
Automated Reasoning with Quantified Formulae

May 11, 2009

Advanced Technology Center

2

Quantification in ACL2

• 2nd Class citizen in a 1st order world

– ACL2 is “Quantifier Free”
• No Syntactic Construct for quantification ie: (forall (x) ..)

– “Quantification” is a top-level event .. via a choice axiom
• Cannot be nested in function definitions or theorems

– Quantification is effectively hidden from user during proof
• Quantified variables are modeled as constrained function symbols

– Insubstantial native reasoning support
• One point for :rewrite :direct

(defun-sk prop ()
(forall (a) (pred a)))

Goal’
(implies (pred (prop-witness)) (pred x))

3

PVS

member_of_append: LEMMA
FORALL (a:T, s1,s2: set):
member(a,append(s1,s2)) =

(member(a,s1) or member(a,s2))

p(a:T): bool

forall_p(x: set) : bool =
FORALL (a: T): member(a,x) => p(a)

forall_p_append: LEMMA
FORALL (s1,s2: set):

forall_p(append(s1,s2)) =
(forall_p(s1) and forall_p(s2))

("“
(skosimp)
(auto-rewrite "forall_p“)
(auto-rewrite "member_of_append")
(assert)
(iff)
(apply
(then (ground)
(then (skosimp)

(repeat* (then (inst?) (ground)))))))

4

PVS - Continued
forall_p_append.1 :

{-1} FORALL (a: T): (member(a, s1!1) OR member(a, s2!1)) => p(a)
|-------

{1} FORALL (a: T): member(a, s1!1) => p(a)

Rule? (skosimp)
Skolemizing and flattening,
this simplifies to:
forall_p_append.1 :

{-1} member(a!1, s1!1)
[-2] FORALL (a: T): (member(a, s1!1) OR member(a, s2!1)) => p(a)

|-------
{1} p(a!1)

Rule? (inst?)
Found substitution:
a: T gets a!1,
Using template: p(a)
Instantiating quantified variables,
this simplifies to:
forall_p_append.1 :

[-1] member(a!1, s1!1)
{-2} (member(a!1, s1!1) OR member(a!1, s2!1)) => p(a!1)

|-------
[1] p(a!1)

(skosimp) targets:
- Universal Quantifiers in Conclusion
- Existential Quantifiers in Hypothesis

(inst?) targets:
- Universal Quantifiers in Hypothesis
- Existential Quantifiers in Conclusion

Goal’
(implies (pred (prop-witness)) (pred x))

5

What was our objective?

• Add support for reasoning about quantified formulae in ACL2
– In particular, automated instantiation
– Power should approach that of the PVS (inst?) Command
– For fun, also support something like (skosimp)

• At least Identify quantified formulae in subgoals
– Give the user an idea of what they have to work with

6

How did we do it?

• Constructed a wrapper for defun-sk (def::un-sk)
– Same interface as defun-sk
– Saves information about quantified formula in a table
– Makes information about quantified formulae available at proof time

• Defined computed hints for (quant::inst?) and (quant::skosimp)
– Used (bash-to-dnf) to simplify formulae before/during matching
– Pattern match table entries against current goal

• Detect formulae and their polarity

– Search for suitable instances of existing formulae from goal
– Generate hints to advance proof

• Skosimp: generalize quantified variables
– Rewrite them into (generalize (quantified-variable ..))
– Apply generalization clause processor

• Inst: instantiate the appropriate quantification lemma (-necc or –suff)

7

What were the challenges?

• Propositional simplification of quantified formulae
– Makes it hard to even identify formulae

• Simplification (rewriting) during pattern matching
– (member a x) where (x . (append y z)) => (member a x) or (member a z)
– Required for forall-p-append solution

• Theory management during simplification
– Not easy .. I still don’t understand it

• Lack of standard form for quantified formula
– Subterm matching => Support for equality

• (forall (x) (equal (goo x) (foo x)))
• Cannot look for (equal (goo x) (foo x))

– pattern match on (goo a) .. and then on (foo a)

• Avoiding duplicate/specious instantiations

• Limiting introduction of instances

8

What kinds of problems can it solve?

“Simple” instantiations where the required instance is deducible more or
less immediately by pattern matching the quantified formula with the goal

9

forall-p-append

(defstub p (x) t)

(def::un-sk forall-p (x)
(forall a (implies (member a x) (p a))))

(defthm member-append
(iff (member a (append x1 x2))

(or (member a x1) (member a x2))))

(defthm forall-p-append
(equal (forall-p (append x1 x2))

(and (forall-p x1) (forall-p x2)))
:hints ((quant::skosimp)

(quant::inst?)))

This was my primary
motivating example

From the ACL2
documentation

10

forall-p-append proof

Subgoal 10
(IMPLIES (AND (LIST::MEMBERP (FORALL-P-WITNESS (APPEND X1 X2))

X2)
(P (FORALL-P-WITNESS (APPEND X1 X2)))
(LIST::MEMBERP (FORALL-P-WITNESS X2)

X2))
(P (FORALL-P-WITNESS X2))).

Skolemizable Formula In Goal:
[FORALL-P]: (EXISTS (A) (NOT (IMPLIES (MEMBER A X2) (P A))))

Computed Hint:
(:DO-NOT '(PREPROCESS)

:IN-THEORY (ENABLE FORALL-P-SKOLEMIZATION)
:RESTRICT ((FORALL-P-SKOLEMIZATION ((X X2)))))

[Note: A hint was supplied for our processing of the goal above.
Thanks!]

This simplifies, using the :meta rule *META*-BETA-REDUCE-HIDE and the
:rewrite rule FORALL-P-SKOLEMIZATION, to

11

forall-p-append proof

[Note: A hint was supplied for our processing of the goal below.
Thanks!]

Subgoal 10'
(IMPLIES

(AND (LIST::MEMBERP (FORALL-P-WITNESS (APPEND X1 X2))
X2)

(P (FORALL-P-WITNESS (APPEND X1 X2)))
(LIST::MEMBERP (GENSYM::GENERALIZE (HIDE (FORALL-P-WITNESS X2)))

X2))
(P (GENSYM::GENERALIZE (HIDE (FORALL-P-WITNESS X2))))).

We now apply the verified :CLAUSE-PROCESSOR function
GENERALIZE-CLAUSE-PROCESSOR-WRAPPER to produce one new subgoal.

Subgoal 10''
(IMPLIES (AND (LIST::MEMBERP (FORALL-P-WITNESS (APPEND X1 X2))

X2)
(P (FORALL-P-WITNESS (APPEND X1 X2)))
(LIST::MEMBERP HIDE10 X2))

(P HIDE10)).

12

forall-p-append proof

Instantiable Formula In Goal:
FORALL-P : (FORALL (A) (IMPLIES (MEMBER A (BINARY-APPEND X1 X2)) (P A)))

Computed Hint:
(:USE (:INSTANCE FORALL-P-NECC (A HIDE10) (X (BINARY-APPEND X1 X2))))
[Note: A hint was supplied for our processing of the goal above.
Thanks!]

We augment the goal with the hypothesis provided by the :USE hint.
The hypothesis can be derived from FORALL-P-NECC via instantiation.
We are left with the following subgoal.

Subgoal 10'''
(IMPLIES (AND (IMPLIES (NOT (IMPLIES (MEMBER HIDE10 (APPEND X1 X2))

(P HIDE10)))
(NOT (FORALL-P (APPEND X1 X2))))

(LIST::MEMBERP (FORALL-P-WITNESS (APPEND X1 X2))
X2)

(P (FORALL-P-WITNESS (APPEND X1 X2)))
(LIST::MEMBERP HIDE10 X2))

(P HIDE10)).

But simplification reduces this to T, using the :definition FORALL-P,
the :executable-counterpart of NOT, the :rewrite rules
LIST::MEMBER-IS-MEMBERP-PROPOSITIONALLY and MEMBER-OF-APPEND and the
:type-prescription rule LIST::MEMBERP.

13

One other (interesting?) example ..

(def::un-sk subetp (x y)
(forall (a) (implies (member a x) (member a y))))

(defthm subset-transitivity
(implies
(and (subsetp x y)

(subsetp y z))
(subsetp x z))

:hints ((quant::inst?)))

14

How could it be better?

• Inspired by PVS (inst?) command
– I have no idea how inst? works ..

• I’m no longer that motivated, either.
– There may be other/better ideas there .. or elsewhere.

• If you are motivated, the ACL2 code is available.

• Improve integration with/leverage ACL2 simplification/unification
– My solution is just a hack using (bash-to-dnf)

• Improve support for nested quantification
– Although (inst?) didn’t always solve that, either

• Access to type-alist
– Would improve deductive capability
– Computed hints do not have access to type-alist

15

Conclusion

• ACL2 book providing (quant::inst?) and (quant::skosimp)
– In the spirit of PVS (inst?) and (skosimp)

• Automate proofs of select theorems involving quantified formulae
– A “reasonable” subset

• Able to prove forall-p-append from ACL2 documentation
• Appears limited by nested quantification

• Many enhancements possible
– type-alist access would be nice

	Slide Number 1
	Slide Number 2
	PVS
	PVS - Continued
	What was our objective?
	How did we do it?
	What were the challenges?
	What kinds of problems can it solve?
	forall-p-append
	forall-p-append proof
	forall-p-append proof
	forall-p-append proof
	One other (interesting?) example ..
	How could it be better?
	Conclusion

