit just as well from an XML
version of its output. We are concerned about keeping ACL2
reasoning process sound through such a change, though,
which is why we think the approach of using a converter
is a safer bet. One particular concern that the Alcor devel-
opers raised was that the terms in the reported proof are
not exactly those that the user reported, but rather those
that the Mizar tool used internally.

We have tried to avoid this sort of problem as much as pos-
sible in our converter: in fact, the original proof script (in-
cluding whitespace) can be derived from the converted XML
proof.

We are currently considering how to properly handle macros,
as they can expand to just about any S-expression and can-
not be analyzed statically. It might be necessary to in-
voke ACL2 to expand these macros first, but no information
should be lost in the process: the original unexpanded call
to the macro should remain.

6. CONCLUSIONS AND FUTURE WORK

ACL2 is an industrial-strength system that has been suc-
cessfully used to prove important properties about complex
software and hardware systems. However, it is not easy to
learn, and the proofs it produces can be hard to read. Al-
though proofs are organized as trees, the proof itself is a
long, linear and slightly formatted text. This format hin-
ders the creation of new external tools, as it is difficult to
parse in detail and lacks a formal description.

Other tools already exist, but they focus mostly in providing
a friendlier interface to ACL2. We have developed a prelim-
inary version of a tool capable of browsing ACL2 proofs as
hypertext. Links can be established between different proof
elements and rich formatting can be used to highlight the
most important pieces of information.

To do this, we have developed an XML converter for ACL2’s
output and added the required customizations to XMLEye,
a framework of our making for creating viewers for com-
plex and structured documents. The converter was devel-
oped through an iterative process with automated regres-
sion testing, which ensures that it will continue working as
expected with newer versions of ACL2 and the converter
itself. The XMLEye extensions consisted mostly of a set
of XSLT stylesheets to reorganize ACL2 proofs and render
their elements as XHTML.

In this work, we covered the most important aspects be-
hind the design and implementation of both the XMLEye
framework and its ACL2-specific customizations. XMLEye
follows a four-step process to browse any document: XML
conversion, reorganization, XHTML rendering and naviga-
tion. XML conversion is performed by an external stan-
dalone converter satisfying some simple constraints. Reor-
ganization and XHTML rendering are performed by sepa-
rate sets of XSLT stylesheets. Finally, navigation is done by
using a tab-oriented Java GUI.

The tool supports a considerable subset of ACL2’s output
and offers a clear view of the structure and individual ele-
ments of its proofs. The user can switch between different
ways to reorganize the proof and render its nodes, and can
define her own without having to modify XMLEye’s code.
Theorems and functions in the proof include links to their di-
rect and inverse dependencies. XMLEye can open the ACL2
proof script with the user’s preferred editor and reload it
when changes are detected.

XMLEye and our ACL2 customizations can still be improved,
however. Not all commands or options are supported, and
the XHTML rendering engine does not implement some use-
ful features. We will need to add new test cases with more
complex proof scripts, and continue refining the converter’s
design. We are also considering developing a Web-based
interface to XMLEye, since XHTML code is already being
produced in the rendering step.

Finally, we plan to upgrade XMLEye to support XSLT 2.0
and XPath 2.0, and add stylesheets to navigate through the
output of other theorem provers, such as Prover9 or Mizar.
We believe that these will be easier to support, as they al-
ready produce XML output.

7. REFERENCES

[1] A. Asperti, L. Padovani, C. Sacerdoti Coen, F. Guidi,
and I. Schena. Mathematical Knowledge Management
in HELM. Ann. Math. Artif. Intell., 38(1-3):27-46,
2003.

[2] Association of Mizar Users. Mizar homepage.
http://wuw.mizar.org, Dec. 2008.

[3] P. A. Cairns and J. Gow. Integrating searching and
authoring in Mizar. J. Autom. Reasoning,
39(2):141-160, 2007.

[4] J. Clark. XSL Transformations (XSLT) Version 1.0.
Recommendation, W3C, Dec. 1999.
http://www.w3.org/TR/1999/REC-xs1t-19991116.
Latest version available at
http://www.w3.org/TR/xslt.

[5] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. Recommendation, W3C, Dec. 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.
Latest version available at
http://www.w3.org/TR/xpath.

[6] S. DeRose, E. Maler, and R. Daniel. XPointer
xpointer() Scheme.
http://wuw.w3.org/TR/xptr-xpointer, Dec. 2002.

[7] P. C. Dillinger, P. Manolios, and D. Vroon. ACL2s
homepage. http://acl2s.peterd.org/acl2s/doc,
Jan. 2009.

[8] P. C. Dillinger, P. Manolios, D. Vroon, and J. S.
Moore. ACL2s: “The ACL2 Sedan”. International
Conference on Software Engineering Companion,
pages 59-60, 2007. Software available at [7].

[9] C. Eastlund, D. Vaillancourt, C. Schonwald, and
K. McGrady. DrACuLa homepage.
http://www.ccs.neu.edu/home/cce/acl2, Feb. 2009.

[10] FlyingSaucer homepage.
https://xhtmlrenderer.dev.java.net, Mar. 2009.

[11] R. Gamboa. Writing literate proofs with XML tools.
In Proceedings of the Fourth International Workshop

[16]

[17]

on the ACL2 Theorem Prover and Its Applications
(ACL2-2003), Boulder, Colorado, USA, July 2003.
A. Garcfa Dominguez. XMLEye Wiki.
http://wiki.shoyusauce.org, Oct. 2008.

A. Garcia Dominguez. XMLEye Forge at Redlris.
https://forja.rediris.es/projects/csl2-xmleye,
Mar. 2009.

C. F. Goldfarb. ISO 8879: Standard Generalized
Markup Language (SGML). Technical report,
International Standards Organization, 1986.

I. Jacobs, A. L. Hors, and D. Raggett. HTML 4.01
Specification. Recommendation, W3C, Dec. 1999.

http://www.w3.org/TR/1999/REC-htm1401-19991224.

Latest version available at
http://www.w3.org/TR/htm1401.

M. Kauffmann and J. S. Moore. A Brief ACL2
Tutorial. http://www.cs.utexas.edu/users/moore/
publications/tutorial/rev3.html, Nov. 2002.

M. Kaufmann and J. S. Moore. ACL2 Version 3.4:
BOOK-MAKFEFILES. University of Texas, Austin,

USA, Nov. 2007. Available at http://www.cs.utexas.

edu/users/moore/acl2/v3-4/BO0K-MAKEFILES .html.
W. McCune. Prover9 and Mace4.
http://www.cs.unm.edu/ "mccune/mace4, Mar. 2009.
Mort Bay Consulting. Jetty WebServer homepage.
http://www.mortbay.org/jetty, Mar. 2009.

20]

(21]

(22]

23]

(24]

(25]

J. Paoli, C. M. Sperberg-McQueen, T. Bray,

F. Yergeau, and E. Maler. Extensible Markup
Language (XML) 1.0 (Fifth Edition).
Recommendation, W3C, Dec. 2008.
http://wuw.w3.org/TR/2008/REC-xm1-20081126.
Latest version available at
http://wuw.w3.org/TR/xml.

S. Pemberton. XHTML™ 1.0 The Extensible
HyperText Markup Language (Second Edition).
Recommendation, W3C, Aug. 2002.
http://www.w3.org/TR/2002/REC-xhtm11-20020801.
Latest version available at
http://www.w3.org/TR/xhtml1.

The Lobo Project. Cobra: Java HTML Renderer and
Parser. http://lobobrowser.org, Jan. 2009.

J. Urban. XML-izing Mizar: Making semantic
processing and presentation of MML easy. In

M. Kohlhase, editor, MKM, volume 3863 of Lecture
Notes in Computer Science, pages 346-360. Springer,
2005.

D. Vaillancourt, R. Page, and M. Felleisen. ACL2 in
DrScheme. In ACL2 °06: Proceedings of the sixth
international workshop on the ACL2 theorem prover
and its applications, pages 107-116, New York, NY,
USA, 2006. ACM. Software available at [9].

B. Young. The Towers of Hanoi Example.
http://www.cs.utexas.edu/users/moore/acl2/
v3-4/TUTORIAL1-TOWERS-0F-HANOI.html, Aug. 2008.

