A Generic Implementation Model for the Formal
Verification of Networks-on-Chips

Tom van den Broek and Julien Schmaltz*
Radboud University Nijmegen
Institute of Computing and Information Sciences
6500 GL Nijmegen, The Netherlands
tombroek@science.ru.nl,julien@cs.ru.nl

ABSTRACT

Formal verification often means the proof of a formal re-
lation between abstract specification models and concrete
implementation models. For microprocessor designs, com-
mutative diagrams derived from these models and relations
have been very successful. In the context of communica-
tion modules, no such diagram exists. The generic network-
on-chip model (GeNoC) has been recently proposed as a
generic specification model to validate high-level descrip-
tions of networks-on-chips. We report on work in progress
towards the definition of a generic verification diagram based
on GeNoC. We present a generic model for implementations.
Following the GeNoC approach, our new model is generic in
the sense that it characterizes a large family of designs and
that the validation of a concrete implementation consists
in proving it a valid instance of the generic model. In the
paper, we detail the implementation of packet and circuit
switching techniques. We report on other instances which
support the generic character of our model.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—uverification

General Terms
algorithms, verification

Keywords

formal verification, networks-on-chips

1. INTRODUCTION

Formal verification often involves a specification, an imple-
mentation, and the proof that for all executions of the im-
plementation there exists an execution of the specification
that has the same effect. In the context of microprocessors,

*This research is supported by NWO/EW project Formal
Validation of Deadlock Avoidance Mechanisms (FVDAM)
under grant no. 612.064.811.

this consists in relating the sequential execution of the In-
struction Set Architecture to the pipelined execution of the
Register Transfer Level design [6, 5, 7]. This approach has
been very successful. Simple industrial designs can be fully
verified, and the verification effort is largely automatic [2].
Today, systems-on-chips are multi-processors and their func-
tional correctness largely depends on the correctness of the
communication architecture [4]. Until recently, most of the
verification effort was concerned with processing elements.
The sparse literature devoted to communication modules
proposes ad hoc solutions which apply to particular de-
signs described at a low level of abstraction. In contrast,
the generic network-on-chip (GeNoC) model offers a gen-
eral specification and validation environment for high-level
descriptions of NoCs [9, 1]. GeNoC has been implemented
in ACL2 and applied to several case-studies.

Our goal is to build a layered verification environment for
NoCs. For specification layers, GeNoC offers abstractions
which simplify the formal validation. For instance, entire
routes from source to destination nodes are computed as one
function call, and after that the scheduling policy is applied
to determine the set of communications which can make a
hop. We sketch the main elements of a new model which
breaks this abstraction, i.e., routes, as well as scheduling, are
computed step-by-step. This new model, its formalization
in ACL2, and its application to several concrete instances
constitute the original contribution of this paper. The proof
of a relation between this new model and GeNoC is still
future work.

2. GENOC IMPLEMENTATION MODEL
2.1 Network model

We assume a generic architecture composed of an arbitrary
— but finite — number of nodes and a finite number of con-
nections between any two nodes. Each node is uniquely
identified by its position. A node includes a local memory
and a router. A router is defined by a set of ports and four
functions: input and output units, routing control, and flow
control (see Fig. 1). All nodes are identical.

Ports, topology and state. The main elements of a port
are the data and control signals, and internal buffers (Fig. 1).
Formally, a port is a tuple (addr, stat, data, buff), where
addr is a unique address, stat stores the values of the control
signals and other state components of a port, data denotes
the values of the data signals, and buff represents the value
of the buffers associated with the port.

Port
‘ l l l l Adress | 1| w2 | Direction
Data
—OHOHHOH 2] Data Input
Rx
Input Stage e | StatusField
QR
Buffer
Routing Control
/ Port
Port
Adress | 1d | Npme |Direction
Flow Control / Data
/ ~— Data Output
/ ‘
akrx | StatusField
Output Stage
Buffer

Figure 1: A router and its ports

An address is a tuple (coor, pid, dir), where coor is the
unique identifier of the node the port belongs to, pid is the
name of the port (e.g., west, south), and dir is the direction,
i.e., i’ for an input port or ’o’ for an output port.

The topology is a list where each element is a pair of port
addresses (p;, p;j), which means that port p; is connected to

port pj.

A node is defined as the set of ports, where the address of
each port p is the same. These ports define the state of the
node. The set of all ports of a network defines the state of
the network.

EXAMPLE 1. Assume a 2D-mesh. Fach node has five ports:
one for each direction (north, east, west, and south), and
one for the local core. An address is then defined by the xy-
coordinate of the node, pid € {n,s,e,w}, and dir € {i,o}.
A topology element identifies bi-directional links between two
nodes, for instance ({0 0,¢€), (1 0,w)). Ezamples of ports are
detailed in Section 3.

Input and output units. These two functions define the
low level protocols which use the control signals to transfer
the content of the data signals to the internal buffers in case
of an input port, or to transfer the content of the buffers to
the data signals in case of an output port.

EXAMPLE 2. A handshake protocol is an instance of the
input and output units. A node can request the transmission
using signal Tx connected to signal Rx of the receiver node.
The latter can deny or grant the access using signal AckRx
connected to signal AckTx of the sender.

Routing control. This function applies the routing logic
to one or more ports of a node. It returns a list of routed
ports, i.e., ports together with routing information. The only
function that needs to be instantiated is function routing-
logic which implements the routing algorithm.

EXAMPLE 3. Dimension order routing [3] is a popular
routing algorithm. In particular, the XY routing algorithm
for a 2D-mesh. Messages travel along the X axis completely,
and then along the Y axis. The core control logic of such
implementations — like the Hermes NoC' [8] — computes the
next hop as a simple function of the current position and
the destination. This functionality is exactly the purpose of
instances of function routing-logic.

Flow control. This function implements the switching tech-
nique, e.g., packet, circuit, or wormhole. In case of conflict,
this function also resolves priorities. Function flowcontrol
extracts from the routed ports the messages that are ready
to be transmitted. The core function that needs to be in-
stantiated is function switch-ports which effectively sched-
ules messages. Those scheduled messages are moved to the
output ports computed by the routing control function. We
detail in Section 3 two instances of this function.

Global definition. All these functions form function router
(Listing 1), which updates a node state. Note that a node
is equipped with a memory which is available to each port
and each function. Argument nstmem represents that mem-
ory. To simplify the presentation, we assume that such a
memory element is given as input argument of any function
that accesses it. This argument is not explicitly mentioned
any further.

(defun router (nst nstmem)
(mv-1let
(nst nstmem)
(RouteControl (ProcessInputs nst)
nstmem)
(mv-let (nst nstmem)
(Flowcontrol nst nstmem)
(mv (ProcessOutputs nst)
nstmem))))

Listing 1: Function router

2.2 Network interpreter

Function GeNoC (Listing 2) is the core of our interpreter.
It works as a simulator which applies function router to each
node. Each recursive call defines a simulation step. Input ar-
gument simL defines the length of the simulation. Function
GeNoC' takes as additional arguments the set of messages
to be sent (m), the current state of the network (ntkst), an
accumulator of messages that have reached their destina-
tion (arr, initially empty), the current simulation step (z,
initially 0), and the topology (topo). It returns the list of
arrived messages, the list of delayed messages, and the state
of the network at the end of the simulation.

(defun genoc_t (m ntkst arr z topo simL)
(if (zp simL)
(mv arr m ntkst)
(mv-let
(dep del) ;; dep =
(depart ntkst m z)
(let
((newntkst (step-ntk dep topo))
(genoc_t
del newntkst
(append
(list (list °TIME =z
(arrive newntkst)))

new value of ntkst

arr)
(1+ z) topo (1- simL)))))))

Listing 2: The GeNoC function

0

10

Function depart controls message injection. According to a
user-defined criterion, it determines which messages can be
in the network (line 5). These messages have either already
left their source or depart inserts them in the local input
port of their source node. Function depart returns a list of
updated nodes (dep) and a list of delayed messages (del).
Function step-ntk (see below) applies function router to
each node (line 7). This produces a list of updated nodes.
Those messages that are at their destination are extracted
from this new state and appended to accumulator arrived
(lines 10 to 13). The next recursive call processes the delayed
messages, the updated nodes, and time is incremented by 1.

Function step-ntk (Listing 3) is based on recursive function
step—ntkl. The latter takes as arguments a list of nodes
to be processed (ntslist) and the current network state
(ntkst). It updates the network state. For each node, it
applies function router (line 4). Function ports-update
effectively updates the state of the nodes (line 7). Finally,
function step-ntk extracts the node structures from the list
of ports (function ports-nodelist), and calls step-ntk1l.
Function updateNeighbours simulates the transfer of data
from output data signals to input data signals.

(defun step-ntkl (ntslist ntkst)
(if (endp ntslist)
ntkst
(letx*
((newnst
(newntkst
(step-ntkl (cdr ntslist) ntkst)))
(ports-update newntkst newnst))))

(router (car ntslist)))

(defun step-ntk (ntkst topology)
(let
((newntkst
(step-ntkl (ports-nodelist nktst nil)
ntkst)))
(updateNeighbours newntkst topology)))

Listing 3: Functions step-ntk and step-ntki

3. APPLICATION TO FLOW CONTROL

Listing 4 shows the definition of function FlowControl. Func-
tion switch-nst takes a list of input ports extracted from
the network state by function ports-inputports. At each
input port it applies the scheduling policy of the network.
This policy is represented by function switch-port, which
is the only function to be implementation dependent. In the
next two sections, we give it two different definitions.

(defun FlowControl (nst)
(switch-nst (ports-inputports nst) nst))

Listing 4: Function FlowControl

3.1 Packet switching

Packet switching encodes messages in packets. A packet
constitutes the fixed size basic unit, which travels in the
network. A packet contains a header which contains rout-
ing information and data. A packet is sent autonomously

10

through the network. After a packet has arrived at an input
port and has been routed by the routing control, it is sent to
the correct output port if the latter can accept the packet,
either because it has space to store it, or because the input
port of the next node has available space. Otherwise, the
packet is stored in the input or output port of its current
position. We have implemented the first solution. In our
example, each node has a one-place output buffer for each
output port. A port accepts a packet if its buffer is empty.

Listing 5 shows the instantiation of function switch-ports
for packet switching, named pkt-switch-ports. It takes as
arguments the list of the output ports (outports); an in-
put port (from), the content of which has been routed; and
the state of the node (nst). Function pkt-switch-ports
finds the output to which the input port must be connected
(lines 4 to 6), and checks whether this port can accept the
message (line 7). If such a port exists, function switch-
Buffer transfers the content of the input port to the output
port, i.e., loads the output port and clears the input port.

(defun pkt-switch-port (outports from nst)
(let ((to (car outports)))
(cond
((endp outports) nst)
((and (equal (port-portname to)
(status-route
(port-status from)))
(not (port-bufferFull to)))
(switchBuffer nst from to))
(t (pkt-switch-port
(cdr outports) from nst)))))

Listing 5: Flow control: packet switching

3.2 Circuit switching

Circuit switching is a scheduling technique where before any
data can be sent a circuit must be allocated from the origin
to the destination. As long as a circuit is allocated to a
source and a destination port, the ports of this circuit cannot
be used for another circuit.

Between a source node s and a destination node d, a cir-
cuit is created in two steps. First, the source port sends a
request packet to the destination port. When traveling to-
wards this destination, the request packet temporarily books
each intermediate port by setting the status of these ports
to requested. If the request reaches the destination, an ac-
knowledgment is sent back following the same path. The
acknowledgment confirms the booking of the ports by set-
ting their status to booked. A circuit is established only if
the request reaches its destination. Once a circuit is booked,
the source port sends an arbitrary (finite) number of data
packets. Then, it sends a torn-down packet which clears
the circuit. We have implemented a variation of this tech-
nique, where the request packet contains the number of data
packets that will use the circuit. Therefore, each intermedi-
ate port knows how many packets must be transmitted, and
clears the circuit when the last packet has been forwarded.
No torn-dow packet is required.

Part of the instantiation of function switch-port for cir-

0

10

cuit scheduling (ct-switch-port) is given in Listing 6. It
only shows how a circuit acknowledgment packet is emit-
ted (lines 21 to 32) and transmitted back to its source port
(lines 6 to 17). An acknowledgment packet is created if
the request packet has reached an output local port with
available space (lines 21 to 24) and this local port has not
been booked yet (line 25). Function sendAck places an ack
on the output ports given as its second argument. Its first
argument is the value of the node state after moving the re-
quest from the input port to the local output port (function
switch-buffer, line 28), and storing the circuit in the port
(function update-circuit, lines 27 to 31).

This “booking” is continued all the way back to the source
node. At each intermediate node, if a port receives an ack
(line 6), it has available space and a request has been previ-
ously stored (lines 7 to 12)), function update-circuit sets
the port status to booked, stores the circuit information, and
forwards the ack to the next node.

(defun switch-port (outports from nst)
(let ((to (car outports)))
(cond
((endp outports) nst)

((and (equal (port-buffer from)
> (ack))
(endp (port-buffer to))
(equal (port-dir to) ’out)
(equal (port-circuitState to)
’request)
(port-circuitId to)
(port-portname from)))
(updateCircuit
(switchBuffer nst from to)
(port-portname to)
(port-portname from)
’booked))

(equal

((and (equal (port-portname to)
(status-route
(port-status from)))
(endp (port-buffer to))
(equal (port-dir to) ’out)
(equal (port-portname to) °’loc)
(not (port-circuitState to)))
(sendack
(updateCircuit
(switchBuffer nst from to)
(port-portname to)
(port-portname from)
>booked)
(port-portname from)))

L))

Listing 6: Flow control: circuit switching

4. CONCLUSION AND FUTURE WORK

We have presented an initial formalization of a generic model
for NoCs implementations. We showed details on the instan-
tiation of its scheduling function for the packet and switching
techniques. The generic character of our model is supported

10

15

20

25

30

Generic comp. Instances lines functions
interpreter 231 12
types 314 41
router 170 8
routing control Xy 150 11

spidergon 126 10
flow control packet-switching 70 4

wormhole 97 9

circuit-switching 125 10
departure injection time 29 1
input and outputs handshake 129 15
Total 1441 121

Table 1: Instances of our implementation model

by other instances, summarized in Table 1.

A verification diagram for NoCs can now be obtained from a
formal relation between the GeNoC specification model and
the GeNoC implementation model presented in this paper.
Providing this relation is precisely the subject of our current
investigations.

5. REFERENCES

[1] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz.
Executable formal specification and validation of NoC
communication infrastructures. In Proceedings of the
21st annual symposium on Integrated circuits and
system design (SBCCI’08), pages 176-181, Gramado,
Brazil, September 1-4 2008. ACM.

W. Biittner. Is Formal Verification Bound to Remain a
Junior Partner of Simulation? In D. Borrione and

W. Paul, editors, Correct Hardware Design and
Verification Methods (CHARME’05), volume 3725 of
LNCS, 2005. Invited Speaker.

W. Dally and C. Seitz. Deadlock-Free Message Routing
in Multiprocessor Interconnection Networks. IEEE
Transactions on Computers, C-36(5):547-553, May
1987.

G. de Micheli and L. Benini. Networks on Chips.
Elsevier, 2006.

W. Hunt. Mechanical mathematical methods for
microprocessor verification. In CAV, pages 523-533,
2004.

J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessors control. In David L. Dill,
editor, Proceedings of the sizth International
Conference on Computer-Aided Verification CAV,
volume 818, pages 68-80, Standford, California, USA,
1994. Springer-Verlag.

P. Manolios and S. Srinivasan. A framework for
verifying bit-level pipelined machines based on
automated dedution and decision procedures. Journal
of Automated Reasoning, 37(1-2):93-116, 2006.

F. Moraes, N. Calazans, A. Mello, L. Méller, and

L. Ost. HERMES: an infrastructure for low area
overhead packet-switching networks on chip.
Integration, 38(1):69-93, 2004.

[9] J. Schmaltz and D. Borrione. A functional

2l

B8l

(4]

(6]

(7]

formalization of on chip communications. Formal
Aspects of Computing, 20(3):239-348, 2008.

