Modular ACL2

Carl Eastlund
Northeastern University
Boston, MA, USA
cce@ccs.neu.edu

In the early 1980s, Boyer and Moore decided to re-build
their Ngthm theorem prover [1] for a first-order, functional
subset of a standardized, industrial programming language:
Common Lisp [8]. The resulting system, ACL2, was an
attempt to piggy-back theorem proving on the expected
success of Lisp and functional programming. Although
Common Lisp didn’t succeed, ACL2 became the most widely
used theorem prover in industry. Over the past 20 years,
numerous hardware and software companies turned to ACL2
to verify critical pieces of their products [5]; by 2006, their
contributions to the ACL2 regression test suite exceeded one
million lines of code. The ACL2 team received the 2005
ACM Systems Award for their achievement.®

During those 20 years, programming language theory
and practice also evolved. In particular, programming
language designers have designed, implemented, and ex-
perimented with numerous module systems for managing
large functional programs [4]. One major goal of these
design efforts has been to help programmers reason locally
about their code. That is, a module should express its
expectations about imports, and all verification efforts for
definitions in a module should be conducted with respect
to these expectations. Common Lisp and thus ACL2,
however, lack a proper module system. Instead, ACL2
programmers use Common Lisp’s package system and ad hoc
tools for proof encapsulation and instantiation, plus usage
patterns that mimic modular programming. Naturally, the
manual maintenance of abstraction boundaries is difficult
and error prone. Worse, it forces the programmer to
choose between local reasoning and end-to-end execution, as
functions defined in an encapsulated proof cannot be run.

Since manual programming patterns are laborious and
error-prone, we have developed Modular ACL2, an extension
of ACL2 with a module system. This new language is imple-
mented on top of Dracula [2], our dialect of ACL2 [9]. The
module system takes its inspiration from the PLT Scheme

"http://campus.acm.org/public/pressroom/press._
releases/3_2006/software.cfm

Matthias Felleisen
Northeastern University
Boston, MA, USA
matthias@ccs.neu.edu

unit system [3, 7]; it separates modules from interfaces
and introduces an external linking language to combine
client modules with provider modules. Our language of
interfaces allows hiding some functions for abstraction,
exposing others to express new forms of inductive reasoning,
and constraints to describe functions shared across multiple
interfaces. Naturally we impose enough restrictions to
ensure the soundness of ACL2, which assumes a first-order,
terminating programming language. In the vein of previous
extensions to the theorem prover [6], we supply a formal
proof of correctness for Modular ACL2.

Our research includes a number of benchmarks, i.e.,
attempts to turn monolithic programs into modular systems
and to measure the effect on theorem-proving time. With
our module system, the theorem prover performs remarkably
well; introducing modules reduces the amount of time spent
by the theorem prover searching for a proof, sometimes by
several orders of magnitude.

1. REFERENCES

[1] Boyer, R. S. and J S. Moore. Mechanized reasoning
about programs and computing machines. In Veroff, R.,
editor, Automated Reasoning and Its Applications:
Essays in Honor of Larry Wos, p. 146-176. MIT Press,
1996.

Eastlund, C. and M. Felleisen. Toward a practical

module system for ACL2. In PADL, p. 46-60, 2009.

Flatt, M. and M. Felleisen. Units: Cool modules for

HOT languages. In PLDI, p. 236-248, 1998.

Harper, R. and B. C. Pierce. Design issues in advanced

module systems. In Pierce, B. C., editor, Advanced

Topics in Types and Programming Languages. MIT

Press, 2004. 293-345.

[5] Kaufmann, M., P. Manolios and J. S. Moore.
Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer, 2000.

[6] Kaufmann, M. and J. S. Moore. Structured theory
development for a mechanized logic. Journal of
Automated Reasoning, 26(2):161-203, February 2001.

[7] Owens, S. and M. Flatt. From structures and functors
to modules and units. In ICFP, p. 87-98, 2006.

[2

3

4

[8] Steele Jr., G. Common Lisp—The Language. Digital
Press, 1984.
[9] Vaillancourt, D., R. Page and M. Felleisen. ACL2 in

DrScheme. In ACL2 Workshop, p. 107-116, 2006.



