Inverse Functions in ACL2(r)

Ruben Gamboa
Department of Computer Science
University of Wyoming
Laramie, Wyoming

ruben@cs.uwyo.edu

ABSTRACT

ACL2(r) supports the definition of real-valued functions. In
this paper, we introduce a theory of inverse functions into
ACL2(r). The theory is developed in stages, from an ab-
stract description of inverse functions, to a still abstract but
more tractable treatment of the inverse of continuous func-
tions. A macro is introduced to simplify the introduction
of concrete inverse functions. We illustrate the approach
by defining some inverse functions in ACL2, including the
square root, natural logarithm, inverse sine, and inverse co-
sine functions.

Categories and Subject Descriptors

F.4.1 [Mathematical Logic]: Mechanical theorem prov-
ing—Mechanized mathematics

General Terms

Verification

Keywords

Mechanized math, ACL2, inverse functions, intermediate
value theorem, nonstandard analysis

1. INTRODUCTION

Based on non-standard analysis (also known as the cal-
culus of infinitesimals), ACL2(r) adds support for the irra-
tional real and complex numbers to ACL2. Using ACL2(r),
it is possible to define transcendental functions, such as e”,
vz, and sin(z). In other words, ACL2(r) can reason about
many of the functions introduced in a typical freshman-level
course in calculus.

However, inverse functions play an important role in such
a course. For example, the exponential function leads to
logarithms, and the inverse trigonometric functions lead to
transformations between coordinate systems, among other
applications. Although some inverse functions have been

John R. Cowles
Department of Computer Science
University of Wyoming
Laramie, Wyoming

cowles@cs.uwyo.edu

defined in ACL2(r), such as v/z, each such function was in-
troduced completely from first principles. For example, /x
was introduced by a direct implementation using a bisection
algorithm.

In this paper, we report on a new ACL2(r) book that
makes it easier to introduce inverse functions. The book is
based on defchoose to name the inverse function, provided
that such a function exists. The bulk of the book demon-
strates that such a function indeed exists, given standard
necessary assumptions.

In section 2, we will develop a theory of inverses based
on the weakest possible assumptions that guarantee the ex-
istence of an inverse function. Although it is general, the
resulting theory of inverses is awkward to apply. Conse-
quently, we develop a more practical theory of inverses that
is applicable to continuous functions. This theory is pre-
sented in section 3. We use this theory to introduce an-
other definition of 1/, as well as the inverse trigonometric
functions, and the natural logarithm functions. Once these
functions are defined, we can use them to define more of
the familiar functions from calculus, such as a®. This is de-
scribed in section 4. The work described in this paper takes
advantage of some recent features in ACL2(r). In fact, this
is the first significant verification performed with the new
version of ACL2(r). So we describe in section 5 our experi-
ences with the new version.

Note: With the exception of the support for the irra-
tionals, ACL2(r) is essentially equivalent to ACL2. For the
remainder of this paper, we will use the name ACL2 to refer
to both versions of the theorem prover. In the few occas-
sions where the difference between the provers is relevant,
we will mention the difference explicitly.

2. A GENERAL THEORY OF INVERSES

The basic (or high school) theory of inverse functions is
well known. A function f is invertible if it has the following
properties:

e fisonto: Vydz.f(x) =y
o fis 1-1: Va1, z2.f(21) = f(x2) = 1 = 22

It is not hard to convince oneself that these conditions are
both necessary and sufficient for the existence of an inverse
function f~'. Certainly, if f is not onto, then there is some
yo such that there is no zo for which f(zo) = yo. Similarly,
if f is not 1-1, then for some yo, f(z1) = f(x2) = yo where
x1 # 2. For such a yo, there is no unique choice of f~!(yo).

This theory is slightly complicated when we consider a
specific domain D and range R for the function f: D — R.

This is an important consideration, since a function is 1-1
and onto (and hence invertible) only over a specific choice of
domain and range. A good example is the square function,
which is invertible if we consider the domain and range to
be the non-negative reals, but not invertible when we let the
domain and range be the entire real number line.

The theory can be translated into ACL2 using encap-
sulate. The idea is to constrain a function ifn together
with its domain and range, so that ifn is 1-1 and onto over
these sets. Since ACL2 does not represent sets directly, we
chose to constrain the domain and range with the predicates
ifn-domain-p and ifn-range-p.

The constraint that ifn is 1-1 can be written directly in
ACL2:

(defthm ifn-is-1-1
(implies (and (ifn-domain-p x1)
(ifn-domain-p x2)
(equal (ifn x1) (ifn x2)))
(equal x1 x2))
:rule-classes nil)

The only nontrivial aspect is the use of the empty rule
classes. Notice that the conclusion would be a dangerous
rewrite rule; in fact, ACL2 would reject it.

Constraining ifn to be onto is trickier. The longstanding
tradition in ACL2 (and all the way back to NQTHM) would
be to introduce a witness function that would select the z
for which the function ifn returns y. Of course, if we could
do that, we would already have the inverse function defined!

Although not commonly used, a feature of ACL2 is sup-
port for quantifiers. The approach is to define a function
which essentially names the first-order formula containing
the quantifier. It is then possible to use this name inside a
theorem.

So the first task is to name the property of ontoness. This
can be done with the following defun-sk event:

(defun-sk ifn-is-onto-predicate (y)
(exists (x)
(and (ifn-domain-p x)
(equal (ifn x) y))))

Once the property is named, it can be used in a theorem
such as the following:

(defthm ifn-is-onto
(implies (ifn-range-p y)
(ifn-is-onto-predicate y))
:hints (("Goal"
:use ((:instance ifn-is-onto-predicate-suff
y) GGoNN
)

The theorem ifn-is-onto-predicate-suff mentioned in
the hint is a formula that is sufficient to imply that the
predicate ifn-is-onto-predicate holds for a given x and
Y.
Using only these constraints, it is possible to introduce
the inverse of ifn. We can define it with the following
defchoose:

(defchoose ifn-inverse (x) (y)
(and (ifn-domain-p x)
(equal (ifn x) y)))

This has the effect of choosing a value x = (ifn-inverse
y) such that (ifn x) = y, provided that such a value exists
in the first place. So it is left only to show that there is
such a value (in which case, (ifn-inverse y) will serve).
Naturally, this derives from the fact that ifn is onto:

(defthm inverse-exists
(implies (ifn-range-p y)
(and (ifn-domain-p (ifn-inverse y))
(equal (ifn (ifn-inverse y)) y)))
:hints (("Goal"
:use ((:instance ifn-inverse

(x
(ifn-is-onto-predicate-witness
)

(y y))

(:instance ifn-is-onto-predicate

(y yINN

Finally, we demonstrate that the choice of inverse is well-
defined, which follows directly from the fact that ifn is 1-1.

(defthm inverse-unique
(implies (and (ifn-range-p y)
(ifn-domain-p x)
(equal (ifn x) y))
(equal (ifn-inverse y) x))
:hints (("Goal"
:use ((:instance inverse-exists
(y vy
(:instance ifn-is-1-1
(x1 x)
(x2 (ifn-inverse y)))

NN

The theorem inverse-unique is especially important, be-
cause it allows us to find individual values of the inverse
function. Note that the definition of ifn-inverse is com-
pletely non-constructive. But using inverse-unique, we
can say for example that v/4 = 2, since 2-2 = 4.

Other familiar properties of inverses have also been shown,
such as the fact that the inverse function is also 1-1 and onto,
and that ifn is its inverse.

3. INVERSE OF CONTINUOUS FUNCTIONS

The biggest difficulty in applying the theory of inverse
functions developed in section 2 is proving that a given func-
tion is onto. Take the function f(z) = z*, for example. How
do you show that there is an x for which f(z) = 27

For continuous functions, the Intermediate Value Theo-
rem (IVT) gives an answer. The theorem, previously formal-
ized in ACL2 [3], states that if f is continuous over the in-
terval [a, b] and y is a real number such that f(a) <y < f(b),
then there is a real number x € [a,b] such that f(z) = y.

If we start with the domain [a, b], the IVT can be applied
directly. However, for many functions that we may wish
to invert, the choice of interval [a,b] depends on the y that
we wish to invert. For example, for f(z) = 2, the correct
choice of [a, b] is either [1,y] wheny > 1 or [0,1] when y < 1.

So we choose to constrain four functions in ACL2:

e icfn — an invertible, continuous function

e icfn-domain — the domain of icfn, which is assumed
to be an interval

e icfn-range — the range, also an interval

e icfn-inv-interval — a function that returns an ap-
propriate interval [a,] for a specific choice of y.

Once these functions are constrained, it is possible to show
that icfn is onto, using the same definition of onto described
in section 2. And using the theorems proved in section 2, it
then follows that icfn has an inverse.

Most of the functions we will wish to find inverse for are
continuous, so we will be instantiating the theorems about
icfn often. We make this less cumbersome by introduc-
ing the macro definv, which takes a function £, its domain,
range, and the function that generates an interval. In return,
it defines f-inverse, and it instantiates the theorems esta-
bilishing that £ and f-inverse are inverses of each other.
The macro definv also supports many optional arguments
that alter its behavior, e.g., by letting the user provide the
name of the inverse function to define.

4. EXAMPLES

We now consider how the theory of inverse functions we
have developed can be used to define some common func-
tions.

4.1 Square Root

We start with the square root function, which can be de-
fined by inverting the function f(z) = x?. As mentioned
previously, the domain and range of f are both [0, c0), and
the interval [a,b] that contains \/y can be defined as [1,]
for y > 1 and [0, 1] for y < 1.

The biggest difficulty in introducing the inverse function
is showing that f(z) = z? is continuous, and this follows
from reasonably straightforward algebra. In the framework
of non-standard analysis, f is continuous if f(z) = f(z + €)
when € is infinitesimal. But this holds, since (x + €)° =
z?+2ze+€e® = 22, and the terms involving e are infinitesimal.

Once this is established, we can introduce the square root
function with the following event:

(definv square
:domain (interval O nil)
:range (interval 0 nil)
:inverse-interval square-interval)

The function square needs no explanation. The function
interval is the constructor for intervals, and nil in this
context represents infinity. The function square-interval
constructs the appropriate interval for a given y as described
previously. The definitions of these functions are omitted for
brevity.

In earlier work, we had defined the function acl2-sqrt
with the following property:

(defthm-std sqrt-sqrt
(implies (and (realp x)
(<= 0 %))
(equal (* (acl2-sqgrt x)
(acl2-sqrt x))
x)))

Using the version of inverse-unique generated by the macro
definv for the function square, we can show that ac12-sqrt
is, in fact, identical to the inverse of the square:

(defthm square-inverse->sqrt
(implies (inside-interval-p y (interval O nil))
(equal (square-inverse y)
(acl2-sqrt y))))

This is reassuring evidence that the theory of inverse func-
tions we have developed is effective.

4.2 Inverse Trigonometric Functions

The trigonometric functions are defined in ACL2(r) by
taking advantage of the identities

et _o—iw

e sin(z) = “—=¢

e cos(z) = 75”'*‘;41'
The exponential function is defined by using its Taylor ex-

pansion, namely
2 3
et =14+ 5+ 5+

It is worth pointing out that these definitions hold for com-
plex values of z, not just for the reals.

As before, we can define the inverse functions to sine and
cosine after we show that these functions are 1-1 and onto,
in appropriate domains. Although the choice of domains is
arbitrary, it is traditional to pick [—m/2,7/2] for sine and
[0, 7] for cosine. The range of both, of course, is [—1, 1].

In earlier work, we had developed a large theory of trigonom-
etry in ACL2(r). In particular, we had shown that cos is
continuous, and we had used this fact to define 7 as twice
the first (and only) zero of the cos function in the range
[0,2]. However, a significant effort was required to extend
these results to show that the trigonometric functions are
1-1 in the appropriate restricted domains.

Once this was demonstrated, however, it was a trivial
matter to introduce the inverse functions with the macro
definv.

(definv real-sine

:f-inverse acl2-asin

:domain (interval (- (/ (acl2-pi) 2))
(/ (acl2-pi) 2))

:range (interval -1 1)

:inverse-interval sine-interval)

Note that the function that is inverted is real-sine instead
of acl2-sine. The reason is that the latter is defined over
all the ACL2 numbers, but the IVT applies only to real-
valued functions. real-sine is the restriction of acl2-sine
over the reals.

4.3 Complex Numbers in Polar Form

We can use the inverse functions to transform complex
numbers in Cartesian form to polar coordinates. Specifi-
cally, given a point x+iy # 0, we can represent it in polar co-
ordinates as - €', where r = /22 + y2 and 0 = cos™'(z/r)
or 2m — cos™ ' (x/r), depending on the sign of y. For conve-
nience, we name these functions radiuspart and anglepart,

following the convention established by realpart and imagpart.

Using the theorems about the inverse trigonometric func-
tions, we can show that this conversion works appropriately:

(defthm correctness-of-polar-form
(equal (* (radiuspart x)
(acl2-exp (* #c(0 1) (anglepart x))))
(fix x)))

Moreover, we have verified in ACL2(r) that when z + iy is
equal to 7 - €' in polar coordinates, the coordinates satisfy
the following familiar properties:

e 7 is a non-negative real

e 7 =0 only when z +iy =0

r = |z| when y =0

0 € [0,2m)

e if y=0,0 =0 or § =7, depending on the sign of x
4.4 Natural Logarithm

The natural logarithm function is special, in that we can
extend its definition over all non-zero numbers. To introduce
it, we proceed in stages.

First, consider the domain [0, 00). Over this domain, e® is
increasing and onto [1, 00). Moreover, given ay € [1,00), the
interval [0,y] contains an x such that e® = y. These facts
can be established easily from the theory of the function
€” that ships with ACL2(r). Consequently, we can use the
macro definv to define the inverse function over the range
[1,00). Call this inverse function In>;.

Next, we extend this inverse function to cover the range
(0,00). To do so, observe that when y € (0,1), it follows
that i € (1,00). So we can define Inso(y) = —11121% for
y € (0,1). That Inso is the inverse of e” follows from the
fact that e™* = }I

Finally, consider a non-zero, complex number x + iy. Re-
call that we can write this number as r-e*’. Using the prop-
erties of e*, we can establish that In(r - €'%) = In(r) + if.
Notice that r is real and positive (since + iy # 0). So we
can find In(r) using the function Inso defined above.

The resulting logarithm function is defined for all num-
bers, other than 0. Notice that for negative numbers, we
are implicitly using the fact that ™ = —1.

Many of the familiar properties of the logarithm function
have also been proved in ACL2(r), by deriving them from
the corresponding properties of the exponential function. In
particular, the following were easily shown:

e In(zy) =Inz+1ny
. lni =—Inx

4.5 General Exponentials

Using the logarithm function defined above, we can intro-
duce the general exponential function a®. This is defined as
a® = ™% and in ACL2 we named it (raise a i).

ACL2 defines the function (expt a i) with value a* for
integer exponents i. Using induction and the fact that e*¥ =

e”eY, it is easy to show that

(defthm raise-expt-for-non-negative-exponents
(implies (and (integerp i)
(<= 0 1))
(equal (raise a i)
(expt a i))))

This result can be generalized, using the definition of expt
and the fact that e™® = e% to include all integer powers:

(defthm raise-expt
(implies (integerp i)
(equal (raise a i)

(expt a i))))

What this shows is that the function raise is a generaliza-
tion of the more familiar expt.

We can also prove some familiar properties, such as the
following;:

o oY = g=aY

We conclude this section by highlighting two beautiful
theorems. First, define the constant e by (acl2-exp 1).
The function acl2-exp is defined in ACL2 using the Tay-
lor expansion of e®. We expect that (expt x) should have
the value e”, although that is not verified in ACL2. How-
ever, the relationship between e, as defined above, and the
function acl2-exp can be demonstrated with the following
theorem:

(defthm raise-acl2-exp
(implies (acl2-numberp x)
(equal (raise (acl2-exp 1) x)
(acl2-exp x))))

Finally, we return to the function \/x, which began our
investigation of inverse functions. The function raise gives
us yet another way to define it:

(defthm raise-sqrt
(implies (and (realp x)
(<= 0 %))
(equal (raise x 1/2) (acl2-sqrt x))))

S. UNVEILING THE NEW (R)

In [4], we formalized the theory of definitional events in
ACL2(r). As a result, we were able to show that certain
extensions to ACL2(r) were justified, and we have imple-
mented most of these. The extensions are as follows:

e Any ACL2(r) object can be standard, not just num-
bers.

e If ¢(z) is a classical term with no free variables other
than z, then standard(xz) = standard(¢(z)) is a the-
orem.

e Non-classical functions can be introduced with defchoose.

(Additionally, the story behind the introduction of both
classical and non-classical functions was clarified.)

e Non-classical constrained functions can be introduced
with encapsulate. (The argument justifying these
functions also demonstrated a soundness bug in previ-
ous versions of ACL2(r).)

e Under certain conditions, it is permissible to accept
recursive functions with non-classical bodies.

All items except the last one have been implemented in
ACL2(r), although this version of ACL2(r) has not yet been
released’.

In this section, we would like to discuss how some of these
changes facilitated the development of the theory described
in this paper.

First, the theory of continuous functions in previous ver-
sions of ACL2(r) assumed that the functions were defined

We anticipate that it will be released officially by the time
of the workshop.

and continuous over the entire real number line. However,
this is inappropriate in the context of inverse functions,
where we need to be very careful about the function do-
main and range. Consequently, we developed a new version
of continuity in ACL2(r) that supports domains. The do-
mains are restricted to be intervals (as is common in theo-
rems from elementary analysis). Since we wished to quantify
over these intervals, we developed a significant theory of in-
tervals in ACL2(r). The definitions and theorems presented
in prior sections of this paper already introduced some of
the functions dealing with intervals, such as the construc-
tor interval and the predicate inside-interval-p. The
theory also describes subintervals, open intervals, closed in-
tervals, half-open intervals, infinite intervals, etc.

More important, the earlier theory of continuous functions
included the following constraint:

(defthm rcfn-standard
(implies (standardp x)
(standardp (rcfn x))))

This constrains was the source of many difficulties reported
earlier, e.g. [6]. The problem is that when the function rcfn
is replaced with a lambda term containing free variables,
the constraint is not met. What this means is that it is
impossible to reason about continuous functions with more
than one variable, even when all but one of the variables
are held fixed. In the new version of ACL2(r), the con-
straint is unnecessary, since ACL2(r) can prove it directly,
simply from the fact that rcfn is a classical function. In the
case that rcfn is functionally instantiated with a lambda
term containing free variables, the free variables will need to
be restricted to standard values using typical instantiation
tricks, i.e., by replacing the variable with an if expression
that implicitly adds the needed hypotheses.

In the current project, not having to prove that functions
return standard values for standard arguments made it far
easier to work with continuous functions. More generally,
it completely removed the need to argue that certain terms
were standard from first principles, as was often the case
with previous versions of ACL2(r).

Another benefit was the expansion of standard to include
non-numeric objects. In particular, we reasoned about stan-
dard intervals, which are precisely those with standard end-
points. The behavior of standard intervals when non-standard
values were inside it could be investigated properly. For ex-
ample, if I is a closed, bounded, standard interval and z € I,
then "z € I, where "z is the unique standard number that
is infinitesimally close to x.

After working with the new ACL2(r), we can state without
reservation that it is far easier to use than the old ACL2(r).
We are looking forward to continuing work on this project
and others involving ACL2(r).

6. CONCLUSIONS

The theory of inverse functions described in this paper
is sufficient to introduce all the typical functions discussed
in an introductory calculus course. Moreover, ACL2 can
reason effectively about these functions, being able to prove
most of the familiar properties of these functions.

However, there is much work to be done, and we expect to
be working on some of these in the near future. For example,
when our macro introduces the function f~', it shows that
f(f7'(y)) = y and that f~'(f(x)) = « and that f~' is 1-1

and onto. However, when f is known to be continuous, it
follows that f~' is continuous as well. But our macro is not
currently proving this fact.

Another omission concerns derivatives. When the func-
tion f is differentiable as well as continuous, the derivative
of its inverse is given by 1/f'(f~(y)), as long as this quan-
tify is defined. This fact could also be generated and proved
automatically by our macro.

Finally, our macro could use some enhancements, partic-
ularly in the area of passing hints to the generated proof
obligations. As with other verification projects, we have
found that hints are often required while discharging the
proof obligations that permit the introduction of an inverse
function. However, there is no mechanism at the current
time to provide these hints. What we are doing currently is
to prove the required theorems before invoking the macro,
but we plan to provide a more direct mechanism.

7. REFERENCES

[1] R. V. Churchill and J. W. Brown. Complex Variables
and Applications. McGraw-Hill, fourth edition, 1984.

[2] W. Fulks. Advanced Calculus: an introduction to
analysis. John Wiley & Sons, third edition, 1978.

[3] R. Gamboa. Continuity and differentiability in ACL2.
In M. Kaufmann, P. Manolios, and J S. Moore, editors,
Computer-Aided Reasoning: ACL2 Case Studies,
chapter 18. Kluwer Academic Press, 2000.

[4] R. Gamboa and J. Cowles. Theory extension in
ACL2(r). To appear in Journal of Automated
Reasoning, 2006.

[5] R. Gamboa and M. Kaufmann. Nonstandard analysis
in ACL2. Journal of Automated Reasoning,
27(4):323-351, November 2001.

[6] R. Gamboa and B. Middleton. Taylor’s formula with
remainder. In Proc of the Third International
Workshop of the ACL2 Theorem Prover and its
Applications (ACL2-2002), 2002.

[7] E. R. Heineman and J. D. Tarwater. Plane
Trigonometry. McGraw-Hill, Inc., seventh edition, 1993.

