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ABSTRACT 
This paper presents a formal correctness proof for some properties 
of restricted finite directed acyclic graphs (DAGs). A restricted 
graph has a single root and arbitrary siblings. The siblings are 
assigned integers, string values, or restricted DAGs. Leafs must 
be assigned string values. The main property is the transitive 
closure. Our restricted graphs and the properties are formalized in 
ACL2, and an ACL2 book has been prepared for reuse.   

1. INTRODUCTION 
Sandia National Laboratories developed the Sandia Secure 

Processor (SSP) as a computational infrastructure for high-
consequence embedded real-time systems [1]. The SSP is a 
restricted form of the Java Virtual Machine. The job of the SSP 
class loader is to correctly translate Java class files into a form 
suitable for execution by the SSP, a form called a ROM image.  

Our work is motivated by our desire to prove the correctness 
of a transformational approach to loading Java class files for the 
SSP, specifically, loading the constant pool (CP). For our 
purposes, assume that a constant pool entry consists of an integer 
identifier and a value. A value is an index, a string, or an entry. 
An index corresponds to the identifier of some other entry in the 
pool. Given this definition of a constant pool, we can represent a 
pool using a Directed Acyclic Graph (DAG) [1], as shown in 
Figure 1.  

In this paper, the terms constant pool and DAG are used 
interchangeably. There are further restrictions on our graphs. In 
our constant pool, strings should appear just once, and every entry 
should be dereferencable, i.e., should lead to a set of strings. 

A graph is a tuple (N, E, R) where N is the set of nodes; E is 
a set of directed edges, i.e., pairs (na, nb) originating at na and 
terminating at nb; and R is a distinguished set of nodes R⊆N 
called root nodes. For each edge, the first node in the pair is the 
head node, and the second node in the pair is the tail node. A leaf 
node is a node nt such that there are no edges in E with nt as the 
head. A node nk is reachable from a node n1 if there exists a 
sequence of edges e1, e2, …, ek-1 such that: 

• The head of e1 is n1. 

• The tail of ek-1 is nk. 

• For every adjacent pair of edges in the sequence, ei, ei+1, 
the tail of ei is the head of ei+1. 

A graph defines the reachable relation1. The transitive 
closure of the reachable relation is the graph such that for any pair 
of nodes (na, nb) if nb is reachable from na, then there is an edge 
(na, nb) in E.  

A DAG is a graph that does not contain cycles, that is, no 
node is reachable from itself. A DAG represents a partial order on 
the nodes of the graph. DAGs have many applications in 
mathematics and computer science. As a data structure, DAG can 
be used to organize elements of interest in a hierarchy to expedite 
searching for an element.   

 
Figure 1: A DAG 
 

In the context of DAG, a crucial notion to be formalized is 
the acyclicity of an index. An index is acyclic in a constant pool if 
there are no cycles in the DAG of reachable indexes.  

 

 

 

 

 

 

 

                                                                 
1This relation may be described by many different graphs. 

c1 = ((1 . (2 . 3)) 
          (2 . (4 . 5)) 
          (3 . (6 . 7)) 
          (4 . "Four") 
          (5 . "Five") 
          (6 . "Six") 
          (7 . "Seven"))) 

Figure 2: ACL2 Model of DAG 



 

One implementation of the SSP class loader utilizes a 
transformational approach. In this loader, a class file is refined by 
transformation rules in a stepwise fashion until a ROM image is 
obtained. When loading the CP, the CP is refined by a 
transformation rule that removes a single level of indirection. We 
want to show that the semantics of the CP is preserved by this 
transformation.  

Graph-theory-related proofs have been previously 
investigated in the context of ACL2 [2, 3]. This paper 
demonstrates the correctness of the function dref, which takes an 
index and returns the “meaning” of that index, i.e., the terminal 
strings to which the index refers. The approach is to model the CP 
as a DAG and transform the DAG by substitution, then prove that 
that the function dref yields the same value when applied to a 
constant pool and to the same constant pool after applying the 
substitution rules to it.  

This paper is organized as follows: Section 2 introduces 
the modeling of the DAG, the substitution process, and the 
semantic function. In Section 3, sketches the proof of correctness. 
Finally, the paper is concluded in Section 4. A book is constructed 
to enable ACL2 users to reuse the theorems and lemmas. 

2. Modeling Phase. 
An important concept is the meaning of a structure in the 

constant pool. This denotation is achieved through a semantic 
function dref. From an operational perspective, dref can be 
thought of as a function that, when given a data object model p 
(containing constant pool indexes) and a constant pool model cp, 
will directly try to resolve all indexes in p by repeatedly replacing 
indexes with the data found in the corresponding constant pool 
entry. For example, consider the constant pool, c1, presented in 
Figures 1 and 2. The result of applying the function dref to the 
row indexed 1 in c1 will result in the following data object 
((“Four” . “Five”) . “Six” . “Seven”). 

In our class loader, a constant pool goes through a set of 
substitutions that result in a resolved version of the original 
constant pool. The ACL2 function apply-rule-to-entry applies 
the substitution rule r to the ith entry in a constant pool. A valid 
substitution must preserve the acyclicity of a constant pool. For 
example, consider again the constant pool, c1, presented in 
Figures 1 and 2. The result of applying the function apply-rule-
to-entry using the substitution rule 2  (4 . 5) to the first row in 
c1,  (1 . (2 . 3)), will result in a new constant pool similar to c1 
except that the first row will be replaced by the following object: 
(1 . (4 . 5) . 3). 

2.1 Modeling the DAG and Substitution 
Rules. 

A DAG is modeled by a list of entries. Each entry is 
modeled as an ACL2 alist where its car is a natural number, 
referred to as an index, and its cdr is a data object, which may be 
an index, a string, or a structure consisting of indexes, strings, or a 
combination of both. Formally, data objects are elements of the 
set ∑ defined by the regular expression: ∑ = (I + S)+ where I 
denotes the set of all possible constant pool indexes, and S 
denotes the set of all terminal strings (e.g., UTF8 strings 

allowable in Java). A DAG is well-formed if it satisfies these 
restrictions. 

It is worth mentioning that the set of valid substitution rules 
are easily generated from a DAG. For instance, the substitution 
rules that correspond to the DAG shown in Figures 1 and 2 are 
introduced in Figure 3. 

 

  

 

 

 

 

 

 

2.2 Semantic function. 
The semantic function, dref, represents the transitive closure 

of the value obtained by following an index in the constant pool. 
The ACL2 implementation of the function dref is as follows. 

(defun dref (p dag) 
  (declare (xargs :measure (acount p dag))) 
  (cond ((acyclicp p dag) 
         (cond ((atom p) 
                (if (natp p) 
                    (dref (valueOf p dag) dag) 
                  p)) 
               (t (cons (dref (car p) dag) 
                        (dref (cdr p) dag))))) 
        (t nil))) 
 

From an operational perspective, dref can be thought of as a 
function that, when given a data object model p and a DAG model 
dag, will directly try to resolve all indexes in p by repeatedly 
replacing indexes with the data found in the corresponding DAG 
entry.  

Acyclicity is modeled with the ACL2 function acyclicp. Let 
p be an object, i.e., a list of indexes, and dag be a constant pool. 
acyclicp returns true if each of the indexes in p is acyclic in 
dag. Thus, we only care about acyclicity with respect to a data 
object. The key idea is that as we walk a branch of the DAG from 
root to leaf, the DAG is cyclic if we visit some node twice. Thus, 
for each branch, we keep track of the nodes that have already 
been visited. acyclicp1 takes a data object, a DAG, and a list of 
indexes visited so far. acyclicp calls acyclicp1 with the inputs p, 
dag, and the empty set nil as the set of indexes visited so far. If p 
is an atom, acyclicp1 checks whether p is well-formed in dag. p is 
well-formed in dag if it is not a natural number or if it is a natural 
number, but it is not associated with any other entry in dag and 
has not been encountered in the set visited. The ACL2 
representation of the function acyclicp is as follows. 

 
 
 

1  (2 . 3) 
 2  (4 . 5) 
 3  (6 . 7) 
 4  "Four" 
 5  "Five" 
 6  "Six" 
 7  "Seven" 

Figure 3: Valid 
Substitution Rules 



(defun acyclicp (p dag) 
  (acyclicp1 p dag nil)) 
 

The ACL2 representation of the function acyclicp1 is as 
follows. 

(defun acyclicp1 (p dag visited) 
(declare (xargs :measure  
      (llist (len (setdiff (all-indexes-in-cp dag) visited)) 

               (acl2-count p)) 
               :well-founded-relation l<)) 
  (cond ((atom p) 
         (cond ((natp p) 
                (cond ((not (assoc p dag)) nil); p not in dag  
                      ((member-equal p visited) nil);p visited 
                      (t  ; p is a bare index  
          (acyclicp1 (valueOf p dag)  
                               dag  
                               (cons p visited))))) 
               (t t))) 
        (t (and (acyclicp1 (car p) dag visited) 
                (acyclicp1 (cdr p) dag visited))))) 
 

2.3 Modeling the Substitution Process. 
The index substitution process is modeled in ACL2 by the 

function apply-rule-to-entry, which applies the substitution rule 
r to the ith entry in dag. For instance, consider the dag given in 
Figure 1 and its corresponding substitution rules given in Figure 
3. The result of applying the substitution rule 2  (4 . 5) to the 
first row in c1 will result in a new dag in which row 1 will be as 
follows: '((1 . (4 . 5) . 3). 

The proof that the substitution function apply-rule-to-entry 
is correctness-preserving is based on the semantic function dref, 
The result of following a structure p in a DAG will lead to the 
same ultimate value obtained by following p in a DAG to which a 
substitution rule has been applied.     

The function apply-rule-to-entry checks whether the 
condition (ok-rulep r dag) holds. For example, the rule 3  (6 . 
7) is ok-rulep in c1, however the rule 2  (2 . 5) is not. For a rule 
to be well-formed with respect to a DAG, it must satisfy several 
conditions. First, it must be a rule that applies to the DAG, i.e., 
the head of the rule must be one of the DAG’s indexes. Second, 
the rule must be acyclic with respect to the DAG. The head and 
tail of the rule must lead to the same value in the DAG. Finally, 
application of the rule must result in a DAG that has less 
indirection than the original DAG, i.e., the length of at least one 
branch of the DAG must be reduced. The ACL2 model of the 
function apply-rule-to-entry is presented as follows.  

(defun apply-rule-to-entry(r i dag)  
  (if (ok-rulep r dag) 
      (apply-r-entry1 r i dag) 
    dag)) 
 

 
 
 
 

(defun apply-rule-to-entry1 (rule position cp) 
  (let ((rhs (valueOf position cp))) 
    (cond ((matchValueRulep rhs rule) 
           (replaceValue position  
                (applySubstitution rhs 
                            rule) 
                cp)) 
          (t cp)))) 

 

3. Proof of Correctness. 
Substitution rules are applied to a DAG to transform it to a 
resolved DAG. Our goal is to show that the transformations 
preserve meaning. Informally, the main theorem states that given 
a well-formed DAG dag, and an index p in dag, the results of 
following p to its ultimate value in the resolved dag and following 
the index p to its ultimate value in dag are identical.  

3.1 Proof of the Main Theorem 
The main theorem states that the application of the function 

apply-rule-to-entry to dag will preserve the semantics of dag, i.e., 
the substitution rule r when applied to the index i in dag will 
preserve meaning. The main correctness theorem can be stated in 
ACL2 as follows. 
 
;; Main Theorem  
(defthm dref-apply-rule-to-entry-1-new 
  (implies (and (ok-rulep rule dag) 
                (uniqueNodeIDp dag)                         
                (acyclicp i dag);; 
                (acyclicp p dag)) 
           (equal (dref p (apply-rule-to-entry1 rule i dag)) 
                  (dref p dag))) 
  :hints (("Goal" :in-theory (enable ok-rulep)))) 
 

  The function apply-rule-to-entry1 is non-recursive and, 
therefore, the unfolded version of the theorem is  
 
  ;; lemma 2 
 (defthm dref-put-ok-rulep 
  (implies (and (ok-rulep rule dag) 
                (uniqueNodeIDp dag)                         
                (acyclicp i dag);; 
                (acyclicp p dag)) 
           (equal  
             (dref p (replaceValue i  
                        (applySubstitution (valueOf i dag) rule) 
                                            dag)) 
             (dref p dag)))) 
 

To prove Lemma 2, we have first to prove that, given some 
hypotheses, the application of the term (replaceValue i 
(applySubstitution (valueOf i dag) rule) dag) preserves 
acyclicity. This is expressed in Lemma 3 below. Lemma 2 and 
Lemma 3 represents the crux of the proof and will be further 
investigated in Section 3.2. 

 
 
 
 
 



;; lemma 3 
(defthm acyclicp-i-put-i-replace-indexes-general-1 
  (implies (and (ok-rulep r dag) 
                         (uniqueNodeIDp dag)                         
                         (acyclicp i dag) 
                         (acyclicp p dag)) 
      (acyclicp p (replaceValue i  
                    (applySubstitution (valueOf i dag) r) dag)))) 
 

A useful lemma proves the conjecture that, given some 
hypotheses, the function apply-rule-to-entry1 preserves 
acyclicity. Such a conjecture is represented in Lemma 4. Lemma 
4 is proven automatically by ACL2 since its unfolded version, 
Lemma 3, is already proven. 
 
;; lemma 4 
(defthm acyclicp-apply-r-entry1-new 
  (implies (and (ok-rulep r dag) 
                (acyclicp p dag) 
                (acyclicp i dag) 
                (uniqueNodeIDp dag)) 
           (acyclicp p (apply-rule-to-entry1 r i dag)))) 
 

3.2 The Proof of the Crux Lemmas. 
The proof of the crux lemmas, namely Lemma 2 and Lemma 

3, is achieved by first proving Lemma 3. After this, Lemma 4 is 
proven by induction. Note that Lemma 3 uses the non-recursive 
predicate acyclicp, which will be expanded by ACL2 to the 
predicate acyclicp1. Thus the proof of Lemma 3 requires proving 
a more general lemma regarding acyclicp1. In any attempt to 
prove a theorem that includes the predicate (acyclicp p dag), 
ACL2 will expand the predicate to (acyclicp1 p dag nil). Thus, 
one has to prove a more general theorem about the predicate 
(acyclicp1 p dag visited), for any visited. Then the predicate 
(acyclicp1 p dag nil) can be instantiated with visited set to nil, 
and therefore the theorem about the predicate (acyclicp p dag) is 
proven. 

Lemma 5 represents the generalized version of the Lemma 3 
after expanding the predicate acyclicp to acyclip1. 

 
;; lemma 5 
(defthm acyclicp-i-replaceValue-i-applySubstitution-general-1 
  (implies (and (ok-rulep rule dag) 
                (acyclicp1 p dag visited) 
                (acyclicp1 I dag visited) 
                (uniqueNodeIDp dag)) 
           (acyclicp1 p (replaceValue i  
                   (applySubstitution  
                                             (valueOf i dag) rule) dag))) visited) 
 

To prove lemma 5, a similar lemma stating that the term 
(applySubstitution p r) preserves acyclicity must be proven. 
 
 
 
 
 

;; lemma 6 
(defthm acyclicp1-replace-indexes-1 
  (implies  
   (and (uniqueNodeIDp dag) 
        (acyclicp1 p dag seen) 
        (acyclicp1 (cdr r) dag visited)) 
  (acyclicp1 (applySubstitution p r) dag visited)) 
 

Having proven Lemma 6, the proof of Lemma 5.1 is 
achievable by splitting the proof of Lemma 6 into two cases: (1) i 
is not reachable from p and (2) i is reachable from p.  

Then, Lemma 3 is provable via instantiating visited with nil. 
Having proven Lemma 3, Lemma 2 is proven automatically by 
ACL2. 
 

3.3 A Theorem about dref. 
An interesting theorem about the function dref is that given 

a dag in which all pointers are acyclic, represented by the 
predicate (acyclic-constant-poolp dag), and an acyclic index p in 
dag, then the result of dereferencing p in dag contains no indexes. 
Note that the predicate no-indexesp is a predicate that takes as an 
input a structure (or an object) and returns true if the structure 
contains no indexes; nil otherwise.  
 
 (defthm no-pointersp-dref 
  (implies (and (acyclic-constant-poolp dag) 
                (acyclicp p dag)) 
           (no-indexesp (dref p dag)))) 
 

4. Conclusion.  
This paper introduced a formal proof of correctness of 

properties for a restricted form of DAG that has practical 
importance. The representation of the DAG has its root to the 
constant pool in Java and the proof highlights the correctness 
preserving property of transitive closure as valid rules are applied 
to the DAG. The result of this work is an ACL2 book that can be 
reused by the ACL2 community when encountering proofs that 
include such DAG structure.  
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