
Assuming Termination

David Greve
Rockwell Collins Advanced Technology Center

Cedar Rapids, IA
dagreve@rockwellcollins.com

ABSTRACT
A requirement for the admission of a recursive function def-
inition in ACL2 is a proof that the recursion terminates.
Establishing termination involves identifying a well-founded
relation and an appropriate measure function that decreases
according to the well-founded relation with each recursive
call. Depending on the domain this process may prove dif-
ficult, unnecessary or even impossible. Manolios and Moore
introduced a method for admitting tail-recursive function
definitions that does not require the specification of a mea-
sure. Their method, however, does not produce an induc-
tion scheme. We present an extension of their method that
enables the admission of arbitrary recursive function defi-
nitions and their associated induction schemes augmented
with a termination check and justified by a partial measure.
We demonstrate the use of this method by defining the tarai
function and proving by induction its unwinding under the
assumption that it terminates.

Categories and Subject Descriptors
F.3.3 [Studies of Program Constructs]: Program and
Recursion Scheme; F.4.1 [Mathematical Logic]: Recur-
sive Function Theory

General Terms
Recursion, Termination

Keywords
ACL2, Partial Functions, Tail-Recursion, Continuations

1. MOTIVATION
A requirement for the admission of a recursive function def-
inition in ACL2 is a proof that the recursion terminates.
Establishing termination involves identifying a well-founded
relation and an appropriate measure function that decreases
according to the well-founded relation with each recursive
call. Depending on the domain this process may prove diffi-
cult, unnecessary or even impossible. The difficulty can be

experienced by attempting to admit a simple function that
does nothing more than count to 10. Termination proofs are
unnecessary when reasoning about computations that take
place in a fixed finite number of steps, computations such
as the symbolic execution of a specific straight line code
segment. Finally, termination proofs may be impossible for
models of certain programming languages[3, 6], as a gen-
eral proof for those models would require a solution to the
halting problem.

Even without a general termination argument there are still
many interesting program properties that can be established
under an assumption of termination. Such properties are
commonly referred to as partial correctness results. We de-
scribe an extension of Manolios’ and Moore’s defpun that
enables the admission of arbitrary recursive function defi-
nitions and their associated induction schemes augmented
with a termination check and justified by a partial measure.
This scheme allows interesting partial correctness results to
be verified inductively. We believe that these techniques will
be particularly useful for reasoning about models of opera-
tional semantics for programming languages.

The remainder of this paper is organized in the following
manner. Section 2 introduces an extension of defpun, called
defminterm, that constructs a partial, well-founded induc-
tion scheme (measure) for tail-recursive function definitions
under the assumption that the recursion terminates. Sec-
tion 3 describes how continuations can be used to construct
tail-recursive implementations for a specific class of recursive
functions and demonstrates that, by admitting such imple-
mentations using defminterm, it is possible to prove that
the tail-recursive implementations satisfy their original def-
initional equations when the functions terminate. Section
4 shows how the techniques of Section 3 can be used to
admit an arbitrary recursive function and prove that it sat-
isfies its definitional equation under the assumption that it
terminates. Section 5 illustrates the admission of the tarai
function and proves its unwinding theorem under the as-
sumption that it terminates. Finally, Section 6 concludes
the paper and identifies areas for future work.

2. DEFMINTERM
A tail-recursive function is one in which any recursive call of
the function along any execution path within the function
body appears only as the outermost (last) unconditional op-
eration[2]. Manolios and Moore[5] introduced a method for
admitting tail-recursive function definitions without the use



of a measure. Their method, however, does not produce an
induction scheme.

The defminterm macro leverages the techniques of Mano-
lios and Moore to provide a means of introducing a partial,
well-founded induction scheme (measure) for a tail-recursive
function under the assumption that the recursion termi-
nates. The termination check is added to the function body
and the function is admitted as a simple definition using the
partial measure as a justification of well-foundedness. Mano-
lios and Moore present the following as a generic model of
tail-recursive functions.

(equal (f x)

(if (test x) (base x)

(f (st x)))))

Our generic theory also begins with this premise. We define
a clocked recursive function, stn, with the same step behav-
ior as our target function. We then witness a clock function
that will run the clocked recursion to a terminal state, if
possible.

(defun stn (x n)

(if (zp n) x

(stn (st x) (1- n)))))

(defchoose fch (n) (x)

(test (stn x n)))

A companion predicate, term, is defined to check the final
state of the stn function after executing fch steps to see if
test is, in fact, true in the end. Effectively this predicate
tells us whether our target function terminates on the given
input.

(defun term (x) (test (stn x (fch x))))

Interestingly, it is possible to prove that term satisfies a
defining equation with exactly the same recursive structure
as our desired equation1.

(defthm open-term

(equal (term x)

(if (test x) t

(term (st x)))))

Rather than attempting to witness the desired function di-
rectly at this point, as with defpun, our approach is to
witness a measure function with exactly the same recursive
structure as the desired recursive definition. The existence
of such a measure function will then allow the desired tail-
recursive function to be admitted as a simple definition in
ACL2.

1We assume throughout that (test x) is Boolean

(equal (measure x)

(if (test x) 0

(1+ (measure (st x)))))

Unfortunately the desired measure function is not tail-recursive
and the defpun methodology works only for tail-recursive
functions. It is not difficult, however, to construct a tail-
recursive function that has essentially the same behavior as
our desired measure function.

(equal (measure-tail x r)

(if (test x) r

(measure-tail (st x) (1+ r)))))

To satisfy this defining equation we repeat the process of
introducing a clocked recursion and define the tail-recursive
measure function in terms of this recursion evaluated at fch,
the same clock function defined above.

(defun measure-tail-stn (x r n)

(if (zp n) r

(measure-tail-stn (st x) (1+ r) (1- n))))

(defun measure-tail (x r)

(measure-tail-stn x r (fch x)))

We then prove that measure-tail satisfies its defining equa-
tion. Our desired measure function is now defined in terms
of this tail-recursive function:

(defun measure (x) (measure-tail x 0))

The critical step in the proof that this function satisfies the
desired defining equation is the following statement that the
tail-recursive function commutes over increment:

(equal (measure-tail x (1+ r))

(1+ (measure-tail x r))

This proof would be easy if measure-tail had an associ-
ated induction scheme, but it does not. Completing this
proof using partial functions is possible, but it requires an
assumption about the termination of the recursion. We add
this using the term predicate discussed above. Assuming
termination, enables us to prove:

(defthm open-measure

(implies

(term x)

(equal (measure x)

(if (test x) 0

(1+ (measure (st x)))))))

Adding the termination predicate to the recursive test of our
desired function now enables the admission of the following
definition in ACL2:



(defun f (x)

(declare (xargs :measure (measure x)))

(if (or (not (term x)) (test x)) (base x)

(f (st x)))))

Note that this definition suggests an ACL2 induction scheme.

The defminterm macro builds on this generic infrastructure
in the same manner as does defpun2. The theory exported
from an event such as:

(defminterm f (x)

(if (test x) (base x)

(f (st x))))

includes the function symbols f_terminates and f_measure

with the same signatures as f as well as a definition for
f augmented with a check for termination and justified by
f_measure. These functions satisfy the following theorems:

(defthm f-property

(equal (f x)

(if (or (test x)

(not (f_terminates x))

(base x)

(f (st x)))))

(defthm f_measure-property

(implies

(f_terminates x)

(equal (f_measure x)

(if (test x) 0

(1+ (f_measure (st x)))))))

Note that it would be trivial for defminterm to witness
functions satisfying f-property and f_measure-property

if f_terminates always evaluated to nil. We can test that
this is not the case by proving the following theorem about
f_terminates:

(defthm f_terminates-property

(equal (f_terminates x)

(if (test x) t

(f_terminates (st x)))))

This theorem ensures that f_terminates is non-trivial. In
fact, it guarantees that, if there exists a value of x satisfy-
ing (test x), there exists an x such that f_terminates is
not nil. The fact that the original function, the measure
function and the termination function all share the same re-
cursive structure is crucial in inductive proofs where it is
necessary to relieve the termination assumption in the in-
ductive hypothesis.

2Note that defminterm supports a somewhat larger class
of function bodies than defpun. In particular it supports
nested let bindings and multiple tail-recursive calls on dif-
ferent execution branches.

We have described a generic theory that permits the con-
struction of a termination predicate and a partial measure
that can be used to admit arbitrary tail-recursive function
definitions. We now consider how to extend this principle
to arbitrary recursive functions.

3. CONTINUATIONS
Tail recursion is a structural property, a property of how
a function is implemented or expressed, not a functional
property. Every computable function has a tail-recursive
implementation. This follows from the fact that a Turing
machine has a tail-recursive implementation and therefore
any program implementable on a Turing machine also has a
tail-recursive implementation. The proof that such an im-
plementation satisfies a particular defining equation, how-
ever, is generally possible only when the function termi-
nates3. The defminterm macro provides a convenient means
of expressing the termination assumption and a partial in-
duction scheme that is valid under that assumption.

Methods exist for transforming generic recursive functions
into tail-recursive implementations. It could be argued that
the most common such method is compilation4. A more
semantically self-contained method involves the use of con-
tinuations[8]. A continuation is a means of saving execution
state so that is can be resumed from that point at a later
time. Continuations can be used to transform generic recur-
sive functions into tail-recursive functions. A particularly
simple continuation can be used on a specific class of re-
flexive, recursive functions. A reflexive, recursive function
is one in which one recursive call is nested within another.
Consider the following generic model of a reflexive, recursive
function frr:

(equal (frr x)

(if (test x) (base x)

(let ((value (frr (st x))))

(frr (op x value)))))

While the outermost operation in the recursive branch is a
tail-recursive call, a recursive call also appears as an inner
form where its result is bound to value and is subsequently
operated upon by op. Thus this function is not strictly
tail-recursive. It is possible, however, to construct a tail-
recursive implementation of this function through the use of
a particularly simple continuation.

In general incorporating continuations into a function im-
plementation requires the addition of at least one function
argument to use for storage of continuation state (the contin-
uation stack). It also requires the addition of continuation
processing functionality. This functionality is functionality
not found in the original function that is included solely to
store continuations on the continuation stack and to retrieve
and evaluate them at appropriate times.

3The open-measure proof above was one simple illustration
of this phenomena.
4A microprocessor, like a Turing machine, has a tail-
recursive implementation. Therefore a compiled program
being evaluated by a microprocessor implementation consti-
tutes a tail-recursive implementation of the program.



In our example a new function argument, stk, is introduced
as a push-down stack to store continuations. On each re-
cursive branch, (not (test x)), the implementation com-
putes the innermost recursive operation just as it normally
would. However, at this point continuation storage func-
tionality, (cons x stk), is inserted to postpone the outer
operation by pushing a continuation (in this case, just the
argument to the function) onto the continuation stack. The
base branch is also augmented with continuation retrieval
functionality to check for pending operations on the con-
tinuation stack, (consp stk), and if they exist, to restore
the saved value (let ((x (car stk)) (stk (cdr stk)))

..) and complete the computation started in the recur-
sive branch. The binding to value has been preserved here
to hint at how this transformation might be unwound.

(defminterm frr-imp (x stk)

(if (test x)

(if (not (consp stk))

;; If there are no pending

;; continuations, finish

(base x)

;; Otherwise complete the

;; innermost recursion and

;; then pop the continuation.

(let ((value (base x))

(let ((x (car stk))

(stk (cdr stk)))

;; Compute outermost call

(frr-imp (op x value) stk))))

;; Compute the innermost call

;; and push a continuation.

(frr-imp (st x) (cons x stk))))

Note that the outermost function applications in the two re-
cursive branches are both recursive calls and that there are
no other recursive calls within the body of frr-imp. frr-imp
is, therefore, a tail-recursive function. Being tail-recursive
we now know that we can witness the defining equation.
However, despite the preservation of the value binding, it
is far from obvious that this is an implementation of our
original function. Furthermore, the proof of this fact re-
quires induction which is not provided by defpun. Witness-
ing a tail-recursive implementation using defminterm, how-
ever, provides an induction scheme which is useful under the
additional assumption that the recursion terminates.

The proof of correctness hinges on the following commuting
property of frr-imp:

(equal (frr-imp x (cons y stk))

(frr-imp (op y (frr-imp x nil)) stk))

However, a proof of this property is possible only when
frr-imp terminates. The commuting property (with an ap-
propriate hypothesis) is an instance of the following gener-
alization which we prove by induction over (frr-imp x a)

assuming that (frr-imp_terminates x a):

(defthm fff-imp-unwind-helper

(implies

(frr-imp_terminates x a)

(equal (frr-imp x (append a (cons y stk)))

(frr-imp (op y (frr-imp x a)) stk)))

(defthm frr-imp-unwind

(implies

(frr-imp_terminates x a)

(equal (frr-imp x (cons y stk))

(frr-imp (op y (frr-imp x nil)) stk)))

:hints (("Goal" :use

(:instance frr-imp-unwind-helper

(a nil)))))

We now simply define frr and frr_terminates as:

(defun frr (x) (frr-imp x nil))

(defun frr_terminates (x)

(frr-imp_terminates x nil))

And demonstrate that frr satisfies our defining equation
when it terminates.

(defthm reflexive-recursive-f

(implies

(frr_terminates x)

(equal (frr x)

(if (test x) (base x)

(let ((value (frr (st x))))

(frr (op x value)))))

We have studied how a specific style of continuation can be
used construct tail-recursive implementations that witness
the defining equations for a specific class of reflexive, re-
cursive functions under the assumption of termination. We
now show how this result can be used to witness the defining
equations for arbitrary recursive function definitions under
similar assumptions.

4. A GENERIC INTERPRETER
The reflexive, recursive functions considered above were am-
enable to a particularly simple continuation implementation
involving only a stack and primitive storage and retrieval
mechanisms. In order to support arbitrary recursive func-
tion definitions, however, the continuation mechanism must
be substantially more complex. The mechanism we use is so
complex that the continuation processing implementation is,
itself, recursive. This recursion is in addition to the natural
recursion of the function being implemented. Nonetheless,
we will show that this continuation model ultimately leads
to a tail-recursive implementation capable of witnessing an
arbitrary recursive function definition.

4.1 The Isolated Interpreter
We begin by isolating the functionality of the generic con-
tinuation interpreter from the recursive functionality that
we are modeling. A self-contained generic continuation in-
terpreter that can be used to demonstrate this is presented



below. In this function the term (foo foo-args) represents
a call to the recursive function we are attempting to model.
We assume that foo already exists to simplify our exposition
and to isolate the behavior of the interpreter. We further
assume that the function foo-step represents behavior spe-
cific to the body of the recursive function definition. The
behavior of this function will be tailored to program the
interpreter for a given application.

(defun gen-cont (args pc spec vals)

(declare (xargs :measure (acl2-count spec)))

(if (not (consp spec)) (foo-step pc args vals)

(let ((npc (caar spec))

(nspec (cdar spec)))

(let ((foo-args

(gen-cont args npc nspec nil)))

(let ((foo-value (foo foo-args)))

(let ((vals (acons npc foo-value vals)))

(gen-cont args pc (cdr spec) vals))))))

Explaining the behavior of the generic continuation proces-
sor is best done by examining the process used to program
it for a particular defining equation. The process begins by
deconstructing the body of the recursive function definition.
Our methodology views every recursive function call within
the body of the defining equation as a continuation cut point.
Continuation cut points partition the body of the defining
equation into continuation fragments and each continuation
fragment is associated with a unique identifier that we call a
program counter (pc). The innermost boundary of a contin-
uation fragment is either an input variable or the result of
a recursive call. The outermost boundary of a continuation
fragment is always a recursive call unless that fragment is
the final, outermost fragment. In our simple reflexive, recur-
sive example we identified only one continuation cut point,
the innermost recursive call, which partitioned the body of
the function into two continuation fragments. The inner-
most boundary of the first continuation fragment was the
function argument and the outermost boundary was the in-
nermost recursive call. The innermost boundary of the sec-
ond continuation fragment was the result of the innermost
recursive call and its outermost boundary was the outermost
recursive call.

Our generic continuation processor computes the body of
a recursive function definition by incrementally executing
continuation fragments. The process begins at the inputs of
the function and proceeds from the innermost cut points to
the outermost cut points, executing one continuation frag-
ment at a time, until reaching the outermost fragment. The
continuation processor for our reflexive, recursive example
behaved in exactly the same way. However, in general, mul-
tiple inner recursive calls contribute values to subsequent
recursive calls. This suggests the need to track which contin-
uation is active at a given point in the computation and the
ability to select for execution one of several different continu-
ation fragments in response to that information. Our generic
continuation processor uses the program counter (the pc ar-
gument) to track program fragments and foo-step to select
one for execution.

In our simple reflexive, recursive example we had a single
continuation cut point. Multiple continuation points neces-
sitate a means of storing and recalling multiple intermediate
continuation results. In our generic continuation processor
the value produced by each continuation fragment is associ-
ated with the program counter for that fragment and stored
in the data binding environment (the vals argument). Sub-
sequent access to the value computed by a given continu-
ation fragment is also provided using this binding environ-
ment.

A feature present in the generic interpreter but not found
in our reflexive recursive example is the spec argument. To
assist in explaining the spec argument, and to make con-
crete our discussion on continuation fragments, we consider
the following defining equation. Note that it contains a
range of possible recursive patterns, from test1’s simple
tail-recursive pattern to the final reflexive, doubly recursive
pattern.

(equal (foo args)

(cond

((test0 args) (next0a args))

((test1 args) (foo (next1a args))

((test2 args) (op2a (foo (next2a args))))

((test3 args)

(op3a (foo (op3b (foo (next3a args))))))

((test4 args) (op4a (foo (next4a args))

(foo (next4b args))))

(t (op5a (foo (op5b (foo (next5a args))

(foo (next5b args))

)))))

Viewing each recursive call as a cut point, we define and la-
bel the various cut point fragment. Each fragment is modi-
fied by replacing any recursive calls to foo on the innermost
boundaries of the fragments with references to the value
binding environment, employing the program counter as-
sociated with the fragment responsible for computing the
result. Using these fragments a simple non-recursive func-
tion, (fn-step pc args vals), is defined that accepts as
input a program counter (pc), the argument to foo (args)
and a binding environment (vals). This function executes
the cut point fragment associated with pc to compute ei-
ther the argument for the recursive call of foo constitut-
ing the outer boundary of the selected continuation segment
or the final result of the function body. In this example,
the program counter 9 identifies the outermost continuation
fragment and 0 designates the fragment that computes the
arguments of the recursive call of foo when (test1 args)

is true, ie: (next1a args).

(defun key-val (key vals)

(cdr (assoc key vals)))

(defund foo-step (pc args vals)

(case pc

(0 (next1a args))

(1 (next2a args))

(2 (next3a args))

(3 (op3b (key-val 2 vals)))



(4 (next4a args))

(5 (next4b args))

(6 (next5a args))

(7 (next5b args))

(8 (op5b (key-val 6 vals)

(key-val 7 vals)))

(9 (cond

((test0 args)

(next0a args))

((test1 args)

(key-val 0 vals))

((test2 args)

(op2a (key-val 1 vals)))

((test3 args)

(op3a (key-val 3 vals)))

((test4 args)

(op4a (key-val 4 vals)

(key-val 5 vals)))

(t (op5a (key-val 8 vals)))))

))

The spec (or program spec) argument to our generic con-
tinuation interpreter specifies which continuation fragments
to evaluate and in which order. A program spec is an ab-
stract model of the data dependency relationships between
the various continuation fragments. It is implemented as
a recursive list data structure whose first element is a pro-
gram counter (representing a continuation fragment) and
whose remaining elements are program specs. A program
spec containing only a program counter is a leaf and it de-
pends only on the arguments to the recursive function. A
program spec containing other program specs represents a
continuation fragment that depends upon the values of other
continuation fragments. Program specs are evaluated from
the inside out, a fact that drives the recursive structure of
gen-cont. To more5 accurately reflect the recursive behav-
ior of the function being modeled, the program spec varies
based on the value of args. A function for computing the
program spec for our labeling of foo is defined as follows:

(defun foo-spec (args)

(cond

((test0 args) nil)

((test1 args) ((0)))

((test2 args) ((1)))

((test3 args) ((3 (2))))

((test4 args) ((4) (5))

(t ((8 (6) (7))))))

Combining these definitions with the definition of gen-cont
we can construct an implementation that mimics the behav-
ior of the body of foo as follows:

(defun foo-body-imp (args)

5The manner in which the generic interpreter implements
the body of the recursive function influences the form of the
termination predicate. Our implementation identifies recur-
sive guards up to the point of the first (innermost) recur-
sive call. We do not support recursive guards that depend
upon the results of previous recursive calls (reflexive recur-
sive guards).

(let ((spec (foo-spec args)))

(gen-cont args 9 spec nil)))

We can now prove, through repeated expansion of the defi-
nition of gen-cont, that this function is equal to the original
body of foo’s defining equation:

(defthm foo-body-imp-proof

(equal (foo-body-imp args)

(cond

((test0 args) (next0a args))

((test1 args) (foo (next1a args))

((test2 args)

(op2a (foo (next2a args))))

((test3 args)

(op3a (foo (op3b (foo (next3a args))))))

((test4 args)

(op4a (foo (next4a args))

(foo (next4b args))))

(t

(op5a (foo (op5b (foo (next5a args))

(foo (next5b args))

))))))

This demonstrates that our generic continuation interpreter,
gen-cont, in conjunction with an appropriate fn-step and
program spec, can be used to construct a function that im-
plements the behavior of a specific recursive function body.
We further claim that this technique is amenable to automa-
tion and can be applied to arbitrary recursive function bod-
ies.

4.2 Interpreter Implementation
While our generic interpreter is capable of emulating arbi-
trary recursive function bodies, it does not constitute a tail-
recursive witness for such functions. To accomplish that we
must connect the definitions of foo and gen-cont and do so
in a tail-recursive fashion. We begin by developing a tail-
recursive implementation of gen-cont. Note that gen-cont,
as defined above, is a reflexive recursive function. We stud-
ied in the previous section how a simple continuation can
be used to transform reflexive, recursive functions into tail-
recursive implementations. Applying these techniques to
gen-cont and accounting for 4 arguments produces the fol-
lowing results:

(defun pop4-stk (stk)

(let ((top (car stk)))

(let ((stk (cdr stk)))

(mv (car top) (cadr top)

(caddr top) (cadddr top) stk))))

(defun push4-stk (args pc spec vals stk)

(cons (list args pc spec vals) stk))

(defminterm gen-cont-imp (args pc spec vals stk)

(if (not (consp spec))

(let ((value (foo-step pc args vals)))

(if (consp stk)

(mv-let (args pc spec vals stk) (pop4-stk stk)



(let ((foo-value (foo value)))

(let ((vals (acons (caar spec) foo-value

vals)))

(gen-cont-imp args pc (cdr spec) vals stk))))

value))

(let ((stk (push4-stk args pc spec vals stk)))

(gen-cont-imp args (caar spec) (cdar spec)

nil stk)

)))

As with the example in the previous section, this imple-
mentation can be unwound under the assumption that it
terminates. The next step is connecting the definitions of
gen-cont-imp and foo. We do this by simply replacing the
call of foo in the body of gen-cont-imp as prescribed by
foo-body-imp from above and including an stk value of nil:

(equal (foo args)

(let ((spec (foo-spec)))

(gen-cont-imp args 9 spec nil nil)))

Note that this transformation results in a definition of gen-
-cont-imp that is self-contained (meaning that it does not
reference foo) but, once again, the definition is reflexive re-
cursive. Once again, however, we can apply continuations
to construct a tail-recursive implementation, gen-cont-imp-
-imp. In the interest of brevity we omit the details of this
transformation. Suffice it to say that the implementation
will have yet another stack and additional logic to detect
and apply the continuations from that stack appropriately.
However, because it is tail-recursive, it can be admitted us-
ing defminterm and, under the assumption that it termi-
nates, the continuation can be unwound to prove that it is
equivalent to gen-cont-imp. The function foo can be de-
fined directly in terms of gen-cont-imp-imp:

(defun foo (args)

(let ((spec (foo-spec args)))

(gen-cont-imp-imp args 9 spec nil nil nil)))

This completes a logical chain of events associating the def-
inition of foo with a tail-recursive function implementing
our generic interpreter gen-cont that satisfies the original
defining equation for foo.

5. DEF::UN
The process described above has been automated and im-
plemented in a macro called def::un. The basic form of
gen-cont-imp-imp remains the same for all recursive func-
tion definitions. The only aspects of gen-cont-imp-imp

specific to the function being modeled are foo-step and
foo-spec. A generic proof that gen-cont-imp-imp imple-
ments gen-cont-imp has been constructed and is function-
ally instantiated with each new instance. The proof that
gen-cont-imp implements gen-cont is actually skipped and
the symbolic simulation proof that gen-cont satisfies the
recursive function body, which will be different for every
function body, is actually performed using gen-cont-imp.

This entire process is designed to be completely automatic
and should be completely transparent to the user.

The theory exported from an event such as:

(def::un tarai (x y z)

(cond

((> x y)

(tarai

(tarai (1- x) y z)

(tarai (1- y) z x)

(tarai (1- z) x y)))

(t y)))

actually includes tarai , tarai_terminates and tarai_-

measure. These functions satisfy the following properties:

(defthm tarai-property

(equal (tarai (x y z)

(cond

((and (> x y)

(tarai_terminates x y z))

(tarai

(tarai (1- x) y z)

(tarai (1- y) z x)

(tarai (1- z) x y)))

(t y))))

(defthm tarai_terminates-property

(equal (tarai_terminates x y z)

(cond

((> x y)

(and (tarai_terminates (1- x) y z)

(tarai_terminates (1- y) z x)

(tarai_terminates (1- z) x y)

(tarai_terminates

(tarai (1- x) y z)

(tarai (1- y) z x)

(tarai (1- z) x y))))

(t t))))

(defthm tarai_measure-property

(implies

(tarai_terminates x y z)

(equal (tarai_measure x y z)

(cond

((> x y)

(+ (tarai_overhead x y z)

(tarai_measure (1- x) y z)

(tarai_measure (1- y) z x)

(tarai_measure (1- z) x y)

(tarai_measure

(tarai (1- x) y z)

(tarai (1- y) z x)

(tarai (1- z) x y))))

(t 1))))

Where tarai_overhead is a positive natural value that re-
flects the recursive overhead of the continuation interpreter
implementation.



Using the assumption that tarai terminates, we can prove
the unwinding theorem[1] automatically by induction:

(defthm tarai_unwinding

(implies

(tarai_terminates x y z)

(equal (tarai x y z)

(if (<= x y) y

(if (<= y z) z

x)))))

While the termination predicate tarai_terminates allows
users to assume that the recursion terminates for specific
inputs, def::un also defines a stronger predicate that uses
quantification to enable the user to assume that the recur-
sion always terminates. This stronger, nullary predicate
is (tarai_always_terminates). Note that the termination
predicate cannot be trivially nil. In fact, any arguments
satisfying (not (> x y)) will cause the predicate to evalu-
ate to true. We can also prove that tarai terminates on a
specific set of constant arguments:

(defthm tarai_terminates_6_4_5

(tarai_terminates 6 4 5)

:hints (("Goal" :expand

(:free (x y z)

(tarai_terminates x y z))))

However, proving that tarai terminates for a more general
class of inputs requires the identification of an appropriate
inductive measure[7].

(include-book "ordinals/lexicographic-ordering"

:dir :system)

(defun m1 (x y z)

(declare (ignore z))

(if (<= x y) 0 1))

(defun m2 (x y z)

(- (max (max x y) z) (min (min x y) z)))

(defun m3 (x y z)

(- x (min (min x y) z)))

(defun tarai-measure (x y z)

(llist (m1 x y z) (m2 x y z) (m3 x y z)))

(defun tarai-open (x y z)

(if (<= x y) y

(if (<= y z) z

x)))

(defun tarai-induction (x y z)

(declare (xargs :measure (tarai-measure x y z)

:well-founded-relation l<))

(cond

((and (integerp x)

(integerp y)

(integerp z)

(> x y))

(list

(tarai-induction (tarai-open (1- x) y z)

(tarai-open (1- y) z x)

(tarai-open (1- z) x y))

(tarai-induction (1- x) y z)

(tarai-induction (1- y) z x)

(tarai-induction (1- z) x y)))

(t y)))

(defthm tarai_terminates_proof

(implies

(and (integerp x)

(integerp y)

(integerp z))

(tarai_terminates x y z))

:hints (("Goal"

:induct (tarai-induction x y z)

:expand (tarai_terminates x y z))))

The def::un macro does for ACL2 what Alexander Krauss’
construction does for Isabelle/HOL[4]. Krauss describes an
automated tool based on inductive definitions for admitting
partial recursive functions in HOL along with appropriate
reasoning tools. In particular, like def::un, his technique
expresses termination in a uniform manner and provides an
induction principle which corresponds to the recursive struc-
ture of the admitted function. Krauss’ method differs from
ours in his use of higher order constructs, in particular the
use of the definite description operator and the introduction
of inductive sets as least fix-points via the Knaster-Tarski
fixed-point theorem. Logically, however, the end results of
the different techniques appear very similar. Krauss demon-
strates the efficacy of his technique on the zero function:

f 0 = 0

f(n + 1) = f (f n)

He uses the assumption of termination to prove the unwind-
ing theorem and then uses the unwinding theorem to prove
termination. Our approach is similar.

(def::un f (n)

(if (zp n) 0

(f (f (1- n)))))

(defthm f-is-zero

(implies

(f_terminates n)

(equal (f n) 0)))

(defun f-induction (n)

(if (zp n) n

(f-induction (1- n))))

(defthm f-termination_proof

(f_terminates n)

:hints (("Goal" :induct (f-induction n)

:expand (f_terminates n))))



6. CONCLUSION
A method has been presented that extends the techniques
employed in defpun to enable the admission of arbitrary re-
cursive function definitions and their associated induction
schemes augmented with a termination check and justified
by a partial measure. The method has been implemented as
a macro in ACL2 called def::un and this macro has been
employed to define the reflexive, multiply recursive tarai
function and prove by induction its unwinding theorem un-
der the assumption that it terminates. The methodology
also enabled us to separate the admission of the tarai func-
tion from a proof of its termination. We anticipate this tech-
nique being particularly useful for reasoning about models
of operational semantics for programming languages.

7. REFERENCES
[1] Tom Bailey and John Cowles. Knuth’s generalization of

takeuchi’s tarai function: Preliminary report. In ACL2
Workshop 2000, October 2000. available as University
of Texas Dept. of CS TR 00-29.

[2] John Cowles and Ruben Gamboa. Contributions to the
theory of tail recursive functions. In Fifth International
Workshop on the ACL2 Theorem Prover and its
Applications (ACL2 ’04), November 2004.

[3] John Cowles, David Greve, and William Young. The
while-language challenge: First progress. In ACL2
Workshop 2007, November 2007.

[4] Alexander Krauss. Partial recursive functions in
higher-order logic. In Ulrich Furbach and Natarajan
Shankar, editors, IJCAR, volume 4130 of Lecture Notes
in Computer Science, pages 589–603. Springer, 2006.

[5] Panagiotis Manolios and J Strother Moore. Partial
functions in ACL2. Journal of Automated Reasoning,
31:2003, 2003.

[6] John Matthews. Deeply embedding cryptol in ACL2: A
challenge problem, 2005. ACL2 Theorem Proving
Seminar.

[7] J. Strother Moore. A mechanical proof of the
termination of takeuchi’s function. Inf. Process. Lett.,
9(4):176–181, 1979.

[8] Mitchell Wand. Continuation-based program
transformation strategies. Journal of the ACM,
27(1):164–180, 1980.


