
Formal Validation of Deadlock Prevention in
Networks-on-Chips

Freek Verbeek and Julien Schmaltz
Radboud University Nijmegen

Institute of Computing and Information Sciences
6500 GL Nijmegen, The Netherlands

{f.verbeek,julien}@cs.ru.nl

ABSTRACT
Complex systems-on-chips (SoCs) are built as the assem-
bly of pre-designed parameterized components. The speci-
fication and validation of the communication infrastructure
becomes a crucial step in the early phase of any SoC de-
sign. The Generic Network-on-Chip model (GeNoC) has
been recently proposed as a generic specification environ-
ment, restricted to safety properties. We report on an initial
extension of the GeNoC model with a generic termination
condition and a generic property showing the prevention of
livelock and deadlock. The latter shows that all messages
injected in the network eventually reach their destination
for all possible values of network parameters like topology,
size of the network, message length or injection time. We
illustrate our initial results with the validation of a circuit
switching technique.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—verification

General Terms
algorithms, verification

Keywords
liveness, networks-on-chips, formal methods

1. INTRODUCTION
Integration capabilities of chip technologies enable the pro-
duction of Multi-Processors Systems-on-Chips (MPSoCs)
composed of several processing and memory cores, as well
as peripherals and I/O devices. The design of such complex
systems follows a platform-based approach where a new MP-
SoC is built as the assembly of pre-designed and parametric
components – called Intellectual Properties (IPs) – accord-
ing to a generic architecture [18]. Communications become
a bottleneck. To meet system requirements networks-on-
chips (NoCs) emerge as an adequate communication infras-
tructure [1]. To handle the complexity of modern MPSoCs

initial design phases must begin at higher levels of abstrac-
tion, while keeping a link with the final Register Transfer
Level (RTL) implementation [15].

As communications are becoming dominant to the overall
correctness and performance of an MPSoC, their formal val-
idation at their initial design phase will soon become manda-
tory. The Generic Network-on-Chip (GeNoC) model [14, 2]
offers a general environment to reason about high-level and
parametric descriptions of NoCs. It has been implemented
in the ACL2 logic [13] and applied to several case-studies.
GeNoC is a function formalizing the interactions between
three essential constituents: interfaces, routing algorithms,
and scheduling policies. Each one of them is generic in the
sense that it is not given a particular definition but charac-
terized by a set of proof obligations or constraints. GeNoC
is proven to satisfy a global correctness theorem, the proof of
which depends on the proof obligations only. It can there-
fore be instantiated for any definition of the constituents
which satisfy the proof obligations. Verifying a particular
NoC reduces to discharging these instantiated constraints
for the NoC constituent. The verification methodology pro-
ceeds by (1) giving a concrete definition to each one of the
constituents; (2) the corresponding constraints are automat-
ically generated; (3) proving that each concrete definition
satisfies the corresponding constraints; (4) it automatically
follows that the concrete network satisfies the instantiated
global theorem.

In its current version, this global theorem states that ev-
ery message received at some destination node was actu-
ally issued at a valid source node, and followed a valid path
to reach its expected destination. We report on work in
progress towards an extension of this theorem that would
guarantee that eventually all messages reach their destina-
tion. The theorem would include an upper bound on the
time needed to ”evacuate” all these messages and would pre-
vent the network from any deadlock state.

The contributions of this paper are (1) an extension of the
definition of GeNoC with a generic termination condition,
(2) a generic property showing that all messages injected in
the network reach their destination, and (3) the application
of this new model and property to prove deadlock prevention
of a circuit switching technique.

In the next section, we briefly present the necessary knowl-
edge about the GeNoC model. Section 3 presents our ex-

tended definition, the termination condition, and a generic
deadlock prevention theorem. Section 4 instantiates this
new generic definition with a circuit switched network. We
prove deadlock prevention in Section 4.3. We discuss related
work in Section 5 before concluding the paper in Section 6.

2. THE GENERIC NOC MODEL
The Generic NoC (GeNoC [14, 2]) model represents the
transmission of messages from their source to their desti-
nation on a generic communication architecture with an
arbitrary network characterization (topology and node in-
terfaces), routing algorithm, and switching technique. The
model is composed of a collection of functions together with
their characteristic constraints. The main function is recur-
sive and each recursive call represents one step of simulation.
Such a step defines our time unit.

2.1 The Generic NoC Model
The model considers a set of addresses that can emit or re-
ceive messages. A message m is uniquely identified by a
natural number m.id1. To analyze a message, we associate
it with its origin m.org , its current address m.curr , its des-
tination m.dest , its content m.msg , and the execution step
m.time at which it is emitted. An address together with
its content constitute a state element of the global network
state.

Function GeNoC (Fig. 1) takes a list of messages to be sent
at different execution steps and produces the list of messages
that have reached their destination and a list containing
those that are still “en route” or never left their source.

• Network access control: Function r4d produces a
list of traveling messages which are injected in the net-
work and a list of delayed messages.

• Routing: The traveling messages are given to func-
tion Routing , which computes routes from the current
to the destination address for each message.

• Scheduling: Function Scheduling represents the exe-
cution of one network simulation step. Using the routes
produced by function Routing and considering the cur-
rent global state, it moves – or not – a message and up-
dates the global state accordingly. Messages that have
reached their destination constitute the list Arrived ,
and the rest constitutes the list EnRoute .

• Recursion: Functions r4d , Routing , and Scheduling
are combined together. The lists enroute and delayed
constitute the main argument of a recursive call to
GeNoC . Arrived messages are accumulated after each
recursive call. When function GeNoC terminates, the
list Arrived contains all messages that have completed
their path from their source to their destination; the
list EnRoute contains all messages that have left their
source but have not left the network; Delayed contains
all messages that are still at their origin.

1The record notation x.y is used to refer to component
named y of x, where x is a tuple or a list of the output
arguments of a function.

• Termination: To make sure that GeNoC terminates,
we associate a finite number of attempts to every node.
At every recursive call of GeNoC , every node with
a pending message consumes one attempt (function
ConsumeAttempts(att)). The association list att stores
the attempts. Function SumOfAtt(att) computes the
sum of the remaining attempts for all the nodes and
is used as the decreasing measure of parameter att .
Function GeNoC halts if all attempts have been con-
sumed.

A pseudo-code for function GeNoC is given below. Function
GeNoC takes as parameters the list of messages to be sent
(mlst), the structure of the network, reduced to the set of
its nodes (NS), a finite number of attempts (att). Function
GeNoC also takes as input the set of arrived messages (arr,
originally empty), the current state of the network (ntkst),
and the current time (time). If no attempt is left, GeNoC
stops and returns a pair composed of the arrived (arr), and
the delayed (mlst) messages. Otherwise, every recursive call
processes a list of messages, where some are waiting at their
source, and some are traveling in the network. For each
traveling message produced by functions r4d and Routing ,
function Scheduling computes the list of the arrived mes-
sages (arr′), the list of messages that are still traveling in
the network (mlst′), the remaining attempts (att′), and a
new state (ntkst′). The recursive call processes the trav-
eling messages together with the messages delayed by r4d
(D). Time is incremented by 1.

GeNoC (mlst, NS, att, arr, ntkst, time) =
if SumOfAttempts(att)=0
then list(arr, mlst) ;; mlst = en route + delayed
else
let (TR D) = R4D(mlst,time)
in
let (mlst’ arr’ att’ ntkst’) =
Scheduling(Routing(TR, NS), att, ntkst)

in GeNoC (union(mlst’, D), NS, att’,
union(arr, arr’), ntkst’, time+1)

2.2 Functional correctness
The functional correctness of GeNoC is expressed as a the-
orem stating that all arrived messages can be matched to a
unique message of the input list mlst. In other words, if a
message has arrived at a node d it was actually emitted at
a valid source node s with the same content and d was the
expected destination.

Theorem 1. ∀r ∈ Arr,∃ ! m ∈ mlst :

r .id = m.id ∧ r .msg = m.msg ∧ r .dest = m.dest

The proof of this property only depends on the proof obli-
gations associated to each function of GeNoC . We focus on
functions Routing and Scheduling . The main proof obliga-
tions associated to these functions are the following:

• Routing: given a current address c and a destination
address d, function Routing computes a route such that
its first element is c, the last element is d, and all
elements belong to the set of valid addresses.

Figure 1: Original GeNoC model

• Scheduling:

1. lists EnRoute and Arrived are disjoint subsets of
the routed messages given as input to Scheduling

2. function Scheduling consumes at least one attempt

The sum of attempts is a specific decreasing measure for
GeNoC . When GeNoC terminates, it is possible that mes-
sages are still en route even though these messages are able
to progress through the network. These en route messages
may also be blocked and cannot make any further progress,
i.e., the network is in a deadlock state.

In the next section, we detail a modified definition of GeNoC
such that if GeNoC terminates and the list EnRoute is
empty, there is no deadlock. In the remaining sections, we
instantiate this new generic definition for a circuit switching
technique.

3. EXTENDED MODEL

3.1 New definitions
Function GeNoC is divided in a top level function (named
GeNoC) which formats inputs arguments for a core recur-
sive function (named GeNoC t). We first describe function
GeNoC t (see Fig. 2).

Function GeNoC t takes as arguments a list of messages,
the set of nodes, the measure argument, an accumulator
for arrived messages, the simulation step, and the network
state. It returns a list of arrived messages and the list
containing the en route and delayed messages. Predicates
legal-measure and scheduling-assumptions (lines 11 and
14) are concerned with termination, which is explained in

Section 3.2 below. Function r4d determines the set of mes-
sages that can be in the network at the current time (line 8).
These messages can either be injected in the network or are
already traveling in the network. Function Routing com-
putes routes for these messages (line 10), and function Sched-
uling determines which of them can make a hop or have
reached their destination (line 17).

Function GeNoC is given below. It takes as arguments a
list of pending communications (mlst) and two parameters.
The first one is used to generate the set of valid nodes (NS).
The second one is used to generate the state of the network
(ntkst). Function GeNoC returns two lists: a list of results
(the arrived messages) and a list of en route messages.

Function GeNoC first check that parameters p1 and p2 are
well-formed. If this is not the case, it returns two empty lists.
Otherwise it calls function GeNoC t after building the initial
values for its input arguments. Finally, function GeNoC t

returns the lists of arrived and en route messages.

(defun GeNoC (mlst p1 p2)

(if (ValidStateParamsp p1 p2)

(let* ((NS (NodeSetGenerator p1))

(st (StateGenerator p1 p2))

(ntkst (GenInitState trs st))

(v (routing mlst NS))

(meas (InitMeas v NS ntkst)))

(mv -let (arrived enroute)

(GeNoC t mlst NS meas

nil nil ’0 ntkst)

(mv (computeresults arrived)

enroute)))

(mv nil nil)))

This new definition of GeNoC is proven to satisfy the same

0(defun GeNoC t (mlst ns measure arr time ntkst)

(declare (xargs :measure (acl2 -count measure)))

(if (endp mlst)

;; no more messages to process

(mv arr nil) ;; return lists arrived and en route

5;; else

(mv -let (delayed departing)

;; determine which messages are ready

(r4d mlst nil nil time)

;; determine set of routes for all departing messages

10(let ((v (routing departing ns)))

(cond ((not (legal -measure measure v ns ntkst))

;; an illegal measure is supplied , terminate

(mv arr mlst))

((scheduling -assumptions v ns ntkst)

15;; progress is possible , call scheduler

(mv -let (newarr newenroute newmeasure newntkst)

(scheduling v ns ntkst)

(GeNoC t (append delayed newenroute)

;; recursion on delayed and en route

20ns newmeasure ;; update measure

(append newarr arr) ;; accumulate arrived messages

(1+ time) newntkst)))

(t

;; otherwise terminate because of deadlock situation

25(mv arr mlst)))))))

Figure 2: New definition of GeNoC t

generic correctness theorem than the previous one.

3.2 Termination
Function GeNoC t (see Fig. 2) terminates in three different
ways: there is no message left to be processed (lines 2–4) ,
the measure has reached an exit value (lines 11–13), or the
network is in a deadlock state (lines 23–25). We consider
the second case.

The decreasing measure declared for function GeNoC t is
(acl2 -count measure). Parameter measure represents an up-
per bound to the evacuation time, i.e., the number of steps
that are necessary to inject and evacuate all messages in the
input list mlst . For example, if one instantiates function
Scheduling such that at each step at least one message ar-
rives at its destination, then, measure could be the number
of messages on the network.

Predicate legal-measure defines the halting condition for
parameter measure . Function Scheduling is responsible for
producing a measure that is decreasing as long as predicate
legal measure holds. In general, this is not always possible.
If no progress can be made (e.g., if all buffers of the network
are full), then no correct representation of the evacuation
time can be decreased. Predicate scheduling-assumptions

solves this issue. It must be instantiated in such a way that if
it holds, function Scheduling must be able to make progress
and to provide a decreased measure. If this predicate does
not hold, a deadlock state is reached. An example instanti-
ation is given in section 4.1.

A new proof obligation is added. It states that if the schedul-
ing assumptions hold and if the current measure is legal, the
scheduler must be able to provide a new measure that is
smaller than the current one.

(defthm measure - decreases

(implies

(and

(legal -measure measure v NS ntkst)

(scheduling -assumptions v NS ntkst))

(O< (acl2 -count

(mv -nth 2 ;; get new measure

(scheduling v NS ntkst)))

(acl2 -count measure))))

3.3 Deadlock prevention
The main proof obligation of Scheduling states that the in-
tersection of Arrived and EnRoute is empty. This implies
that messages either never left their source, are en route in
the network, or have reached their destination.

If EnRoute is not empty, GeNoC t either terminated because
the provided measure was not legal, or because the schedul-
ing assumptions were not true. If we can prove that (1) the
scheduling-assumptions are always true, and (2) the mea-
sure provided by function Scheduling is always legal, then
the only way for GeNoC t to terminate is when the input
list is empty. If the input list is empty, EnRoute is empty
as well. Each injected message has reached its destination.
No deadlock has occurred.

A typical form of a deadlock prevention theorem is:

(defthm deadlockfree -genoc

(implies ‘property on network state ’

(equal

(mv -nth 1 (GeNoC messages p1 p2))

nil))

This is a very general theorem. No assumption is made on
the topology, and the size of the network, message length
and injection time are left uninterpreted.

The theorem suggests the following proof methodology. De-
fine a property p such that (1) p implies the scheduling-
assumptions (line 14 in Fig. 2), and (2) p is inductive for
GeNoC , i.e., if it holds initially, it holds after each recur-
sion step. Such a property p together with a proof that the
measure provided by Scheduling is always legal is sufficient
to prove the deadlock prevention theorem.

4. CIRCUIT SWITCHING TECHNIQUE
Switching techniques determine how messages travel through
a network. A switching technique is concerned with one
or more types of resources, such as buffer space or chan-
nel bandwidth. Switching entails among others allocating
resources to messages, determining where to send messages
based on the sets of routes provided by the routing algo-
rithm and resolving contention [3]. Contention occurs when
two messages need the same resources. A message is blocked
if it requires an unavailable resource. We consider switch-
ing techniques where no messages are dropped. If for some
reason a message is blocked, it must be stored at its current
position.

Circuit switching (CS) tries to establish a connection be-
tween the origin o and the destination d of a message before
actually sending it. An established connection is called a
circuit, which is also the type of resources CS deals with. A
route is CS-possible if a circuit can be established for that
route, i.e., if all nodes of the route have available space to
store the message. Figure 3 gives an example of how two
messages can traverse through a network with CS. Initially,
both routes are CS-possible. However, only one circuit can
be established at a time, since the routes intersect. Thus,
one message is blocked until completion of the other.

A circuit is established by propagating a request from o to d.
Each node of the route receives a request to deny messages
of any node other than o. A node that acknowledges this
request is called booked. A node will always acknowledge a
request, unless it is booked or for some reason unavailable.
This means that once the entire route is booked, a message
can be sent with guaranteed throughput. After completion
of all communications the source node sends a ”torn-down”
packet to release the circuit. A route is CS-possible if all its
nodes are not booked and have an empty buffer.

We consider an abstract version of CS which computes a
set of possible routes that do not intersect and schedules
them all at once, i.e., in one scheduling step. If a message
is scheduled, it is propagated through its circuit and arrives
at its destination in the same step. This means that any
scheduled message is removed from the network.

[1]

[2]

Figure 3: The arrows show the routing of the messages

in these nodes.

We consider a two-dimensional mesh, for which function
Routing is instantiated with xy-routing. A message is routed
along the X-axis before moving along the Y-axis. Our in-
stance of function r4d injects all messages at the initial simu-
lation step. All nodes have *num-of-buffers* buffers. Each
buffer can store one packet of any size.

Example 1. Consider Fig. 4. Initially, the scheduler gets
a message list with three messages (1, 2, 3). The routes of
messages 1 and 2 are both possible and do not intersect,
therefore they are both scheduled. Message 3 cannot be sched-
uled since its route intersects with message 1. It is thus
scheduled in the next scheduling step.

[2]

[1]

[3]
(a) Begin

[3]
(b) Step 1 (c) Step 2

Figure 4: Example of CS.

Our instance of GeNoC t for CS is given by function simple-
genoct (Fig. 5). Theorems in the next sections are proved
for this instantiated function. We made as few instantiation-
specific assumptions as possible. All such assumptions are
mentioned explicitly.

4.1 Instantiation of the generic measure
Argument “measure” is defined as a list where each element
corresponds to the length of the route of a message. The de-
creasing measure declared for function ct-scheduler is the
sum of the elements of this list. This sum is computed by
function sum-of-lst, which is not spelled out for brievety.
Function get-route returns the route computed by func-
tion routing. Function RouteLengths builds the measure
argument as follows:

(defun RouteLengths (mlst)

(if (endp mlst) nil

(cons (len (get -route (car mlst))))

(RouteLengths (cdr mlst)))))

Function ct-legal-measure returns t only if the measure is
the sum of the list of route lengths. Since it instantiates the
generic function legal-measure (section 3.2), it takes the
same parameters.

(defun ct -legal -measure (meas mlst ntkst)

(equal meas

(sum -of -lst (RouteLengths mlst))))

(defun simple -genoc_t (mlst ns measure arrived time ntkst)

(if (endp mlst)

;; no more messages to send

(mv arrived nil accup)

;; else

(mv -let (delayed departing)

;; call R4D to determine which messages are ready for departure

(simple -readyfordeparture mlst nil nil time)

;; determine set of routes for all departing messages

(let ((v (XY -routing -top departing ns)))

(cond ((not (cs -legal -measure measure v ns ntkst))

;; illegal measure supplied

(mv arrived mlst nil))

((cs -scheduling -assumptions v ns ntkst)

;; schedule and recursively call genoc_t

(mv -let (newmlst newarrived newmeasure newntkst)

(cs -scheduling v ns ntkst)

(simple -genoc_t (append newmlst delayed)

ns newmeasure (append newarrived arrived)

(+ 1 time) newntkst (ct - get_next_priority))))

(t

;; scheduler has instructed to terminate

(mv arrived mlst accup)))))))

Figure 5: Instantiation of GeNoCt for CS

We define an ordering over such lists. Function elts-<=

recognizes two lists x and y such that all elements of x are
pairwise less or equal to the elements of y.

(defun elts -<= (x y)

(if (endp x)(endp y)

(and (natp (car x)) (natp (car y))

(<= (car x) (car y))

(elts -<= (cdr x) (cdr y)))))

We prove that if two lists x and y are elts-<= and the first
element of x is strictly less than the first element of y, the
sum of the elements of x is strictly less than the sum of the
elements of y:

(defthm smaller -car -implies -smaller -sum

(implies (and (< (car x) (car y))

(elts -<= x y))

(< (sum -of -lst x)

(sum -of -lst y))))

We now prove that the new measure – i.e., the new list of
route lengths – is never increased by function Scheduling :

(defthm scheduled -routes -<=-original

(let ((new (mv -nth 2 (ct -scheduler mlst

ER Arr meas prev ntkst))

(old (RouteLengths mlst)))

(elts -<= new old)))

The instance of scheduling-assumptions for CS checks that
there must exist a CS-possible route in the current state.
Predicate no-good-routes is defined, which returns t if and
only if there is no CS-possible route in mlst. This is done
by checking that for all messages in mlst there exists a node

in the route that is full, which implies no circuit can be
established. Predicate ct-scheduling-assumptions is then
defined as (not (no-good-routes mlst ntkst)).

If a route is possible for the first message – i.e., if the schedul-
ing assumptions are satisfied – function Scheduling is proven
to reduce the length of the route of this message.

(defthm good_route -implies -smaller -routes

(let ((new (mv -nth 2 (ct -scheduler mlst

ER Arr meas prev ntkst))

(old (RouteLengths mlst)))

(implies ‘(car mlst)

has possible route ’

(< (car new) (car old)))))

Finally, ACL2 can prove the proof obligation for termination
automatically:

(defthm good -route -implies -smaller -measure

(let ((new (mv -nth 2 (ct -scheduler mlst

ER Arr meas prev ntkst))

(implies (scheduling -assumptions

mlst ns ntkst)

(< (sum -of -lst new)

(sum -of -lst

(RouteLengths mlst)))))

4.2 Instantiation of scheduler
In our model of circuit switching, a message can be scheduled
if its route does not intersect with the routes of the currently
scheduled messages and if it is CS-possible.

Function test_prev_routes takes as parameters a route r?

and a set of routes prev. It returns r? if it does not intersect
with any route in prev. Otherwise it returns nil.

(defun test_prev_routes (r? prev)

(if (endp prev) t

(and (no_intersectp r? (car prev))

(test_prev_routes r? (cdr prev)))

Function ct-test_routes takes as parameters a message m

and the network state ntkst. It returns the route r? of m if
and only if r? is CS-possible, i.e., if all nodes of the route
have an empty buffer. Otherwise it returns nil.

Function ct-scheduler combines these functions. It keeps
track of all scheduled routes in prev. It first tries to find a
CS-possible route (line 8). If it has found a possible route, it
checks whether the route intersects with any route of prev
(line 11). If the route does not intersect, the message is
scheduled which in effect means that it is removed from the
network (line 19) and added to list Arrived (line 15). Oth-
erwise, it is delayed and added to EnRoute (line 22).

0(defun ct -scheduler (mlst EnRoute Arrived

measure prev ntkst)

(if (endp mlst)

(mv (rev EnRoute) (rev Arrived)

(rev measure) ntkst)

5(let ((m (car mlst)))

(mv -let (newntkst r?)

;; access data link layer

(ct -test_routes ntkst m)

(if (and

10r?

(test_prev_routes r? prev))

;; if there is a possible route ,

then remove v and add it to

prev

(ct -scheduler (cdr mlst)

EnRoute

15(cons m Arrived)

(cons 0 measure)

(cons r? prev)

(replace -in -node (Orgv m)

(FrmV m) nil newntkst))

20;; otherwise the transaction is

delayed

(ct -scheduler (cdr mlst)

(cons m EnRoute)

Arrived

(cons (len (get -route

25(car TrLst))) measure)

prev

newntkst))))))

Function ct-scheduling is then simply defined as follows:

(ct-scheduler mlst nil nil nil ntkst)

4.3 Deadlock prevention theorem
Function cs-deadlockfree below considers a list of mes-
sages (mlst) and an initial network state (ntkst). It returns
t if and only if it is possible to process all messages of mlst,
i.e., if no deadlock is possible. Parameter n represents the
number of messages that have been analyzed. It initially
equals 0. If it gets larger than the length of list mlst, the

recursion stops. Otherwise, we check that the n’th message
and the next one are cs-deadlock free.

(defun cs - deadlockfree (n mlst ntkst)

(if (not (in -range n mlst)) t

(and (deadlockfreem

(nth n mlst) nil mlst ntkst)

(cs - deadlockfree

(1+ n) mlst ntkst)))))

The mutually recursive functions deadlockfreem and ∀-

deadlockfreem define the CS deadlock free condition. Func-
tion deadlockfreem takes as arguments a message to be
analyzed (m), an accumulator of messages that have already
been analyzed (m-acc, initially empty), a list of messages
mlst, and the network state (ntkst). If first gets the route
r (function get-route) of the message (line 2). Then, it ex-
tracts from mlst the list of messages, the routes of which in-
tersect with route r. If message m has already been analyzed,
a cycle is detected and the network is not free from deadlock
(line 6). If the buffers of route r have available space, then a
circuit can be created for m. Hence, at least one message can
make progress. There is no deadlock. Note that in order to
check whether a route is possible we only need to check the
cdr of the route (lines 4 and 7). Indeed, a route is possible,
even if the current node is full. If the nodes of route r have
no available space, function ∀-deadlockfreem uses function
deadlockfreem to check that all messages that are blocking
message m are free from deadlock. Message m is accumulated
in m-acc.

0(mutual -recursion

(defun deadlockfreem (m m-acc mlst ntkst)

(let* ((r (get -route m))

(mlst ’

(get -mlst -route (cdr r) mlst)))

5(cond

((member -equal m m-acc) nil)

((has -empty -buffers (cdr r) ntkst)

t)

(t

10(∀-deadlockfreem

mlst ’ (cons m m-acc) mlst ntkst)))))

(defun ∀-deadlockfreem (mlst ’ m-acc mlst

ntkst)

(if (endp mlst ’) t

15(and (deadlockfreem

(car mlst ’) m-acc mlst ntkst)

(∀-deadlockfreem

(cdr mlst ’) m-acc mlst ntkst)))))

Example 2. Consider the examples in Fig. 6(a). When
function deadlockfreem is called for message 1, it first checks
whether message 1 has a possible route. This is not the case,
since its destination node is full. It therefore adds message
1 to m-acc and checks whether messages 2 is deadlockfree.
Since message 2 has a possible route, it is deadlockfree and
thus message 1 is deadlockfree as well.

In the situation depicted in Fig. 6(b), messages 1 and 2 are
not deadlockfree. If deadlockfreem is called for message 1 it

will accumulate message 1 in m-acc and call deadlockfreem

for message 2. To check deadlockfreedom of message 2 we
must check deadlockfreedom of message 1. This message was
accumulated in m-acc and therefore message 2 will be con-
sidered not deadlockfree. Thus message 1 is considered not
deadlockfree as well.

Note that function deadlockfree checks for deadlockfreedom
and not for a deadlockstate, which is a weaker property. The
situation in Fig. 6(b) is not in a CS-deadlockstate, since
message 3 can set up a circuit and arrive at its destination.
Function deadlockfree still returns nil for this situation, be-
cause it is not deadlockfree.

[1]

[2]

[3]

(a) CS Deadlockfree

[1]

[2]

[3]

(b) Not CS Deadlockfree

Figure 6: Example of CS deadlockfreedom. Each

node has one buffer.

The following lists are the measures for resp. cs-deadlock-
freem and ∀-cs-deadlockfreem . Lexicographical ordering
is used.

(list (if (member m mlst) 0 1)

(diff -size m-acc mlst) 0 0)

(list (if (subsetp mlst trlst) 0 1)

(diff -size v-acc trlst) 1

(len mlst))))

The main decreasing measure is computed by diff-size.
It is the number of elements that are in mlst but not in
m-acc. A special case is when m is not in mlst, in which
case this measure does not decrease. It is not logical to call
cs-deadlockfreem if m is not in mlst. Nevertheless, we still
need to prove termination for this case, which only occurs on
the first call, since get-mlst-route returns messages from
mlst. This is why the first element of the measure is 1 if m

is not in mlst and 0 otherwise. Similarly, for a logical call of
∀-cs-deadlockfreem, mlst’ is a subset of mlst, but we need
to prove termination if this is not the case as well. After the
first call the first element decreases to 0 and remains 0. The
second element is the main decreasing measure: the differ-
ence between m-acc and mlst. This decreases on each call
of ∀-deadlockfreem in deadlockfreem and remains equal
on each call of deadlockfreem in ∀-deadlockfreem . The
third element is 0 for deadlockfreem and 1 for ∀-deadlock-
freem. The last element is the self decreasing measure: for
deadlockfreem this is constant since it is not self-recursive.
For ∀-deadlockfreem this is the length of mlst, since this
decreases on each self-call.

We now prove our deadlock prevention theorem, which is an
instance of the generic construct given in section 3.3.

(defthm en -route -empty

(implies

(and (cs -deadlockfree 0 mlst ntkst)

(ct -legal -measure measure mlst ns

ntkst))

(endp (mv -nth 1 (simple -genoc_t mlst ns

measure nil nil time ntkst)))))

The proof follows the methodology from section 3.3. We
prove that predicate cs-deadlockfree (1) implies the sched-
uling assumptions, i.e., implies at least one possible route ,
and (2) is inductive for GeNoC , i.e., if it holds initially, it
holds after one recursion step. We then prove that the mea-
sure provided by function Scheduling is always legal. From
this follows the theorem above.

The first step consists in proving the theorem below. We
assume that there are messages to be sent (line 3) and that
each node has *num-of-buffers* buffers (line 4). Further-
more, we assume that the network state relates to the list of
messages, i.e., there is no message on the network that is not
in mlst. Under these assumptions, predicate cs-deadlock-

free is proven to imply a possible route.

0(defthm deadlockfree -=>-route -possible

(implies

(and (consp mlst)

(buffersize ntkst *num -of -buffers *)

(ntkst -relates -mlst ntkst mlst)

5(cs - deadlockfree 0 mlst ntkst))

(not (no -good -routes mlst ntkst)))

The second theorem states that cs-deadlockfree is pre-
served after each recursive call of GeNoC. Its proof con-
sists of proving that if a state is cs-deadlockfree, after a
cycle of routing and scheduling the resulting state is still
cs-deadlockfree.

The theorem is given below. Let out be the output of func-
tion scheduler (line 2). The new network state newntkst and
new list of messages newmlst are extracted from out. The
new list of messages is routed again (line 5). We prove that
if the original state ntkst and the list of messages mlst are
cs-deadlockfree, so are the new state and list of messages.

Two assumptions are needed: the network state relates to
the list of messages (as explained above), and the routing
algorithm will not increase the length of the routes. In our
case routes are computed by xy-routing, which is determin-
istic and minimal. It satisfies the latter assumption.

0(defthm genoc -preserves -deadlockfreedom

(let* ((out (ct - scheduling mlst ns

ntkst))

(newntkst (mv -nth 3 out))

(newmlst (xy -routing

5(mv -nth 0 out))))

(implies

(and (ntkst -relates -mlst ntkst mlst)

(mlst -created -by -xy -routing mlst)

(deadlockfree 0 mlst ntkst))

10(deadlockfree 0 newmlst newntkst)))

As it would result in many complex proofs, we do not at-
tempt to prove the theorem directly. Rather, we prove a
more general intermediate lemma. This lemma is based on
the notion of two ”equally full” network states, formalized by
predicate <=-full below. Network state ntkst1 is <=-full

to network state ntkst2 if (a) ntkst1 is empty, or (b) if the
first port of ntkst1 and ntkst2 have both available space
and their remaining ports are <=-full.

(defun <=-full (ntkst1 ntkst2)

(if (endp ntkst1) t

(let ((recur (<=-full (cdr ntkst1)

(cdr ntkst2)))

(if (has -empty -buffer (car ntkst2))

(and recur

(has -empty -buffer (car ntkst1)))

recur)))))

We now prove our intermediate lemma. Assume a network
state ntkst1 and a list m1 of messages. Assume a network
state ntkst2 and a list m2 of messages, such that m2 is a
sublist of m1 and ntkst2 is <=-full than ntkst1. We now
prove that if deadlockfreem holds for m1 and ntkst1, it
holds for m2 and ntkst2.

(defthm abstraction -preserve -deadlockfreem

(implies

(and (subsetp newmlst mlst)

(equal (getcoordinates ntkst)

(getcoordinates newntkst))

(<=-full newntkst ntkst)

(deadlockfreem v m-acc mlst ntkst))

(deadlockfreem m m-acc newmlst newntkst)

)

We now prove that the list of delayed and en route messages
produced by function ct-scheduler is a a sublist of its first
input argument, and that the new state produced by this
function is <=-full than the current one.

(defthm scheduled -is -<=-full -and -subsetp

(let* ((out (ct -scheduler mlst

ER Arr meas prev ntkst))

(newntkst (mv -nth 3 out))

(newmlst (mv -nth 0 out)))

(and (<=-full newntkst ntkst)

(subsetp newmlst mlst))))

Finally, using the intermediate lemma and the theorem above,
we can easily conclude that deadlockfreem is inductive for
GeNoC.

0(defthm scheduler -preserves -

deadlockfreedom

(let* ((out (ct -scheduler mlst

ER Arr meas prev ntkst))

(newntkst (mv -nth 3 out))

(newmlst (mv -nth 0 out)))

5(implies (deadlockfree 0 mlst ntkst))

(deadlockfree 0 newmlst newntkst)))

We needed 17 theorems to prove that the abstraction pre-
serves deadlockfreedom, but only 4 theorems to prove that
the output of the scheduler is a concrete version of the
abstraction. If we would prove this theorem for another
scheduling policy, the main part of the proof can be re-used.

4.4 Evacuate!
GeNoC computes two lists: EnRoute and Arrived . Up to
this point we proved that EnRoute is empty. Since our in-
jection method injects all messages in the network at the ini-
tial simulation step, we can prove that if EnRoute is empty,
Arrived is equal to the original list of messages (see Fig. 7).

To prove it we have defined a notion of equivalence for lists
of messages, based on the fact that all messages have unique
identifiers. Lists m1 and m2 are called mlst-equal if the set
of ids of m1 is a subset of the set of the ids of m2, and the
other way around. By proving that mlst-equal is an equiv-
alence relation and by proving the following congruences,
the degree of automation of ACL2 in proving our theorems
significantly increased.

(defequiv mlst -equal)

(defcong mlst -equal mlst -equal

(cons x m) 2)

(defcong mlst -equal mlst -equal

(append m1 m2) 1)

(defcong mlst -equal mlst -equal

(append m1 m2) 2)

(defcong mlst -equal iff

(member -v x m) 2)

5. RELATED WORK
Deadlocks can be classified as structural or high-level. Struc-
tural deadlocks are often introduced by the routing algo-
rithm. This kind of deadlock has been extensively studied
in the context of computer networks [4, 5, 6, 7]. A resource
(channels or buffers) dependency graph is constructed using
the routing function of the entire network. An acyclic graph
is a necessary and sufficient condition for deadlock preven-
tion. This condition is proved under several assumptions.
One of them is that when a message reaches its destination,
it can always be consumed. This assumption is in practice
not satisfied. If a node is really full and cannot process its
local input queues, the network might become overloaded
and no progress might be possible. Moreover, dependen-
cies between requests and acknowledgment packets may be
introduced, creating high-level deadlocks. To prevent such
deadlock, data flow analysis is used [11]. Another solution is
to include these dependencies in the graphs [16], or to have
separate buffers for different types of messages [9, 8].

These techniques need the construction of a graph, and
therefore cannot – in contrast to our approach – be applied
to parametric models. Moreover, we allow for the unified
analysis of the two kinds of deadlocks and their interactions.

6. CONCLUSION
We have presented an extension of the GeNoC model to sup-
port the proof that messages injected in a network eventually
reach their destination. This has been achieved by defin-
ing a generic termination condition – inspired from ”clock
functions” [12] – and a new proof obligation sufficient to
discharge this condition. We also define a general deadlock
prevention theorem and instantiated it for a circuit switch-
ing technique. In all our proofs, we made no assumption on
the topology, the length of messages, or their injection time.

Table 1 gives an overview of the files needed to define and
prove the theorems mentioned in this paper. The size of the

(defthm enroute -empty ->arrived -full

(implies (and (true -listp mlst)

(endp (mv -nth 1 (simple -genoct mlst ns meas nil nil time ntkst))))

(trlst -equal (mv -nth 0 (simple -genoct mlst ns meas nil nil time ntkst))

mlst))

Figure 7: Evacuation theorem

Contents Size Functions Theorems

Network state 193 14 7
Injection method 35 1 2
XY Routing 510 11 49
Circuit scheduling 818 29 56

GeNoC CS 1196 24 95

Table 1: Overview of files

files is the number of lines. The first four files define the in-
stantiations of the constituents of GeNoC . The last file con-
tains both the definition of function GeNoC , the deadlock-
related proofs and the proof of correctness.

Our deadlock prevention theorem has been proved for one
instance of function GeNoC . Our model of circuit switch-
ing uses the global network state. In most concrete imple-
mentations, this would not be possible. We are currently
developing proofs for packet and wormhole switching tech-
niques, as well as a more realistic version of circuit switching
which would only use state elements local to a node. From
these different examples, we will extract sufficient conditions
to prove deadlock prevention for the generic definition. Al-
ready in our example, assumptions on the routing algorithm
are required. We assume that the route length of a message
does not increase if a message makes a hop towards its desti-
nation. This restricts our proof to either (non-)minimal non-
adaptive or minimal adaptive routing algorithms. Also in
proving that all messages reach their destination, we needed
the fact that the union of lists Arrived and EnRoute pro-
duced from the application of function Scheduling to a mlst

list of messages somehow equals list mlst. These two prop-
erties seems like good candidates for new proof obligations.

Our ultimate goal is to prove that hardware implementations
of NoCs are free from deadlock. In another submission [17],
we developed a generic implementation model à la GeNoC.
We are currently working on the proof of a formal relation
between this GeNoC implementation model and the GeNoC
specification model presented in this paper.

The proof that all messages reach their destination is a for-
mulation of the more general ”evacuation problem”(e.g., [10]).
An interesting challenge would be to formalize using our ex-
tended GeNoC model the proof of time bounds obtained in
such publications.

Acknowledgments
This research is supported by NWO/EW project Formal
Validation of Deadlock Avoidance Mechanisms (FVDAM)
under grant no. 612.064.811.

7. REFERENCES
[1] L. Benini and G. D. Micheli. Networks on Chips: A

New SoC Paradigm. Computer, 35(1):70–78, 2002.

[2] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz.
Executable formal specification and validation of NoC
communication infrastructures. In Proceedings of the
21st annual symposium on Integrated circuits and
system design (SBCCI’08), pages 176–181, Gramado,
Brazil, September 1–4 2008. ACM.

[3] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan-Kaufmann
Publisher, 2004.

[4] J. Duato. A New Theory of Deadlock-Free Adaptive
Routing in Wormhole Networks. IEEE Transactions
on Parallel and Distributed Systems, 4(12):1320–1331,
1993.

[5] J. Duato. A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole
Networks. In International Conference on Parallel
Processing, pages 142–149, 1994.

[6] J. Duato. A Necessary and Sufficient Condition for
Deadlock-Free Routing in Cut-Through and
Store-and-Forward Networks. IEEE Transactions on
Parallel and Distributed Systems, 7(8):841–854, 1996.

[7] E. Fleury and P. Fraigniaud. A General Theory for
Deadlock Avoidance in Wormhole-Routed Networks.
IEEE Transactions on Parallel and Distributed
Systems, 9(7):626–??, 1998.

[8] B. Gebremichael, F. Vaandrager, M. Zhang,
K. Goossens, E. Rijpkema, and A. Rădulescu.
Deadlock Prevention in the Æthereal protocol. In
D. Borrione and W. Paul, editors, Correct Hardware
Design and Verification Methods (CHARME’05),
volume 3725 of LNCS, pages 345–348, 2005.

[9] K. Goossens, J. Dielissen, and A. Rădulescu. The
Æthereal network on chip: Concepts, architectures,
and implementations. IEEE Design and Test of
Computers, 22(5):21–31, Sept.-Oct. 2005.

[10] B. Hajek. Bounds on evacuation time for deflection
routing. Distributed Computing, 5(1):1–6, June 1991.

[11] A. Hansson, K. Goossens, and A. Rădulescu. Avoiding
message-dependent deadlock in network-based systems
on chip. VLSI Design, May 2007. Hindawi Publishing
Corporation.

[12] S. Ray, W. A. Hunt, Jr., J. Matthews, and J. S.
Moore. A Mechanical Analysis of Program Verification
Strategies. Journal of Automated Reasoning,
40(4):245–269, May 2008.

[13] J. Schmaltz and D. Borrione. Towards a Formal
Theory of On Chip Communications in the ACL2
Logic. In Proceedings of the Sixth International
Workshop on the ACL2 Theorem Prover and its
Applications, part of FloC’06, Seattle, Washington,
USA, August 14-15 2006. ACM.

[14] J. Schmaltz and D. Borrione. A functional

formalization of on chip communications. Formal
Aspects of Computing, 20(3):239–348, 2008.

[15] G. Spirakis. Beyond Verification: Formal Methods in
Design. In A. Hu and A. Martin, editors, Formal
Methods in Computer-Aided Design (FMCAD’04),
volume 3312 of LNCS, Austin, Texas, USA, November
2004. Springer-Verlag. Invited Speaker.

[16] S. Taktak, J.-L. Desbarbieux, and E. Encrenaz. A tool
for automatic detection of deadlock in wormhole
networks on chip. ACM Transactions on Design
Automation of Electronic Systems, 13(1), 2008.

[17] T. van den Broek and J. Schmaltz. A generic
implementation model for the verification of
networks-on-chips. In Eighth International Workshop
on the ACL2 Theorem Prover and Its Application,
2009. Under review.

[18] J. van Meerbergen. Networks on chip: A
communication-centric approach to platform-based
design. In PROGRESS White Papers 2006. STW, The
Netherlands.

