
Untyped Types

May 11, 2009

Advanced Technology Center



2

Goals

• Compositional
– Reasoning approach for Complex and Simple Types is the Same
– Complex types can be built from simple types

• And Disabled

• Uniform
– Amenable to Automation

• Efficient
– Minimize Time (Search)
– Minimize Space (Size)

• Complete
– If problem is decidable, solution should work

(defun Type (x)
(and (TypeA x) (TypeB x)))

(defun OType (x)
(or (Type x) (integerp x))

(defthm Type-fn
(Type (fn z))

=> (TypeA (fn z)) ??
=> (OType (fn z)) ??

Tension!



3

Type Reasoning in ACL2

A special pass

To relieve a hypothesis we only use type reasoning, 
evaluation of ground terms, and presence among 
our known assumptions, no rewriting (including 
no opening of definitions)

Beware of non-recursive functions occurring in the
hypotheses of :type-prescription rules!

If it is enabled, you are screwed
If it is disabled, you are screwed

Can we avoid being screwed ?



4

Principles

• :forward-chaining is the workhorse
– Minimizes search (efficient?)
– Adds predicates to type-alist

• No new structure in :forward-chaining rules (size)
• type-alist size should be bounded

• Use :type-prescription only in desperation
– Fights against :forward-chaining (inefficient)
– Experimentally slow

• Use :rewrite (only) when there is no search required
– Ideally :rewrite is not needed



5

Conjunction (And) Type

(defthm Type-implies
(implies
(Type x)
(and (TypeA x)

(TypeB x)))
:rule-classes (:forward-chaining))

(defthm implies-Type
(implies
(and

(TypeA x)
(TypeB x))

(Type x))
:rule-classes (:rewrite (:forward-chaining

:trigger-terms 
((TypeA x) 
(TypeB x)))))

Expensive :rewrite rule
because many types
could imply (TypeA x)

(defthm not-Type-implies
(and 
(implies

(and (not (Type x))
(TypeA x))

(not (TypeB x)))
(implies

(and (not (Type x))
(TypeB x))

(not (TypeA x))))
:rule-classes (:forward-chaining))

(defthm implies-not-Type
(and (implies

(not (TypeA x))
(not (Type x)))

(implies
(not (TypeB x))
(not (Type x))))

:rule-classes (:rewrite
:forward-chaining))

Ideally these :rewrites 
will never be used



6

Disjunction (Or) Type

(defthm not-Type-implies
(implies
(not (Type x))
(and (not (TypeA x))

(not (TypeB x))))
:rule-classes (:forward-chaining))

(defthm implies-not-Type
(implies
(and

(not (TypeA x))
(not (TypeB x)))

(not (Type x)))
:rule-classes (:rewrite (:forward-chaining

:trigger-terms 
((TypeA x) 
(TypeB x)))))

(defthm Type-implies
(and 
(implies

(and (Type x)
(not (TypeA x)))

(TypeB x))
(implies

(and (Type x)
(not (TypeB x)))

(TypeA x)))
:rule-classes (:forward-chaining))

(defthm implies-Type
(and (implies

(TypeA x)
(Type x)

(implies
(TypeB x)
(Type x)))

:rule-classes (:rewrite
:forward-chaining))

Negated Types .. 
Established by
:type-prescription +
:forward-chaining



7

Nominal Data Structure Types

(defthm implies-str-p
(implies
(and

(tag-equal x ‘str)
(true-size x 3)
(typeA (field-A x))
(typeB (field-B x)))

(str-p x))
:rule-classes (:rewrite
(:forward-chaining :trigger-terms
((field-A x) (field-B x)))))

(defthm str-p-implies-car-equal
(implies 
(str-p x) 
(and (tag-equal x ‘str)

(true-size x 3)))
:rule-classes (:forward-chaining))

(defthm str-p-implies
(implies
(str-p x)
(and (typeA (field-A x))

(typeB (field-B x))))
:rule-classes (:rewrite
(:forward-chaining :trigger-terms

((field-A x) (field-B x)))))

(defthm str-p-str
(implies
(and (typeA A)

(typeB B))
(str-p (str A B)))

:rule-classes (:rewrite
(:forward-chaining :trigger-terms
((str A B)))))

It is convenient
to have tagged
structures



8

(Negated) Nominal Type

(defthm not-tag-implies-not-str-p
(implies
(and

(tag-equal x tag)
(not (equal tag ‘str)))

(not (str-p x)))
:rule-classes (:type-prescription))

:forward-chaining would add the
negation of every known nominal
type (potentially very large)

:rewrite is not used during
type reasoning 

:type-prescription is our only option

Note that
tag is free

Presumably added
by some other
nominal type ..

Evaluation of a
constant term



9

Function Signatures

(defthm fn-signature
(implies
(and

(TypeX a)
(TypeY b))

(Type (fn a b)))
:rule-classes (:rewrite
(:forward-chaining :trigger-terms ((fn a b)))))

(OType (fn a b))
(Type (fn a b))
(TypeA (fn a b))
(TypeB (fn a b))
(TypeX a)
(TypeY b)
|-

(Type (fn a b))
(TypeX a)
(TypeY b)
|-

(defun Type (x)
(and (TypeA x)

(TypeB x)))

(defun OType (x)
(or (Type x) ..))

Implies-OType

Type-implies



10

Backchaining Backbreaker

• When ACL2 asks (Type x) during back chaining
– X is a constant

• Hopefully type is executable
• Otherwise x is treated as an expression

– X is a symbol
• Appears in type-alist
• Enough information in the type-alist to deduce by type reasoning

– X is an expression (function application)
• Appears in type-alist
• Introduced new structure in hypothesis (or ancestor RHS)

– :forward-chaining does not apply during back chaining
– Requires a :rewrite rule to trigger on (Type (fn ..))
– (OType (fn ..)) ? (TypeA (fn ..)) ? (screwed again)

» Only resolution is to employ :rewrite rules that do search
» Make Type-implies and not-Type-implies :rewrites



11

Heuristically Challenged

• Heuristics (ancestors check) will save us from circular rewrites ..

• But they bite us during :forward-chaining
– We promised: no new structure when :forward-chaining

• ACL2 doesn’t believe us
• Heuristics can defeat :forward-chaining rules under certain conditions

(defthm Type-implies
(implies
(Type x)
(and (TypeA x)

(TypeB x)))
:rule-classes (:rewrite))

(defthm implies-Type
(implies
(and

(TypeA x)
(TypeB x))

(Type x))
:rule-classes (:rewrite))



12

Principles (Revised)

• :forward-chaining is the workhorse
– Minimizes search (efficient?)
– Adds predicates to type-alist

• No new structure in :forward-chaining rules (size)
• type-alist size should be bounded

• Use :type-prescription only in desperation
– Fights against :forward-chaining (inefficient)
– Experimentally slow

• Use :rewrite in addition to :forward-chaining
– To address backchaining issues



13

Questions

• How do we estimate the cost of a :forward-chaining rule?

• What is the performance impact of each new type-alist entry?

• Have we made good time/space tradeoffs?

• Can we do better?



14

Type-alist Fixedpoints and Structure

(defthm subset-append
(and
(setp x)
(setp y))

(and (subset x (append x y))
(subset y (append x y)))

:rule-classes :forward-chaining)

(defthm subset-append
(and
(setp x)
(setp y))

(and (subset x (append x y))
(subset y (append x y)))

:rule-classes (:forward-chaining 
:trigger-terms ((append x y))))

Introduces new
structure

Structure already
exists

No fixedpoint

Note: More efficient to use domain specific (union x y)


	Slide Number 1
	Slide Number 2
	Type Reasoning in ACL2
	Principles
	Conjunction (And) Type
	Disjunction (Or) Type
	Nominal Data Structure Types
	(Negated) Nominal Type
	Function Signatures
	Backchaining Backbreaker
	Heuristically Challenged
	Principles (Revised)
	Questions
	Type-alist Fixedpoints and Structure

