
An Executable Model for Security Protocol JFKr

David L. Rager
Department of Computer Sciences, The University of Texas at Austin

Taylor Hall 2.124, Austin, TX 78712
ragerdl@cs.utexas.edu

ABSTRACT
JFKr is a security protocol that establishes a shared en-
cryption key between two participants. This paper briefly
describes the different components of JFKr and the security
property each component is intended to provide. It then
describes an executable model, interleaving pieces of code
to help the reader understand how the model represents the
protocol specification. Finally, it presents some theorems
about the model.

The contributions of this work include (1) an executable
model for a key establishment protocol about which we can
reason, (2) a model for an attacker that permits the in-
jection, modification, and removal of messages between the
participants, and (3) formalizations of a subset of desired
security properties.

Categories and Subject Descriptors
D.2.4 [Software]: Software Engineering—Software/Program
Verification

General Terms
security protocol verification

Keywords
JFKr, security, key establishment protocol, verification, the-
orem proving, ACL2

1. INTRODUCTION
JFKr is a security protocol that establishes a shared key
between two participants. Its roots stem from the original
Diffie-Hellman protocol [3]. Through this original protocol,
two parties took advantage of the properties of modular ex-
ponentiation to create a key from one private piece of in-
formation and one public piece of information. Since this
original Diffie-Hellman protocol had no method for authen-
ticating users, no notion of protecting identity (since there

was no identity exchange in the first place), and was vul-
nerable to denial of service attacks, it has evolved over time
into ISO 9798-3, Internet Key Exchange (IKE), and finally
Just Fast Keying (JFK).

As with any security protocol, we would like to have for-
mal proofs for why a protocol guarantees the behavior we
expect. Many have attempted proofs establishing the fol-
lowing properties: the establishment of a secret and shared
key, authentication, protection of identity, prevention of de-
nial of service attacks, and resilience against replay attacks.
Our goal is to present another possible method of proof for
the first two of these properties, specifically in the ACL2
theorem prover.

This paper briefly describes the different security compo-
nents of JFKr and the security property each component is
intended to provide. It then describes an executable model,
interleaving pieces of code to help the reader understand how
the model represents the protocol specification. Finally, it
mentions two proven authentication theorems and an un-
proven theorem about the sameness of the derived key.

2. PREVIOUS WORK
Previous work includes verification of parts of JFKr, includ-
ing key secrecy by Larry Paulson [4]. Datta and his co-
authors also identify some properties worth proving [2]. JFK
has also been modeled by Abadi and his co-authors in the
pi calculus [1]. Much of this work is based off what Vitaly
Shmatikov has taught me.

3. PARTIAL EXPLANATION OF JFKR
The following figure shows the network messages exchanged
during the protocol’s execution. These message components
have abbreviated names, as follows. N stands for nonce1. X
stands for a public Diffie-Hellman value (explained in sec-
tion 3.1). T and h are both keyed hashes of the values
displayed in the diagram. E is an encryption of the specified
values. The diagram omits some of the irrelevant message
components, but explanations of the relevant components
follow afterwards. This diagram is based off a set of slides
by Shmatikov [5].

1A nonce is just a random value. Nonces are used to prevent
replay-attacks, which are not covered in this paper



Figure 1: Simplified JFKr Message Exchange

3.1 Derivation of a Secret Shared Key
One aspect central to understanding this work is the deriva-
tion of a shared key. The Diffie-Hellman protocol works as
so: The initiator (I) and responder (R) both pick a random
value. In this explanation, the initiator’s random value is
labeled M, and the responder’s random value is labeled P.
The initiator and responder also publicly share two random
values, G and B. G will serve as the base for modular expo-
nentiation and B will serve as the modulo for modular expo-
nentiation2. The initiator publicly sends (GM ) % B (named
xi in the diagram), and the responder publicly sends (GP )
% B (named xr in the diagram). They then raise each oth-
ers’ public value to their own private value and compute a
shared number which they can use to derive a shared key3.
Unless an actor has at least one of the private values, it
is computationally infeasible to discover the shared value.
This infeasibility guarantees that the key remains secret to
the initiator and responder.

3.2 Authentication
During the protocol the initiator and responder authenticate
themselves to each other. They accomplish this by: (1)
telling each other who they are and (2) providing a signature
of a message which requires a private key to sign.

In our proofs we assume the private key to indeed be private
and that no other actors or attackers have access to it. The
hashes under the established key (hi and hr in the diagram)
guarantee the integrity of the signature.

3.3 Other Security Properties
Security properties intentionally omitted from this paper in-
clude protection of identity, protection from denial of service
attacks, and the prevention of replay attacks. All of these
properties are an important part of JFKr’s evolution as a
protocol, but due to their complexities, a deeper explana-

2Modular exponentiation has the property that (((GM ) %
B)P ) % B == (((GP )% B)M ) % B.
3This shared key is computed from the shared number and
the two nonces sent in messages 1 and 2.

tion has been omitted from this paper. The unexplained
portions of the diagram are related to these properties.

4. BUILDING A PROOF
Before delving into our JFKr protocol proofs, we must first
establish a model for cryptography and prove some prop-
erties about the Diffie-Helman protocol. After establishing
these two components, we present our theorems about JFKr.

4.1 An Assumption: Perfect Cryptography
As with any security protocol, we must first develop a model
for cryptography functions. Real cryptography functions
tend to be heavily-laden with complex math and are thus
difficult to reason about. Due to this complexity, security
experts often assume the cryptography portion of protocols
to be perfect4. Since the use of these perfect cryptography
functions is standard, we created our own toy versions of the
functions about which we can easily prove these properties.
These toy versions are executable and could be replaced by
the actual cryptography functions. An example5 and its rel-
evant theorems follow.

(defun encrypt-asymmetric-list (lst key)
(if (atom lst)

nil

(cons (+ (car lst) key)
(encrypt-asymmetric-list (cdr lst) key))))

(defun decrypt-asymmetric-list (lst key)

(if (atom lst)
nil

(cons (+ (car lst) key)

(decrypt-asymmetric-list (cdr lst) key))))

; Decrypting an asymmetrically encrypted list with a
; public-private key pair yields the original list.

(defthm decrypt-of-encrypt-asymmetric-equals-plaintext
(implies (and (encryptable-listp lst) ; integer-listp

(public-private-key-pairp key1 key2))
(and (equal (decrypt-asymmetric-list

(encrypt-asymmetric-list lst key1)
key2)

lst)

(equal (decrypt-asymmetric-list
(encrypt-asymmetric-list lst key2)

key1)
lst))))

; Decrypting an asymmetrically encrypted list with keys
; that are not a public-private key pair does not yield

; the original list.

(defthm decrypt-of-encrypt-asymmetric-needs-key
(implies (and (encryptable-listp lst) ; integer-listp

(not (null lst))

(keyp keyA)
(keyp keyB)

(not (public-private-key-pairp keyA keyB)))
(not (equal (decrypt-asymmetric-list

(encrypt-asymmetric-list lst keyA)
keyB)

lst))))

4Perfect cryptography is the notion that there exist ideal
functions that provide a set of security properties.
5This example shows a pair of toy cryptography functions
that use public-private-key infrastructure to encrypt and de-
crypt a list. In this implementation, the public key is an inte-
ger and the private key is the negative value of that integer.
It is called asymmetric encryption because the encryption
and decryption keys are different values.



After proving these theorems, the definitions of encrypt-

asymmetric-list and decrypt-asymmetric-list are dis-
abled. This causes ACL2 to use the proven abstractions
instead of the actual definitions of the functions. These def-
initions and proofs, along with other cryptography defini-
tions, can be found in the ACL2 book
security/jfkr/encryption.lisp.

4.2 The Diffie-Helman Library
It was necessary to develop an executable version of the
Diffie-Helman protocol that we could use for reasoning and
execution. This implementation can be found in the book
security/jfkr/diffie-helman.lisp. A few of the more
interesting definitions and theorems follow6 . Thanks go to
Robert Krug for developing most of the lemmas in the Diffie-
Helman book.

(defun compute-public-dh-value (g exponent-value b)

(mod (expt g exponent-value) b))

(defun compute-dh-key
(a-public-exponentiation a-private-value b)

(mod (expt a-public-exponentiation a-private-value) b))

(defthm dh-computation-produces-the-same-key

(implies ...
(equal

(compute-dh-key (compute-public-dh-value g x-exponent b)
y-exponent
b)

(compute-dh-key (compute-public-dh-value g y-exponent b)
x-exponent

b))))

Before we can prove that the derivation of the session key is
privy only to the initiator and responder, we must formal-
ize the notion that the derivation of the session key requires
either the initiator’s or responder’s privately-chosen expo-
nent7. Note that the guard of the following function is nil,
preventing the function from being evaluated. We thank
Matt Kaufmann for helping formalize this assumption.

(defun session-key-requires-one-part-of-key
(g b x-exponent y-exponent cracker-guess)
(declare (xargs :guard nil

:verify-guards nil))
(implies (and ...

(not (equal cracker-guess x-exponent))
(not (equal cracker-guess y-exponent)))

(let ((x-public-value
(compute-public-dh-value g x-exponent b))

(y-public-value
(compute-public-dh-value g y-exponent b))

(session-key
(compute-dh-key
(compute-public-dh-value g x-exponent b)

y-exponent
b)))

(and
(not (equal

(compute-dh-key x-public-value
cracker-guess b)

session-key))

(not (equal
(compute-dh-key y-public-value

cracker-guess b)
session-key))))))

6The type constraints that require g, b, x-exponent, and
y-exponent to be positive integers are elided to save space.
7The actor’s privately-chosen exponent is labeled cracker-
guess in the function session-key-requires-one-part-
of-key.

5. AN EXECUTABLE MODEL
We considered two approaches in modeling the protocol
within ACL2. First, we could find C code that implements
this protocol, create an interpreter for that code, and then
try and prove some properties about that code. Unfortu-
nately, creating such an interpreter would take an inordinate
amount of time. As an alternative, we decided to implement
the protocol in ACL2 itself. Since ACL2 is an executable
programming language, if the model is written correctly, we
will be able to execute it and convince ourselves through
testing that the model at least seems to behave correctly.

5.1 Steps of the Protocol
We now explain how we implement the protocol. The first
item to establish is the concept of what an initiator knows
and what a responder knows. An actor8 can pull its knowl-
edge from one of three places: (1) a list of constants that it
created before running the protocol, (2) a list of constants
in the public domain, or (3) the state it has accumulated
while running the protocol. As each actor goes through a
step of the protocol, it will update its own state with in-
formation gained during that step. The initiator and re-
sponder have completely separate sets of constants (1) and
completely separate states (3). This separation of actor con-
stants and states is important for reasoning about actors in-
dividually. At some point, we will want to say the initiator
runs the protocol for its three steps, and at the end, the
initiator will have a successful connection only if the signa-
ture given in his received message matches the public key
associated with the identity of the responder, with which he
thinks he is connected. A statement like this requires being
able to reason about the initiator separately from any re-
sponder. Below is an example of running the initiator and
responder in a deterministic protocol that does not allow an
attacker to intercept and modify messages:

(mv-let
(network-s-after-1 initiator-s-after-1)

(initiator-step1 network-s initiator-s
initiator-constants public-constants)

(mv-let

(network-s-after-2 responder-s-after-2)
(responder-step1 network-s-after-1 responder-s

responder-constants public-constants)
(mv-let
(network-s-after-3 initiator-s-after-3)

(initiator-step2 network-s-after-2 initiator-s-after-1
initiator-constants public-constants)

(mv-let
(network-s-after-4 responder-s-after-4)

(responder-step2 network-s-after-3 responder-s-after-2
responder-constants public-constants)

(mv-let

(network-s-after-5 initiator-s-after-5)
(initiator-step3 network-s-after-4 initiator-s-after-3

initiator-constants public-constants)
(mv network-s-after-5 initiator-s-after-5

responder-s-after-4))))))

In a real execution environment, the network could contain
any set of information, either valid network messages be-
tween legitimate actors, random garbage from an attacker,
or even carefully crafted messages from an attacker that try
to match what a legitimate actor would send.

Each attempt to make progress is called a step in the pro-
tocol. The initiator has three steps, and the responder has

8An actor is an initiator or responder.



two steps. A simulation of the protocol between an initiator
and responder involves letting an initiator add a message to
the network. Then the responder reads and adds a message,
and they continue to read and add messages until they have
completed their steps. With our cryptography and Diffie-
Helman books, we can formalize the notion that, at the end
of a run without an attacker, both (1) the initiator and re-
sponder will have the same key and (2) the key is only known
to them.

5.2 Modeling the Attacker
We model the attacker by interleaving functions defined with
defstub’s between the legitimate parties’ network commu-
nications9. This allows the attacker to inject, drop, and
modify messages on the network. The following formaliza-
tion shows how the attacker can be interleaved from the
perspective of the initiator:

(mv-let
(network-s-after-1 initiator-s-after-1)

(initiator-step1 network-s initiator-s
initiator-constants public-constants)

(mv-let
(network-s-after-2)
(function-we-know-nothing-about network-s-after-1)

(mv-let
(network-s-after-3 initiator-s-after-3)

(initiator-step2 network-s-after-2 initiator-s-after-1
initiator-constants public-constants)

(mv-let
(network-s-after-4)
(function-we-know-nothing-about network-s-after-3)

(mv-let
(network-s-after-5 initiator-s-after-5)

(initiator-step3 network-s-after-4 initiator-s-after-3
initiator-constants public-constants)

(list network-s-after-5 initiator-s-after-5))))))

5.3 Formalized Properties
The properties we focus on formalizing follow. The first two
have been proven, and the proof of the third remains as
future work.

1. If the responder successfully completes the protocol,
the responder has established the protocol with a party
that knows the initiator’s private key.

2. If the initiator successfully completes the protocol, the
initiator has established the protocol with a party that
knows the responder’s private key.

3. If both the initiator and responder successfully com-
plete the protocol, they have the same view of the de-
rived key.

5.4 Theorems
The proofs of the first and second property are quite sim-
ilar to each other. The theorem we want to prove for the
first property is named run-4-steps-with-badly-forged-

attacker-yields-responder-failure and can be found in
security/jfkr/jfkr.lisp. Note that it is the
contra-positive of this theorem that represents the desired
property. When proving that the responder fails, the pro-
tocol need only run for four steps, because the responder
completes the protocol after step four. We have another
version of the theorem also accepted by ACL2 that applies
to the initiator.

9The defstub’d functions are named function-we-know-
nothing-aboutX, where X is a number from 1 to 4

The third goal of proving key sameness involves comparing
the end state of the initiator to the end state of the respon-
der. The theorem about key samness, shown in the end of
security/jfkr/jfrk.lisp, is future work.

5.5 Lessons Learned
In the beginning of this project we tried to reason about
specific constant lists instead of defining what a constant
list looks like and then creating theorems about the con-
stant list abstraction. Given there is almost no point in
proving theorems about particular executions, this abstrac-
tion is necessary for doing anything useful.

We have already demonstrated how lemmas about cryptog-
raphy functions provide a nice level of abstraction. If we
later substitute the actual cryptography functions for our
toy functions, the abstraction will be even more important.
It is likely that if one uses the real functions, an assumption
similar to the assumption about the Diffie-Helman protocol
will need to be formalized.

6. CONCLUSION
We have created an executable model of JFKr that can be
updated to use real cryptography functions once abstrac-
tions about those functions are created, and we have cre-
ated a method for letting a nondeterministic attacker into
the system. Additionally, we have formalized the properties
related to identity verification and the derived encryption
key. Although this work is not completely novel, taking a
different approach than others gives us higher assurance that
the protocol is correct and lays the groundwork for verifica-
tion of other security protocols in ACL2.

7. ACKNOWLEDGMENTS
As mentioned through out the paper, we thank Vitaly Shma-
tikov for teaching us this material, Matt Kaufmann for help-
ing formalize our assumption about the Diffie-Helman pro-
tocol, and Robert Krug for helping develop proofs about the
key that Diffie-Helman produces. We also thank the ACL2
group and Warren A. Hunt Jr. for their general support.

8. REFERENCES
[1] M. Abadi, B. Blanchet, and C. Fournet. Just fast

keying in the pi calculus. ACM Trans. Inf. Syst. Secur.,
10(3):9, 2007.

[2] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A
derivation system and compositional logic for security
protocols. J. Comput. Secur., 13(3):423–482, 2005.

[3] B. t. Levy. Diffie-helman method for key agreement. On
the Web, 1997.
http://postdiluvian.org/ seven/diffie.html.

[4] L. C. Paulson. Proving properties of security protocols
by induction. In In 10th IEEE Computer Security
Foundations Workshop, pages 70–83. IEEE Computer
Society Press, 1997.

[5] V. Shmatikov. Just fast keying. On the Web, 2004.
http://www.cs.utexas.edu/users/shmat/courses/
cs395t fall04/05jfk.ppt.


