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ABSTRACT
Classical data structures such as stacks, queues, and double-
ended queues (deques) find broad use in security-critical
applications. At the highest Evaluation Assurance Level
(EAL) of the Common Criteria, such data structures must
be formally specified, and proven to meet their specifica-
tions. Formal verification systems can readily reason about
unbounded, functional data structures. However, such data
structures are in the main not appropriate for direct imple-
mentation in high-confidence software systems, both because
of their unbounded nature, and also due to the complexity of
the functional forms (e.g., the use of two lists, one reversed,
to implement a deque). We will show how a formally verified
data structure specified using the ACL2 single-threaded ob-
ject facility can be much more readily translated into high-
assurance implementations expressed in conventional pro-
gramming languages. Finally, we show how this translated
data structure code can be compiled into efficient machine
code for a common embedded microprocessor using a veri-
fied compiler, and executed on an EAL6+ verified operating
system.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—correctness proofs, formal methods, reliability

General Terms
Reliability, Security, Verification

Keywords
ACL2, certification, data structures, deque, high assurance,
theorem proving

1. INTRODUCTION
Security-critical applications are commonly certified accord-
ing to the Common Criteria at the highest Evaluation As-
surance Levels (EALs) [5]. At the highest EAL, EAL7, the

application must be formally specified, and must be proven
to meet its specification. This can be a very costly and time-
consuming process. One of the continuing research goals at
Rockwell Collins is to improve secure system evaluation –
measured in terms of completeness, human effort required,
time, and cost – through the use of highly automated formal
methods. In support of this goal, we have developed prac-
tical techniques for formal computer system platform mod-
eling and analysis utilizing the ACL2 theorem prover (e.g.,
[9], [16]). This work has led to an EAL7 level MILS certi-
fication for the Rockwell Collins AAMP7G microprocessor
[17], as well as an EAL6+ certification for the Green Hills
INTEGRITY-178B Real-Time Operating System (RTOS)
kernel, executing on a PowerPC-based single-board com-
puter [8].

Once such a formal model of the computing platform has
been developed, one can begin to reason about applications
that execute on that platform. Not surprisingly, classical
data structures such as stacks, queues, and double-ended
queues (deques) find broad application in security-critical
applications. In our experience, we have found that deques
are particularly common, as they are employed in device
drivers, audit queueing, etc. We have also observed that
deque implementation can be error-prone. Thus, we have
investigated techniques for the formal verification of clas-
sical data structure implementations, focusing on queueing
structures.

Formal verification systems can readily reason about un-
bounded, functional data structures. However, such data
structures are in the main not appropriate for high-confidence
software systems. Purely functional data structure imple-
mentations produce a new copy of the data structure for
each mutator operation. This tends to generate garbage,
necessitating some form of garbage collection, with the per-
formance impact, increased memory usage, and additional
runtime support that this entails. Moreover, the garbage
collector itself would have to be formally verified. Moreover,
purely functional implementations of common data struc-
tures (queues, deques, etc.) can be difficult for engineers
and evaluators to understand; even simplified approaches
[14, 15] are quite subtle. Unsurprisingly, subtle implemen-
tations are generally frowned upon by the high-confidence
software community.



2. HIGH-ASSURANCE SOFTWARE DEVEL-
OPMENT VS. FORMAL VERIFICATION

High-Assurance software development methodologies (e.g.,
SPARK [1]) vary somewhat in their details, but can be gen-
erally characterized by the following:

• Static programming language subset.

• Fixed-size data structures.

• No recursion.

• Straightforward implementation.

• Freedom from exceptions.

By contrast, formal verification environments largely sup-
port the following methodologies:

• Dynamic programming language subset.

• Functional data structures.

• Recursion.

• Subtle implementation.

One goal of our research program, then, is to find a way to
bridge the gap between the formal verification environment
and the high-assurance implementation environment, allow-
ing us to implement verifiable data structures, as well as to
verify implementable data structures.

3. A VERIFICATION ENVIRONMENT: THE
ACL2 THEOREM PROVER

We utilize the ACL2 theorem proving system [11] for much
of our high-assurance verification work, as it best presents a
single model for formal analysis and simulation. ACL2 also
provides a highly automated theorem proving environment
for machine-checked formal analysis, and its logic is an ap-
plicative subset of Common Lisp. The fact that ACL2 rea-
sons about a real programming language suggests that ACL2
could be an appropriate choice for data structure verifica-
tion work. An additional feature of ACL2, single-threaded
objects, adds to its strength as a vehicle for reasoning about
data structures, as will be detailed in the following sections.

3.1 ACL2 Single-Threaded Objects
ACL2 enforces restrictions on the declaration and use of
specially-declared structures called single-threaded objects,
or stobjs [4]. ACL2 enforces strict syntactic rules on sto-
bjs to ensure that they are not copied; thus, “old” states of
a stobj are guaranteed not to exist. This property means
that ACL2 can provide destructive implementation for sto-
bjs, allowing stobj operations to execute quickly. In short,
an ACL2 single-threaded object combines a functional se-
mantics about which we can readily reason, utilizing ACL2’s
powerful heuristics, with a relatively high-speed imperative
implementation that more closely follows “normal” design
rules for high assurance.

4. A DEQUE IMPLEMENTATION USING AN
ACL2 SINGLE-THREADED OBJECT

In this section, we describe a deque implementation using an
ACL2 single-threaded object. This is not intended to be the
ultimate deque implementation; indeed, many alternative
designs are possible. We chose to implement the deque in
a way that would be typical for a high-assurance developer;
thus, we did not allow the deque to be resizable, even though
the stobj framework allows this. We also did not attempt to
achieve optimal time bounds for all operations, but rather
implemented the deque in such a way that fast block data
move instructions could be used. Finally, we iterated on the
design a couple of times to achieve an implementation that
could be processed by ACL2 without any involved induction
hints, etc., or appealing to anything more than the most
common arithmetic reasoning facilities. In particular, we
did not use modular arithmetic to maintain the head and
tail indexes, for example, but rather used ACL2 to establish
that the arithmetic that we performed would never cause an
overflow.

Also note that we have implemented stack and single-ended
queue data structures using a similar technique, and the
reader can well imagine how this technique could extend to
other common data structures.

4.1 Deque Definitions
First, we present the basic single-threaded object declaration
for a deque:

;; Fixed-size deque.

(defstobj dqst

(arr :type (array t (2048)) :initially (empty))

(hd :type (unsigned-byte 11) :initially 0)

(tl :type (unsigned-byte 11) :initially 0))

In this declaration, hd is the index of the front of the deque,
tl is the index of the back of the deque plus one, and arr

is the array of deque data. In this example, both hd and
tl are declared to be unsigned 11-bit values, but this type
information is used only to optimize code generation, and
is ignored by the logic. Since tl indexes one beyond the
back of the queue, the maximum capacity of the deque is
the declared size of the array minus one. So, in the example
above, the maximum capacity of the deque is 2047. This
maximum capacity value was chosen somewhat arbitrarily,
but is representative of the sorts of queue sizes that one en-
counters in high-assurance systems. One of the advantages
of the ACL2 stobj approach is that this maximum capac-
ity can be increased to a value much larger than what is
seen in practice without noticeably affecting proof times or
execution times.

defstobj defines a number of predicate, accessor and up-
dater functions for the elements of the stobj. For example,
(hd dqst) returns the index of the head; (arri i dqst)

returns the ith element of the deque array; (update-tl x

dqst) updates the value of the tail index to x; (update-arri
i val dqst) updates the deque at array element i to val;
and (dqstp dqst) indicates whether its argument is a deque.



Next we present some basic predicates and accessors on the
deque. Not all operators that have been implemented are
shown for the sake of brevity. All functions that accept the
deque stobj as a parameter must have a declare form that
so indicates.

Note that all operators are defined using ACL2’s defund,
which means “define the function and then disable the defi-
nition”. Disabling the definition prevents the theorem prover
from performing unnecessary expansions, limiting its search,
and often making the difference between a successful and an
unsuccessful proof attempt. In the theorems that follow, we
will often see hints that enable definitions for the functions
whose definitions are truly needed (e.g., it is not enough
just to know that the function accepts a deque and returns
a natural).

(defund size-of (dqst)

(declare (xargs :stobjs dqst))

(if (> (tl dqst) (hd dqst))

(- (tl dqst) (hd dqst))

0))

(defund is-empty (dqst)

(declare (xargs :stobjs dqst))

(equal (hd dqst) (tl dqst)))

(defund get-first (dqst)

(declare (xargs :stobjs dqst

:guard-hints (("Goal" :in-theory

(enable is-empty)))))

(if (is-empty dqst)

(empty)

(arri (hd dqst) dqst)))

contains is a more complex predicate that computes whether
its input element e is contained within the deque. The
contains predicate performs the search for e using a“helper”
function index-of-from-back, starting at index i, usually
set to the size of the deque, and decrementing toward the
front of the deque. contains is interesting in that we must
first prove a theorem about the return type of the helper
function before contains can be admitted into the logic.

(defund index-of--from-back (i e dqst)

(declare (xargs :stobjs dqst :guard (natp i)

:guard-hints (("Goal" :in-theory

(enable size-of)))))

(if (or (zp i) (> i (size-of dqst)))

0 ;; Nothing at the 0th index from the tail --

;; failure indication

(if (equal e (arri (+ (hd dqst) (- i 1)) dqst))

(- (size-of dqst) (- i 1))

(index-of--from-back (- i 1) e dqst))))

(defthm iofb-nat--thm

(implies (and (natp i) (dqstp dqst))

(natp (index-of--from-back i e dqst)))

:hints (("Goal" :in-theory

(enable index-of--from-back size-of))))

(defund contains (e dqst)

(declare (xargs :stobjs dqst

:guard-hints

(("Goal" :in-theory

(enable index-of--from-back

size-of)))))

(/= 0 (index-of--from-back (size-of dqst) e dqst)))

Finally, we come to the add and remove mutators, two of
which, add-first and remove-last, are described herein.
These operations are difficult to implement in a traditional
purely functional environment, as the deque is typically im-
plemented as two lists, one of which must be reversed [14,
15]. The shift-up-to helper function assists add-first in
the case where the deque is not full, but the head equals
0, requiring that room be made at the head. Even though
shift-up-to is a non-trivial recursive function, ACL2 read-
ily performs the termination analysis necessary to admit this
function into the logic without any user intervention.

Both add-first and remove-last make use of the seq macro,
which automatically provides the let-bindings that are needed
to have one stobj operation “follow” another, without clut-
tering the source code. seq is defined as follows:

(defmacro seq (stobj &rest rst)

(cond ((endp rst) stobj)

((endp (cdr rst)) (car rst))

(t ‘(let ((,stobj ,(car rst)))

(seq ,stobj ,@(cdr rst))))))

The seq macro was originally authored by J Moore, and we
thank him for it.

The definitions of add-first and remove-last, along with
the helper function shift-up-to, follow. shift-up-to is
used to make room at the head of the deque so that the new
element e can be added.

;; Shift up to the ith offset from the head

(defund shift-up-to (i dqst)

(declare (xargs :stobjs dqst :guard (natp i)))

(if (or (zp i) (>= (+ (hd dqst) i) (tl dqst)))

dqst

(seq dqst

(update-arri (+ (hd dqst) i)

(arri (+ (hd dqst) (- i 1)) dqst)

dqst)

(shift-up-to (- i 1) dqst))))

(defund add-first (e dqst)

(declare (xargs :stobjs dqst

:guard-hints

(("Goal" :in-theory

(enable size-of is-full

is-full-front)))))

(if (or (equal e (empty))

(is-full dqst)

(< (tl dqst) (hd dqst)))

dqst



(if (not (is-full-front dqst))

(seq dqst

(update-hd (- (hd dqst) 1) dqst)

(update-arri (hd dqst) e dqst))

(seq dqst

(update-tl (+ (tl dqst) 1) dqst)

(shift-up-to (- (size-of dqst) 1) dqst)

(update-arri 0 e dqst)))))

(defund remove-last (dqst)

(declare (xargs :stobjs dqst

:guard-hints

(("Goal" :in-theory

(enable size-of)))))

(if (= (size-of dqst) 0)

dqst

(seq dqst

(update-tl (- (tl dqst) 1) dqst)

(update-arri (tl dqst) (empty) dqst))))

4.2 Deque Theorems
Once we have defined the deque single-threaded object; de-
fined a number of predicates, accessors, and updaters for the
deque; and admitted these operations into the logic, we can
now begin to prove theorems about the data structure.

We begin by introducing an important relation between tl

and hd that we expect all deque operations to maintain:

(defun tail-head-relation (dqst)

(declare (xargs :stobjs dqst))

(and (natp (hd dqst))

(natp (tl dqst))

(<= (hd dqst) (- (maxnode) 1))

(<= (tl dqst) (- (maxnode) 1))

(<= (hd dqst) (tl dqst))))

We then proceed to prove that this relation in fact holds for
all deque operations. A sample theorem of this sort is given
below:

(defthmd add-first--tl-hd--thm

(implies (tail-head-relation dqst)

(tail-head-relation (add-first e dqst)))

:hints (("Goal" :in-theory

(e/d (add-first size-of is-full

is-full-front)

(update-arri)))))

This theorem states that if the tail-head-relation defined
above holds for the deque before the execution of add-first,
it will hold afterward. e/d is a hint to enable the items in
the first list following the e/d verb, while disabling the items
in the second list.

Additionally, we can prove functional correctness theorems
for compositions of operations on the deque, of the sort
stated below:

(defthm add-first--get-first--thm

(implies (and (not (is-full dqst))

(not (= e (empty)))

(not (< (tl dqst) (hd dqst)))

(dqstp dqst))

(equal (get-first (add-first e dqst)) e))

:hints (("Goal"

:in-theory (e/d (size-of add-first

get-first is-full

is-full-front

shift-up-to

is-empty)

(update-arri)))))

This theorem states that if certain preconditions are met,
(get-first (add-first e dqst)) equals the element e that
was added.

Several correctness theorems of the form above were devel-
oped for the various deque operations; in all, over 50 theo-
rems were stated and proved over the course of a two-week
period. All theorems are proved without human assistance
within seconds on a modern CPU.

5. TRANSLATION TO CONVENTIONAL PRO-
GRAMMING LANGUAGES

In order to utilize the data structures we have developed
in a typical high-assurance development environment, we
must first translate the source code from ACL2 to a more
conventional programming language. Note that it is possi-
ble to compile the ACL2 source to machine code (indeed,
this is done routinely as part of ACL2’s book certification
process), and utilize that machine code directly on the tar-
get system. However, utilizing ACL2 as a source language
would be difficult for most developers and evaluators, and
the code generated, while effective in many ways (e.g., tail
recursion is compiled into iteration), would be difficult to
utilize as standalone object modules.

We have hand-translated our ACL2 stobj-based data struc-
tures into SPARK Ada [1]; a static subset of Java [7]; and
C [10]. In fact, due to the static nature of the Java transla-
tion, the C and Java versions are in fact very similar. Most
of the translation work could have been performed auto-
matically; the biggest challenge was converting recursion
to iteration. (Note that converting recursion to iteration
is not needed when the compiler used supports tail recur-
sion elimination.) The latter effort was aided in the case
of Java by the fact that the recursive implementations of
shift-up-to and shift-down-to could be replaced by calls
to java.lang.System.arraycopy() (in C, memmove() could
be used to the same effect).

Even with a highly automated translation, a “code-to-spec
review” of the sort typically conducted by government eval-
uators (as discussed in [9]) would still need to be held in
order to ensure that the specification that is reasoned about
(the ACL2 stobj specification) corresponds to the code that
is generated.

The example that follows shows a portion of the C trans-
lation. The C version was chosen because C is familiar to



most readers, and it affords us an opportunity to discuss for-
mally verified machine code generation for a formally ver-
ified operating system (see Section 6). Note that in the
stobj formulation, the elements of the underlying array used
to implement the deque have an unrestricted type specifi-
cation (:type (array t ...)), but in this translation we
have chosen to restrict the array elements to type int *.
Other types (e.g., int) would have done just as well (in-
deed, in practice, one may well create multiple translations
from the ACL2 specification with different types for the ar-
ray elements as needed), but we wanted to exercise the basic
pointer-handling capability of a new C subset compiler, dis-
cussed further in Section 6.

#define MAXNODE 2048

int *arr[MAXNODE];

int hd = 0;

int tl = 0;

int sizeOf() {

if (tl > hd) {

return tl - hd;

} else {

return 0;

}

}

int isEmpty() {

return hd == tl;

}

int *getFirst() {

if (isEmpty()) {

return empty();

} else {

return arr[hd];

}

}

6. MACHINE CODE TRANSLATION, AND
A VERIFIED “STACK”

Once we have the data structure translated into a “conven-
tional” source language, the translated implementation can
then be compiled into the machine code of choice for exe-
cution on the preferred operating system and CPU. Fortu-
nately, within the past couple of years, a verified compiler for
a significant subset of C has been developed by Xavier Leroy
at INRIA as part of the CompCert project ([3], [12]). And
as it happens, the CompCert compiler generates code for
the PowerPC architecture, which was also the target CPU
architecture for the Green Hills INTEGRITY-178B RTOS
verification effort [8], in addition to being a common CPU
type for embedded high-assurance systems. These devel-
opments present a new opportunity for a formally verified
“stack” (inspired by the “CLInc Stack” [2]) from the appli-
cation layer all the way down to the CPU.

The CompCert compiler is verified using the Coq theorem
prover [6]. (Thus, the verified “stack” described herein is
admittedly not as well-integrated as the CLInc Stack.) Al-
though Coq and ACL2 are very different systems, a Coq

specification is similar in spirit to one written in ACL2, in
that it comprises an operational semantics written in a func-
tional programming language (in the case of Coq, that lan-
guage is Gallina, an ML-like language). Unlike ACL2, how-
ever, the Coq system does not provide an efficient means to
execute Gallina programs directly; rather, the Coq system
provides a translation to OCaml for this purpose.

Data given by Leroy [12] as well as our own experiments
with compiling stobj-translated C code indicate that the
CompCert compiler generates reasonably efficient PowerPC
code, as can be seen in the compilation output for the deque
getFirst function below.

.text

.align 2

.globl _getFirst

_getFirst:

stwu r1, -64(r1)

mflr r2

stw r2, 12(r1)

bl _isEmpty

cmpwi cr0, r3, 0

bf 2, L102

addis r2, 0, ha16(_hd)

lwz r3, lo16(_hd)(r2)

rlwinm r3, r3, 2, 0xfffffffc

addis r2, r3, ha16(_arr)

lwz r3, lo16(_arr)(r2)

L103:

lwz r2, 12(r1)

mtlr r2

lwz r1, 0(r1)

blr

L102:

bl _empty

b L103

One area that is currently lacking with the CompCert com-
piler is full tail call optimization for C; this will be addressed
in a future version of the compiler [13]. Support for tail call
elimination would allow us to enjoy a more direct translation
of our data structures from ACL2 stobj form to C.

7. CONCLUSION
We have demonstrated how formally verified data struc-
tures, specifically queueing data structures of the sort com-
monly employed in high-assurance system design, and ini-
tially developed in a functional programming/automatic the-
orem prover environment, can be readily translated into
high-assurance implementations expressed in conventional
programming languages, through the use of ACL2 single-
threaded objects. One could also imagine the reverse pro-
cess, in which a data structure written in a conventional
programming language is translated into ACL2 using the
single-threaded object facility, and then analyzed for cor-
rectness. In either case, we are able to establish the correct-
ness of practical data structure implementations commonly
found in high-assurance systems with a minimum of formal
verification effort.

The translation from ACL2 to conventional programming



languages has been done by hand to date; but the mecha-
nization of the process would not be difficult, and could be
carried out within ACL2 itself, via a “pretty-printing” pro-
cess. Future work will address this mechanization, and also
expand on the types of data structures to be implemented
and analyzed.

Finally, we have shown how this translated data structure
code can be compiled into efficient machine code for a com-
mon embedded microprocessor using a verified compiler, and
executed on an EAL6+ verified operating system, thus pro-
viding a new opportunity for a formally verified “stack” from
the application layer all the way down to the CPU.
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