
ACL2 for the Verification of Fault-Tolerance Properties:
First Results ∗

Laurence Pierre, Renaud Clavel, Régis Leveugle
TIMA (CNRS-Grenoble INP-UJF)

46 Av. Félix Viallet
38031 Grenoble cedex - France

{Laurence.Pierre, Renaud.Clavel, Regis.Leveugle}@imag.fr

ABSTRACT
We target the development of new methodologies for ana-
lyzing the robustness of circuits described at the Register
Transfer (RT) level, with respect to errors caused by tran-
sient faults. Analyzing the potential consequences of errors
usually involves fault-injection techniques, using simulation
or emulation-based solutions. Our goal is to take advan-
tage of the logical power of theorem proving tools to get
alternative solutions that would allow to reason purely sym-
bolically on errors. In this paper we present our preliminary
results with the ACL2 theorem prover, in the context of
devices that have auto-correction features. First we give a
logical definition of the error model as a conjunction of char-
acteristic properties, from which robustness analysis can be
performed. Then we improve the methodology to deal with
hierarchical systems.

Categories and Subject Descriptors
B.8.1 [Reliability, Testing, and Fault-Tolerance]; F.4.1
[Mathematical Logic]: Mechanical theorem proving

General Terms
Hardware reliability

Keywords
Robustness analysis, Formal methods

1. INTRODUCTION - CONTEXT

Designing dependable circuits requires in particular evalu-
ating, at each step in the design flow, the achieved level of
robustness against various types of faults or errors [1]. Crit-
ical systems traditionally include systems designed for space

∗This work is supported by the French National Research
Agency ANR in the framework of the “FME3” project
(ANR-07-SESU-006).

missions, aeronautics and other human transports, nuclear
plant control, etc. In such systems, an erroneous piece of
information may lead to dramatic consequences in terms of
human lives. In those cases, errors are generally the conse-
quence of natural phenomena such as particle impacts, elec-
tromagnetic perturbations, electrical noise or degradations
due to aging. The causes of errors, called faults, were usually
modeled in digital systems as single bit-flips or signals stuck
either at 1 or at 0. Faults may be permanent or transient
depending on their physical origin. With the evolution of
technologies, circuits are increasingly sensitive to transient
faults that have therefore become the main concern for de-
signers. Also, faults increasingly lead to multiple-bit errors
that are more difficult to detect or tolerate in the system.

In the last decade, the problem of fault consequences has
also become one of the main concerns in another context, i.e.
the design of secure circuits, including in particular crypto-
graphic devices. This is the case of circuits for smart cards,
but not limited to this particular domain. Such devices gen-
erally manipulate secret information, e.g. a secret key to en-
crypt or decrypt data. Several types of attacks are known,
aiming at discovering the secret stored in the circuit. One
type of attack is based on disturbing the circuit by volun-
tarily creating errors during the application execution, using
for example a laser. The erroneous results can then be ex-
ploited to perform some cryptanalysis (DFA : Differential
Fault Attack) [2].

The two contexts deal with different dependability attributes:
safety, availability or reliability in the first case, security
(and more precisely confidentiality) in the second case. How-
ever, the basic concern is the same in both cases from the
designer point of view since the goal is to ensure a given
level of robustness with respect to faults. The goal is either
to guarantee that no error (in a specified set of potential
errors derived from the selected fault model) can lead to
the feared events, identified as critical from the application
point of view, or to limit the probability of such events to
an acceptable value. In order to achieve this goal, designers
must analyse at design time the potential consequences of
errors, and when necessary add additional protections in the
circuit. Such an analysis is usually based on so-called fault
injection techniques, classically using either simulation or
emulation [8]. Unfortunately, such techniques require very
long experiment durations, that are often not acceptable in
particular in the case of complex circuits and multiple-bit
errors. In consequence, current practice is based on partial



analyses, injecting only a subset of all possible errors. Fur-
thermore, the number of injected errors is often limited to
a very small percentage. Such an approach can be sufficient
in some cases to be reasonably confident in the efficiency
of some protection mechanisms. However, this cannot be
considered as a guarantee that a given dependability prop-
erty holds for all possible errors in the specified set. Also,
it is not possible with such an approach to precisely quan-
tify the probability of a given event; only estimations can be
obtained unless exhaustive fault injections are performed.

Our goal is therefore to develop and evaluate new methodo-
logies helping the designer in better ensuring that the achie-
ved level of robustness is actually sufficient with respect to
the application constraints. The focus is on synchronous
digital circuits subject to transient faults resulting in sin-
gle or multiple erroneous bits. Through the use of formal
techniques, we mainly target small or medium size circuits
due to computation complexity. We however expect a more
thorough (and potentially faster) dependability characteri-
zation compared with exhaustive fault injections using clas-
sical approaches. The main goal is the ability to formally
prove that some dependability properties always hold for a
given set of potential errors due to transient faults. The in-
terest in using formal methods for dependability analysis is
growing but, to our knowledge, the application of theorem
proving techniques has not yet been considered.

We report here some preliminary results about adapting the
features of ACL2 to deal with fault-tolerance properties in
the case of auto-correcting circuits. We first recall some
existing results, which mainly focus on model-checking ori-
ented techniques rather than on theorem proving methods.
Then we describe the framework in which we use ACL2 to
reason about transient errors in VHDL descriptions, and
the main ideas for characterizing these errors. Finally, we
present a solution for improving the efficiency of the ap-
proach by decomposing the problem using the hierarchical
structure of the descriptions.

2. RELATED WORK

Following the seminal proposal of [7], some recent papers
document preliminary approaches to applying formal veri-
fication to dependability evaluation. They consider various
problems, and most of them make use of model checking or
symbolic simulation techniques.

The approach of [5] focuses on measuring the quality of
fault-tolerant designs, and works by comparing fault-injected
models with a golden model. Injection points are latches,
and a HDL model is used to mimic fault injection. The
BDD’s that correspond to the fault-injected and golden mod-
els are built by symbolic simulation for a given number of
cycles. Properties that characterize correction capabilities
are checked on these models.

The model checker SMV is used in [10] to identify latches
that must be protected in an arbitrary circuit. The approach
considers soft errors in latches, using the SEU error model.
Formal models for all the fault-injected circuits are built
(fault injection is performed in one latch for each one of
them) and SMV checks whether the formal specification of

the original circuit still holds in each case, thus indicating
whether the corresponding latch must be protected or not.
Results on a Verilog implementation of the SpaceWire com-
munication protocol are given.

The goal of [3] is to analyze the effects of transient faults,
using both symbolic simulation and model checking. In-
jected faults are pictured by modifying the premises of the
properties that should be satisfied without faults. Counter
examples generated by the model checker are used to inter-
pret the effects of the injected faults. Simple examples of
fault injection in the program counter or in the instruction
memory of an unpipelined RISC processor are reported.

The purpose of [6] is the validation of mechanisms imple-
mented in software for handling transient hardware faults.
This work focuses on transient hardware faults, more pre-
cisely bit-flips in data memory locations. Such faults are
emulated by manipulating the variables in programs which
undergo symbolic execution. Fault injection is character-
ized by specific symbolic execution rules that are used for
instance to determine the consequences of faults in terms of
strongest postconditions (within the verification tool KeY
for Java programs).

A definition of the robustness of a circuit in terms of its in-
put/output behaviour is given in [4]. Different fault models
are considered and an algorithm to compute a measure of the
robustness is given: it builds a fault-injected model, “unroll”
the circuit and its fault-injected counterpart, and estimates
a measure of robustness by SAT-solving equivalence proper-
ties. The interest in using induction to improve the method
is mentioned.

All these approaches are interesting but they share the same
drawback: soft errors are enumerated and processed sepa-
rately by applying the same procedure to all of them. Our
aim is to provide solutions that avoid duplicating similar
verifications for each error individually. The solution we
propose in this paper is a first step towards this goal. Using
the defspec and/or encapsulate constructs of ACL2, a kind
of meta-characterization of soft errors can be implemented.
We show that it allows to prove theorems that express ro-
bustness properties.

Theorem provers in general, and ACL2 in particular, have al-
ready been used in the context of fault-tolerant systems e.g.,
for verifying fault-tolerant protocols in distributed systems
where faulty processors may send conflicting information
(e.g. Byzantine agreement protocols [11]). To our knowl-
edge, this is the first time results are reported regarding the
use of ACL2 in the framework of hardware dependability
analysis.

3. OVERALL FRAMEWORK

We consider synchronous circuits described in VHDL at the
RT (Register Transfer) level and we target the verification
of dependability properties in presence of transient faults.

Our environment to deal with VHDL descriptions is sketched
in Figure 1. Using a specialized tool called VSYML [9],
we parse the VHDL code, perform symbolic execution, and



we get an XML representation of the transition and output
functions (for a Mealy machine):

δ : I × S → S
λ : I × S → O

where I , O and S refer to the sets of input values, output
values, and state values (memory elements).

Figure 1: Fault injection - From VHDL to ACL2

Our characterization of faults described in section 4 is gen-
eral and applicable to any RTL description. ACL2 macros
have been defined to help instantiate this model mechani-
cally. Hence we get an ACL2 source code that includes the
Lisp implementation of δ and λ, the appropriate character-
ization of fault injection, and the properties to be verified
(to be supplied manually).

4. CHARACTERIZATION OF ERRORS

4.1 Errors in ACL2

As a first attempt, we define and then formalize in ACL2 the
fault model that corresponds to the presence of a single or
multiple-bit error in a single register of the circuit. Future
work will take into account other realistic models such as
single bit flips or multiple-register errors for instance.

Instead of defining explicitly the fault-injection function f ,
we characterize it logically as a function that satisfies the
following conjunction of properties:

• it takes as parameter a state s ∈ S and returns
a state f(s) ∈ S

• f(s) is different from s (injection is actual)

• only one memorizing element (n-bit register) dif-
fers from s to f(s)

Such a characterization can easily be implemented in ACL2
using an encapsulate (or defspec) construct: f is only spec-
ified by its signature (more precisely, its number of argu-
ments) and is associated with three “constraints” i.e., three

theorems that correspond to the three properties above. To
guarantee the consistency of the constraints, a “witness”
function has to be defined locally to the encapsulate con-
struct, but it is unknown outside this construct. The three
theorems are exported, thus f is only represented by these
constraints. Here is such an encapsulate construct for the
representation of the fault-injection function in a register of
type “natp”.

(encapsulate
(((STD-natp-error *) => *))

; - Witness
(local (defun STD-natp-error (x)

(if (natp x) (1+ x) ‘‘error’’)))
; - Properties
(defthm STD-natp-type1 ; returns a natp

(implies (natp x)
(natp (STD-natp-error x))))

(defthm STD-natp-type2 ; takes a natp
(implies (not (natp x))

(equal (STD-natp-error x)
‘‘error’’)))

(defthm STD-natp-def ; fault-injection is actual
(implies (natp x)

(not (equal (STD-natp-error x) x))))

; the third property (only one memorizing element
; differs) is expressed in each non elementary
; component

)

This implementation is a simplification of the previous char-
acterization, since the state space is reduced here to only one
element. We will see in section 5 that our current implemen-
tation of the property “only one memorizing element differs
from s to f(s)” is expressed in each composite component
by a theorem of the form

W

i

(f(s) = injecti(s))

where each injecti translates an injection in the ith memo-
rizing element.

Given such a representation of f and considering for instance
the case of a device that has a property of auto-correction in
one clock cycle in the presence of single faults, we can verify
related theorems e.g., the following one:

For any initial error-free state s0, if a fault is injected after
n clock cycles (n > 0) then it will be corrected one clock
cycle later i.e., the resulting state will be equivalent to the
resulting state without fault injection:

δ(i, f(δn(ι, s0))) ⇔ δ(i, δn(ι, s0))
where ι is an input sequence, and i is the current input.

4.2 Example

Let us consider the example of Figure 2. This is a counter
equipped with a TMR (Triple Modular Redundancy) system
that ensures fault-tolerance: the memory element (register)
is triplicated and a voting system produces a single output.
Registers contain integers, and the boolean input inc con-
ditions the incrementation. A simple (non compositional)
associated VHDL description is as follows:



entity Counter is
port (clock: in bit; inc: in bit;

reset: in bit; count_out: out integer);
end Counter;

architecture Struct of Counter is
signal count1, count2, count3 : integer := 0;

begin
count1_out_process: process(clock, reset)
begin
if reset = ’0’ then count1 <= 0;
elsif clock’event and clock = ’1’ then
if (count1 = count2) or (count1 = count3) then

if inc = ’1’ then count1 <= 1+count1;
end if;

elsif (count2 = count3) then
if inc = ’1’ then count1 <= 1+count2;
else count1 <= count2;
end if;

end if;
end if;

end process count1_out_process;
count2_out_process: process(clock, reset)
begin
if reset = ’0’ then count2 <= 0;
elsif clock’event and clock = ’1’ then
if (count2 = count3) or (count2 = count1) then

if inc = ’1’ then count2 <= 1+count2;
end if;

elsif (count3 = count1) then
if inc = ’1’ then count2 <= 1+count3;
else count2 <= count3;
end if;

end if;
end if;

end process count2_out_process;
count3_out_process: process(clock, reset)
begin
if reset = ’0’ then count3 <= 0;
elsif clock’event and clock = ’1’ then
if (count3 = count1) or (count3 = count2) then

if inc = ’1’ then count3 <= 1+count3;
end if;

elsif (count1 = count2) then
if inc = ’1’ then count3 <= 1+count1;
else count3 <= count1;
end if;

end if;
end if;

end process count3_out_process;
count_out_process: process(count1, count2, count3)
begin
if count1 = count2 then count_out <= count1;
elsif count2 = count3 then count_out <= count2;
elsif count3 = count1 then count_out <= count3;
else count_out <= 0;
end if;

end process count_out_process;
end Struct;

We can verify that this system is able to come back to a
correct state after one clock cycle, provided that there is
only one erroneous value in the registers R1, R2 or R3. Let δ
and λ be the transition and output functions of this system,
we use ACL2 to prove the theorems:

1. if the initial state s0 is (0, 0, 0), and if a fault is injected
after n clock cycles then it will be corrected one clock
cycle later:

s0 = (0, 0, 0) ⇒ δ(i, f(δn(ι, s0))) ⇔ δ(i, δn(ι, s0))

2. more generally, if the initial state s0 is (X, X, X) where

Figure 2: Counter with TMR

X is any integer:
s0 = (X, X, X) ⇒ δ(i, f(δn(ι, s0))) ⇔ δ(i, δn(ι, s0))

3. more simply, if fault-injection occurs in any valid state
sn (a state is valid if the values of the three registers
are identical), then it will be corrected one clock cycle
later:

sn = (X, X, X) ⇒ δ(i, f(sn)) ⇔ δ(i, sn)

Similarly we prove that, under the same hypothesis, the pri-
mary output Count out always remains valid. CPU times
for the ACL2 proofs of the theorems above are1:

• Theorem 1: 5.47 seconds

• Theorem 2: 6.35 seconds

• Theorem 3: 0.01 seconds. There is no term with δn in
this theorem, thus there is no induction and the proof
is therefore immediate.

However, as soon as the size of the circuit becomes more rep-
resentative, CPU times grow quickly (in particular if there
are many control inputs, that give rise to many case split-
tings). A solution to this problem is to improve the model
in order to perform hierarchical proofs.

5. HIERARCHICAL MODEL

The ACL2 books for the examples of this section can be
found at http://tima.imag.fr/vds/FME3/.

5.1 Principles

Complex hardware systems are typically described hierar-
chically as the interconnection of simpler components: ele-
mentary gates or arithmetic units, IP’s (Intellectual Prop-
erty),. . .We can take advantage of this hierarchical construc-
tion to perform hierarchical verifications, thus considerably
improving the efficiency of the method.

To that goal, we reason as follows with a component C1

enclosed in a component C2:

1on an Intel Core2 Duo (3.0 GHz) under Linux



From the VHDL description of component C1, we know

• the sets I1, O1, S1 (deduced from the input/output
ports and local signals declarations),

• the transition and output functions δ1 : I1 × S1 → S1

and λ1 : I1 × S1 → O1.

For this component, we also have an error model specified
by a function f1.

Using all these characteristics, and locally to component C1,
we determine:

• a predicate Sp1 which is the state recognizer for
C1 i.e., Sp1(s) = true ⇔ s ∈ S1

• a predicate Sreach1 which is the recognizer for
the reachable (error-free) states of C1. For in-
stance, in the example of section 4, reachable
states are such that the contents of the three
registers are identical

• a set P1 of fault-tolerance properties (theorems)
for C1.

The definitions of the functions are local to C1. The outside
world, in particular component C2, only knows the existence
of δ1, λ1, Sp1, Sreach1 and f1 (but is unaware of their defi-
nitions), and can use theorems P1 to infer other properties.

Component C2 is characterized by similar constituents, and
its properties P2 are deduced from P1 (and possibly from
the properties of all other components contained in C2).

5.2 Example

Let us illustrate these principles with a simple version of a
cash withdrawal system. The interface between the ATM
(automatic teller machine) and its controller is pictured in
Figure 3. The controller is given in Figure 4, the correspond-
ing VHDL entity is:

entity ATM is
generic (max_try : natural := 3);
port (clock : in bit;

reset : in bit;
inc : in bit; -- card insertion
cc : in natural; -- card code
codin : in natural; -- proposed code
val : in bit; -- validate
done_op : in bit; -- ATM operation completed
take : in bit; -- card withdrawn
outc : out bit; -- eject
keep : out bit; -- keep the card
start_op : out bit; -- start ATM ooperation
e_detect : out bit); -- error detected

end ATM;

The inputs inc and take are true respectively when the card
is inserted and withdrawn, and cc is the card code. The
input codin is the code that is entered through the keyboard,
val is used to validate, and reset to cancel the operations.
The outputs outc and keep indicate respectively that the
card can be withdrawn or that the machine keeps it.

Figure 3: Interface of the ATM

If the customer gives the right code before a number of at-
tempts given by the generic parameter max try, the FSM
reaches state code ok and banking operations are allowed
(start op indicates that the corresponding mode is entered,
done op becomes true when the operations are done). Oth-
erwise the FSM reaches state code error and the card is kept.

The local signal failed becomes true if an internal error has
been detected. In that case, the behaviour of the machine
is different from its behaviour in nominal cases, in particu-
lar the access to banking operations is forbidden (it will be
verified in section 5.2.2).

This system contains 3 registers:

• n that stores the current number of attempts,

• ok that contains the valid code,

• and code where the value of codein is stored, to be
compared to the right code.

Hence, the component ATM includes 3 instances of registers,
declared as follows:

component REG generic (default_value : natural);
port (clock : in bit;

in_value : in natural; -- loaded value
ld_flag : in bit; -- load flag
out_value : out natural;
e_detect : out bit); -- error detection

end component;

The output out value gives the value stored in the register,
and the output e detect can indicate the detection of an
error. We consider three different VHDL architectures for
this component REG:

• A1: a classical register, that has no fault-tolerance
properties (its output e detect is useless and stuck at
false, and its only chance to restore a correct value is
when the ld flag bit is set)

• A2: a register that is able to detect a single error (the
register is in fact duplicated and the values are com-
pared: e detect is set to true if they are different)

• A3: a TMR register that has the property of auto-
correction in case of a single error (see section 4).



Figure 4: FSM of the cash withdrawal system

5.2.1 Register sub-component

Let us give some more details about A2 and A3 (A1 has an
analogous ACL2 encoding but is simpler). For the register
A2 equipped with an error detection mechanism, we have
the following functions (see the ACL2 code below):

• a transition function REG-det-next and output func-
tions REG-det-out value and REG-det-e detect

• a state recognizer REG-det-Sp, and a recognizer for
the reachable (error-free) states REG-det-reach state

• an error-injection function REG-det-error

and we prove the following properties PREGdet:

• REG-det-error: S → S (written using REG-det-Sp,
see theorem REG-det-error-type)

• REG-det-error(s) 6= s
(see theorem REG-det-error-spec1)

• A soft error has no effect if a new value is just being
loaded in the register:
REG-det-reach state(s) ∧ ld flag ⇒

REG-det-next(i,REG-det-error(s)) ⇔ REG-det-next(i, s)
(see theorem REG-det-thm-hardened-1)

• Every single error is detected:
REG-det-reach state(s) ⇒

REG-det-e detect(REG-det-error(s))
(see theorem REG-det-thm-hardened-2)

These proofs make use of a characterization of the error func-
tion REG-det-error as explained at the beginning of section
4, which is hidden in a local encapsulate.

Here are the essentials of the ACL2 implementation:

(defspec REG-det
(((REG-det-Sp *) => *) ; state recognizer
((REG-det-next * *) => *) ; transition function
((REG-det-out_value * *) => *) ; output functions
((REG-det-e_detect * *) => *)
((REG-det-reach_state *) => *) ; reachable states
((REG-det-error *) => *) ; error

)
...
(local (encapsulate ; error model

(((REG-det-error *) => *))
...

(defthm REG-det-error-1
(equal (REG-det-Sp (REG-det-error x))

(REG-det-Sp x)))
(defthm REG-det-error-2

(implies (REG-det-Sp x)
(not (equal (REG-det-error x) x))))

; the error can be located in the first or in
; the second register:
(defthm REG-det-error-3

(or (equal (REG-det-error x)
(REG-det-inject1 x))

(equal (REG-det-error x)
(REG-det-inject2 x)))))

)

(defthm REG-det-error-type
(equal (REG-det-Sp (REG-det-error S))

(REG-det-Sp S)))

(defthm REG-det-error-spec1
(implies (REG-det-Sp S)

(not (equal (REG-det-error S) S))))

(defthm REG-det-thm-hardened-1
(implies (and (REG-det-Sp S)



(REG-det-reach_state S)
(true-listp I) (equal (len I) 2)
(natp

(nth *REG-det/in_value* I))
(booleanp

(nth *REG-det/ld_flag* I))
; loading:
(nth *REG-det/ld_flag* I))

(equal (REG-det-next I
(REG-det-error S))

(REG-det-next I S))))

(defthm REG-det-thm-hardened-2
(implies (and (REG-det-Sp S)

(REG-det-reach_state S))
(REG-det-e_detect nil

(REG-det-error S))))
...

)

As for the TMR register (architecture A3), we have the fol-
lowing functions (see the ACL2 code below):

• a transition function TMR-next and output functions
TMR-out value and TMR-e detect

• a state recognizer TMR-Sp, and a recognizer for the
reachable (error-free) states TMR-reach state

• an error-injection function TMR-error

and we prove the following properties PTMR:

• TMR-error: S → S (written using TMR-Sp, see theo-
rem TMR-error-type)

• TMR-error(s) 6= s (see theorem TMR-error-spec1)

• TMR-reach state(s) ⇒

TMR-next(i,TMR-error(s)) ⇔ TMR-next(i, s)
(see theorem TMR-thm-hardened-1)

• TMR-reach state(s) ⇒

TMR-out value(TMR-error(s)) ⇔ TMR-out value(s)
(see theorem TMR-thm-hardened-2)

(defspec TMR
(((TMR-Sp *) => *) ; state recognizer
((TMR-next * *) => *) ; transition function
((TMR-out_value * *) => *) ; output functions
((TMR-e_detect * *) => *)
((TMR-reach_state *) => *) ; reachable states
((TMR-error *) => *) ; error
)
...
(local (encapsulate ; error model

(((TMR-error *) => *))
...

(defthm TMR-error-1
(equal (TMR-Sp (TMR-error x)) (TMR-Sp x)))

(defthm TMR-error-2
(implies (TMR-Sp x)

(not (equal (TMR-error x) x))))
; the error can be located in any of the three
; registers:
(defthm TMR-error-3

(or (equal (TMR-error x) (TMR-inject1 x))
(equal (TMR-error x) (TMR-inject2 x))
(equal (TMR-error x) (TMR-inject3 x)))))

)

(defthm TMR-error-type
(equal (TMR-Sp (TMR-error S)) (TMR-Sp S)))

(defthm TMR-error-spec1
(implies (TMR-Sp S)

(not (equal (TMR-error S) S))))

(defthm TMR-thm-hardened-1
(implies (and (TMR-Sp S)

(TMR-reach_state S)
(true-listp I) (equal (len I) 2)
(natp (nth *TMR/in_value* I))
(booleanp

(nth *TMR/ld_flag* I)))
(equal (TMR-next I (TMR-error S))

(TMR-next I S))))

(defthm TMR-thm-hardened-2
(implies (and (TMR-Sp S)

(TMR-reach_state S))
(equal (TMR-out_value nil

(TMR-error S))
(TMR-out_value nil S))))

...
)

5.2.2 ATM system

For the three registers n, ok and code of the ATM system, we
can choose any register architecture A1, A2 or A3 (through
different VHDL configurations). Depending on the selected
architectures, we get different fault-tolerance properties for
ATM. In the following, we consider that error injection can
occur in any of these registers but cannot occur in the FSM
symbolic state.

Let us consider the case where we choose to instantiate each
register with architecture A3 (TMR). At that point, we have
to express in “defspec ATM” below that n, ok and code are
three instances of the component characterized by the set
of properties PTMR specified in “defspec TMR”. In other
words, we would like to mimic a kind of quantification

∀ n, ok, code / PTMR(n) ∧ PTMR(ok) ∧ PTMR(code)...
However such a construct, that would be useful for translat-
ing component instantiation, does not exist in encapsulate
or in defspec. Hence in “defspec ATM”, we include three lo-
cal “encapsulate” which arise from the three registers being
instantiated with TMR components (it is worth mentioning
that such repetitive lines of code can easily be obtained by
Lisp macros).

For the ATM system, we have the following functions:

• a transition function ATM-next and output functions
ATM-outc, ATM-keep,ATM-start op and ATM-e detect

• a state recognizer ATM-Sp, and a recognizer for the
reachable (error-free) states ATM-reach state

• an error-injection function ATM-error

and we prove the following properties PATM :

• ATM-error: S → S (written using ATM-Sp, see theo-
rem ATM-error-type)

• ATM-error(s) 6= s (see theorem ATM-error-spec1)



• ATM-reach state(s) ⇒

ATM-next(i,ATM-error(s)) ⇔ ATM-next(i, s)
(see theorem ATM-thm-hardened-1)

• ATM-reach state(s) ⇒

ATM-start op(i,ATM-error(s)) ⇔ ATM-start op(i, s)
(see theorem ATM-thm-hardened-2), and similarly for
the other outputs.

The proofs of these theorems PATM make use of the previ-
ously proven properties PTMR.

(defspec ATM
(((ATM-Sp *) => *) ; state recognizer
((ATM-next * *) => *) ; transition function
((ATM-outc * *) => *) ; output functions
((ATM-keep * *) => *)
((ATM-start_op * *) => *)
((ATM-e_detect * *) => *)
((ATM-reach_state *) => *) ; reachable states
((ATM-error *) => *)) ; error

...
(local (encapsulate ; for register N

(((ATM-n_reg-error *) => *))
(defun ATM-n_reg-Sp (S) (TMR-Sp S))
(defun ATM-n_reg-next (I S) (TMR-next I S))
(defun ATM-n_reg-out_value (I S)

(TMR-out_value I S))
(defun ATM-n_reg-e_detect (I S)

(TMR-e_detect I S))
(defun ATM-n_reg-reach_state (S)

(TMR-reach_state S))
(local (defun ATM-n_reg-error (S)

(TMR-error S)))
(definstance TMR n_register

:functional-substitution
((TMR-error ATM-n_reg-error))

:rule-classes :rewrite)))

(local (encapsulate ; for register OK
(((ATM-ok_reg-error *) => *))
(defun ATM-ok_reg-Sp (S) (TMR-Sp S))
(defun ATM-ok_reg-next (I S) (TMR-next I S))
(defun ATM-ok_reg-out_value (I S)

(TMR-out_value I S))
(defun ATM-ok_reg-e_detect (I S)

(TMR-e_detect I S))
(defun ATM-ok_reg-reach_state (S)

(TMR-reach_state S))
(local (defun ATM-ok_reg-error (S)

(TMR-error S)))
(definstance TMR ok_register

:functional-substitution
((TMR-error ATM-ok_reg-error))

:rule-classes :rewrite)))

(local (encapsulate ; for register CODE
(((ATM-code_reg-error *) => *))
(defun ATM-code_reg-Sp (S) (TMR-Sp S))
(defun ATM-code_reg-next (I S) (TMR-next I S))
(defun ATM-code_reg-out_value (I S)

(TMR-out_value I S))
(defun ATM-code_reg-e_detect (I S)

(TMR-e_detect I S))
(defun ATM-code_reg-reach_state (S)

(TMR-reach_state S))
(local (defun ATM-code_reg-error (S)

(TMR-error S)))
(definstance TMR code_register

:functional-substitution
((TMR-error ATM-code_reg-error))

:rule-classes :rewrite)))
...
(local (encapsulate ; error model

(((ATM-error *) => *))
(local (defun ATM-error (x) (ATM-inject1 x)))
(defthm ATM-error-1

(equal (ATM-Sp (ATM-error x))
(ATM-Sp x)))

(defthm ATM-error-2
(implies (not (ATM-Sp x))

(equal (ATM-error x) ‘‘error’’)))
(defthm ATM-error-3

(implies (ATM-Sp x)
(not (equal (ATM-error x) x))))

; the error can be located in any of the three
; registers:
(defthm ATM-error-4

(or (equal (ATM-error x)
(ATM-inject1 x))

(equal (ATM-error x)
(ATM-inject2 x))

(equal (ATM-error x)
(ATM-inject3 x))))))

(defthm ATM-error-type
(equal (ATM-Sp (ATM-error S))

(ATM-Sp S)))

(defthm ATM-error-spec1
(implies (ATM-Sp S)

(not (equal (ATM-error S) S))))

(defthm ATM-thm-hardened-1
(implies (and (ATM-Sp S)

(ATM-reach_state S)
(true-listp I) (equal (len I) 7)
(booleanp (nth *ATM/reset* I))
(booleanp (nth *ATM/inc* I))
(natp (nth *ATM/cc* I))
(natp (nth *ATM/codin* I))
(booleanp (nth *ATM/val* I))
(booleanp (nth *ATM/done_op* I))
(booleanp (nth *ATM/take* I)))

(equal (ATM-next I (ATM-error S))
(ATM-next I S))))

(defthm ATM-thm-hardened-2
(implies (and (ATM-Sp S)

(true-listp I) (equal (len I) 2)
(booleanp (nth *ATM/reset* I))
(booleanp (nth *ATM/done_op* I))
(ATM-reach_state S))

(equal (ATM-start_op I (ATM-error S))
(ATM-start_op I S))))

(defthm ATM-thm-hardened-3
(implies (and (ATM-Sp S)

(ATM-reach_state S))
(equal (ATM-keep nil (ATM-error S))

(ATM-keep nil S))))

(defthm ATM-thm-hardened-4
(implies (and (ATM-Sp S)

(true-listp I) (equal (len I) 2)
(booleanp (nth *ATM/reset* I))
(booleanp (nth *ATM/done_op* I))
(ATM-reach_state S))

(equal (ATM-outc I (ATM-error S))
(ATM-outc I S))))

...
)

In the case where the ATM registers are all instantiated us-



Proof Number of Total number of Number of Total
local events exported theorems error-related theorems CPU time

Register
Simple 7 16 (12 for typing) 4 0.20 s
With error detection 8 16 (12 for typing) 4 0.24 s
TMR register 9 16 (12 for typing) 4 0.88 s
ATM
With error-detecting registers 14 21 (16 for typing) 5 2.34 s
With TMR registers 14 21 (16 for typing) 5 10.58 s
With TMR registers (flat) 2559.14 s

Table 1: Proofs - Size and CPU time

ing architecture A2, errors can be detected but not corrected
and we have the following properties:

• ATM-error: S → S

• ATM-error(s) 6= s

• Banking operations cannot start if an error occurs:
ATM-reach state(s) ⇒

¬ ATM-start op(i,ATM-error(s))

• Errors are detected:
ATM-reach state(s) ⇒

ATM-e detect(ATM-error(s))

The proofs of these theorems make use of the previously
proven properties PREGdet.

Table 1 summarizes CPU times for all the proofs related to
this ATM example. Exported theorems include simple lem-
mas such as typing properties or various simplifying rules,
as well as the fault-tolerance properties given above.

We see for instance that the complete certification of the
book that corresponds to the ATM with TMR registers (last
row) is performed in 10.58 seconds. The proof of property
ATM-thm-hardened-1:

ATM-reach state(s) ⇒

ATM-next(i,ATM-error(s)) ⇔ ATM-next(i, s)
takes 6.91 seconds.

It is worth noticing that, having this theorem proven, verify-
ing that starting from an error-free state, if a fault is injected
after n clock cycles (n any positive integer) then it will be
corrected one clock cycle later:

ATM-reach state(s) ⇒

ATM-next(i,ATM-error(ATM-nextn(I, s))) ⇔
ATM-next(i,ATM-nextn(I, s))

is performed in 0.12 seconds (with function ATM-next dis-
abled).

Moreover the benefits of the hierarchical decomposition are
substantial. For instance, while the certification of the book
for the ATM with TMR registers takes 10.58 seconds with
the hierarchical approach, it takes 2559.14 seconds for a flat-
tened description (last line of Table 1).

6. CONCLUSION

We have presented our first results about the application
of ACL2 to the verification of fault-tolerance properties in

digital designs. The approach still has to be improved. For
the ATM example of section 5 for instance, we get satisfying
CPU times for verifying auto-correction in one clock cycle
(proof of ATM-thm-hardened-1 in 6.91 seconds) but many
circuits need more than one clock cycle to restore a correct
state and we should be able to consider them. To get an idea
of the feasibility of such proofs with our approach, we veri-
fied auto-correction of the ATM example after several clock
cycles (deliberately ignoring theorem ATM-thm-hardened-1)
and we observed that CPU times grow very quickly (for in-
stance, auto-correction after only 2 clock cycles is verified in
325.85 seconds).

One of the main aspects to be enhanced is that our current
implementation of the property “only one memorizing ele-
ment differs from s to f(s)” in the error model is expressed
by a theorem of the form

W

i

(f(s) = injecti(s))

where each injecti translates an injection in the ith memo-
rizing element. We are working on providing a solution that
could avoid the use of these injecti i.e., based on a theorem
of the form f(si) 6= si ⇒ ∀j 6= i, f(sj) = sj . CPU times
should be significantly improved using such a representation.

We are also currently enriching the methodology to deal with
other kinds of fault models/properties. In particular, we
are working on formalizing fault-injection functions on bit-
vector registers, hence allowing to characterize SEU (Single
Event Upset) and MEU (Multiple Event Upset) error mod-
els. We target case studies such as a FIR (finite impulse
response) filter that computes

St =
n

X

k=0

It−k ∗ Ck

where the Ck coefficients are stored in a ROM and the suc-
cessive inputs It−k are put into a delay line. Considering
errors in this device, especially in this large register, will be
of great interest.

Acknowledgments

The authors are grateful to the anonymous reviewers for
their fruitful comments.

7. REFERENCES
[1] L. Anghel, R. Leveugle, and P. Vanhauwaert.

Evaluation of SET and SEU effects at multiple
abstraction levels. In Proc. 11th IEEE International



On-Line Testing Symposium, July 2005.

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan. The sorcerer’s apprentice guide to fault
attacks. Proceedings of the IEEE, 94(2), Feb. 2006.

[3] A. Darbari, B. Al-Hashimi, P. Harrod, and
D. Bradley. A New Approach for Transient Fault
Injection using Symbolic Simulation. In Proc. IEEE
International On-Line Testing Symposium, 2008.

[4] G. Fey and R. Drechsler. A Basis for Formal
Robustness Checking. In Proc. IEEE International
Symposium on Quality Electronic Design, 2008.

[5] U. Krautz, M. Pflanz, C. Jacobi, H. Tast, K. Weber,
and H. Vierhaus. Evaluating Coverage of Error
Detection Logic for Soft Errors using Formal Methods.
In Proc. DATE’06, March 2006.

[6] D. Larsson and R. Hähnle. Symbolic Fault Injection.
In Proc. 4th International Verification Workshop, July
2007.

[7] R. Leveugle. A new approach for early dependability
evaluation based on formal property checking and
controlled mutation. In Proc. 11th IEEE International
On-Line Testing Symposium, July 2005.

[8] R. Leveugle and K. Hadjiat. Multi-level fault
injections in VHDL descriptions: alternative
approaches and experiments. Journal of Electronic
Testing: Theory and Applications, 19(5), Oct. 2003.

[9] F. Ouchet, D. Borrione, K. Morin-Allory, and
L. Pierre. High-level symbolic simulation for automatic
model extraction. Currently under submission.

[10] S. Seshia, W. Li, and S. Mitra. Verification-guided soft
error resilience. In Proc. DATE’07, April 2007.

[11] William D. Young. Comparing verification systems:
Interactive Consistency in ACL2. In Proc. 11th
Annual Conference on Computer Assurance, pages
17–21, June 1996.


