A Bind-free Experience Report

Proving a type of inequality with bind-free guided rewriting

Hanbing Liu

May 11, 2009

Hanbing Liu A Bind-free Experience Report

Background: Verifying FP Algorithms

At AMD,

o We verify our floating point DIV/SQRT algorithms
@ A typical algorithm may look like this:

y := lookup—reciprocal(b) ;; 1/b x(1+e0)
e := rnd (1 — bxy,64) i (1—bxy)x(1+el)
yl:= rnd(y + yx*e,64) o (ytyxe)x(1+e2)
y2:= rnd(y + ylxe 64) i (yt+ylxe)x(1+e3)
q := rnd(axy2,23)

r .= a — qgxb

Q := rn(q + rxy2,23)

@ Such algorithms have two stages:

@ Approximation stage
@ Rounding stage

@ One task is to show that the relative error between a*y2 and
the true value a/b is bounded by a small constant

Hanbing Liu A Bind-free Experience Report

Background: Verifying FP Algorithms

At AMD,

o We verify our floating point DIV/SQRT algorithms
@ A typical algorithm may look like this:

y := lookup—reciprocal(b) ;; 1/b x(1+e0)
e := rnd (1 — bxy,64) i (1—bxy)x(1+el)
yl:= rnd(y + yx*e,64) o (ytyxe)x(1+e2)
y2:= rnd(y + ylxe 64) i (y+ylse)x(1+e3)
q := rnd(axy2,23)

r .= a — qgxb

Q := rn(q + rxy2,23)

@ Such algorithms have two stages:

@ Approximation stage
@ Rounding stage

@ One task is to show that the relative error between a*y2 and
the true value a/b is bounded by a small constant

In short, we often need to prove |P(€)| < C type theorems

Hanbing Liu A Bind-free Experience Report

Problem: ACL2 Needs Better Guidence

A simple but illuminating example:
@ Prove p2 theorem — easy
(defthm p2
(implies (and (<= (abs el) 1)
(<= (abs e2) 1)
(<= (abs (+ el e2))
@ Prove p10 theorem — hard
(defthm pl10
(implies (and (<= (abs el) 1)
(<= (abs e2) 1)

)
2)))

(.%.:(abs el0) 1))
(<= (abs (+ el e2 ... el0)) 10)))

o Prove p100 theorem — not practical

Hanbing Liu A Bind-free Experience Report

Problem: ACL2 Needs Better Guidence

A simple but illuminating example:
@ Prove p2 theorem — easy
(defthm p2
(implies (and (<= (abs el) 1)
(<= (abs e2) 1)
(<= (abs (+ el e2))
@ Prove p10 theorem — hard
(defthm pl0
(implies (and (<= (abs el) 1)
(<= (abs e2) 1)

)
2)))

(<= (abs el0) 1))
(<= (abs (+ el e2 ... el0)) 10)))
o Prove p100 theorem — not practical
When P(€) is complex, the ACL2 built-in linear procedures
and strategies (as embodied in the its arithmetic library) are
too general to be effective. ACL2 needs better guidence.

Hanbing Liu A Bind-free Experience Report

Solution: A Simple Strategy

To prove a p100 theorem:
(implies (and (<= (abs el) 1)
(<= (abs e2) 1)

(<= (abs el00) 1))
(<= (abs (+ el e2 ... el100)) 100))
A simple strategy does exist
@ Prove the following rule

abs(term) <= d1

abs(poly) <= d2

dl+d2 <= C

=>
abs(term + poly) <=C

@ Apply this rule and backchain to relieve the second hypothesis
abs(poly)<= d2

Hanbing Liu A Bind-free Experience Report

Solution: A Simple Strategy

To prove a p100 theorem:
(implies (and (<= (abs el) 1)
(<= (abs e2) 1)

(<= (abs el00) 1))
(<= (abs (+ el e2 ... el00)) 100))
A simple strategy does exist
@ Prove the following rule
abs(term) <= d1
abs(poly) <= d2
dl+d2 <= C
=>
abs(term + poly) <=C
@ Apply this rule and backchain to relieve the second hypothesis
abs(poly)<= d2
The key is that the ACL2 theorem prover does not know how
to find suitable bindings for free variable in the rule: d1 and d2

Hanbing Liu A Bind-free Experience Report

Solution: Two Tasks And Bind-free Trick

To help the ACL2 theorem prover to mimic what one would do:

Two Tasks
o Introduce rewrite rules that codify the general (backchain)
strategy. They have free variables in their hypothesises. They
are “templates” for what kind of proof obligations to create.
@ Define an algorithm that examines the conjecture and finds
suitable bindings for the “parameters” (free variables) in the
“templates” .
Bind-free trick
o Allow the ACL2 theorem prover to invoke the algorithm during
rewriting to find the right way to backchain
@ Details on this later

Hanbing Liu A Bind-free Experience Report

Rewrite Rules For Our |P(€)| < C Type problem

Match how a polynomial may be constructed.

@ One rule for each type
(defthmd over—estimate—rule—var—leaf
(implies (and (syntaxp (symbolp x))
(<= (abs x) d1)
(<= d1 d2))
(<= (abs x) d2)))

(defthmd over—estimate—rule—add
(implies (and (<= (abs x) d1)
(<= (abs y) (+ (- d1) d2)))
(<= (abs (+ x y)) d2)))

We note that, in their current forms, the ACL2 theorem
prover could not make use these rules properly.

Hanbing Liu A Bind-free Experience Report

One Workable Algorithm For Picking Bindings

Essentially a simple upper bound finding algorithm

@ Two inputs:
o A polynomial: ’(+ (x el e2) (x e2 (+ e3 e3)) ...)
o A list of upper bounds on the absolute value of variables:
'((el . 1/16) (e2 . 1) (e3 . 1) ...)

@ Output: upper bound of the polynomial under the assumption

@ Operations:
o For atomic polynomial such as a simple variable, looking up
the upper bound in the input list
@ For compound polynomial, find the upper bounds for
subcomponent recurisively; combine the upper bounds found in
a conservative way

Hanbing Liu A Bind-free Experience Report

Bind-free Trick

(defthmd over—estimate—rule—add ;; old
(implies (and (<= (abs x) d1)
(<= (abs y) (4 (- d1) d2)))
(<= (abs (+ x y)) d2)))

(defthmd over—estimate—rule—add ;; new
(implies
(and (bind—free (bind—dl—with—hints x hints) (d1))
(less_equal_than_with_hints (abs x) dl1 hints)
(less_equal_than_with_hints (abs y)
(+ (- d1) d2) hints))
(less_equal_than_with_hints (abs (+ x y)) d2 hints)))

@ Adding the bind-free hypothesis to the rewrite rule
@ Replacing < with less_equal_than_with_hints

@ Coming up with a suitable hints

Hanbing Liu A Bind-free Experience Report

Suppose we want to prove the follow:
(defthmd numeric—fact—old
(implies
(and (<= (abs e) (expt 2 —14))
(<= (abs rne2) (expt 2 —64))
(<= (abs rne3) (expt 2 —64))
(rationalp e)
(rationalp rne2)
(rationalp rne3))
(<= (abs (+ 1 (% —1 e)
(* rne3 rned)
(x rne2 rne3 (+ e e))))

2)))

Hanbing Liu A Bind-free Experience Report

(defthmd numeric—fact—new
(implies
(and (less_equal_than (abs e) (expt 2 —14))
(less_equal_than (abs rne2) (expt 2 —64))
(less_equal_than (abs rne3) (expt 2 —64))
(rationalp e)
(rationalp rne2)
(rationalp rne3))
(less_equal_than_with_hints
(abs (+ 1 (x —1 e) (* rne3 rne3)
(x rne2 rne3 (+ e e))))
2
'‘((e . 1/16384)
(rne2 . 1/18446744073709551616)
(rne3 . 1/18446744073709551616))))
chints (("Goal” :in—theory
(e/d (over—estimate—rule—add
over—estimate—rule—prod
over—estimate—rule—var—Ileaf

Hanbing Liu A Bind-free Experience Report

Conclusion

Our type of |P(€)| < C inequality is both easy and difficult

o P(&) has an explicit structure
@ C does not have such an explicit strucure

Our technique is simple and effective
o Write an algorithm to analyze the structure of P(€)
o Introduce bind-free hypothesis into a few rewrite rules
@ Extract the hypothesises into a "hints” constant

This is a good showcase of how one might use bind-free

Hanbing Liu A Bind-free Experience Report

