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Circuit Example

In this example, the value of test is always supposed to be
true .
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Circuit Example

In this example, the value of test is always supposed to be
true .

Under what conditions does this hold?

How do we prove it?

One way to prove this is by induction over the number of clock
cycles the circuit has executed.

The inductive step is to prove that if test is true in the current
state, then test should be true in the next state.
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Circuit Example

In this example, the value of test is always supposed to be
true .

Under what conditions does this hold?

How do we prove it?

One way to prove this is by induction over the number of clock
cycles the circuit has executed.

The inductive step is to prove that if test is true in the current
state, then test should be true in the next state.

We will look at a couple of possible ways to prove this.
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Circuit Example

The logic of the example can be modeled intuitively as
follows:

(y = x + 1 AND z = x + 2 AND
x’ = IF a THEN x ELSE y AND
y’ = IF a THEN y ELSE z AND
z’ = IF a THEN z ELSE y + 2) IMPLIES
y’ = x’ + 1 AND z’ = x’ + 2

We can prove this formula by showing that the negation is
unsatisfiable.

We can write this formula in propositional logic by using one
propositional variable for each bit in the current and next
states.
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Circuit Example

Assuming a bit-width of 2 for simplicity and skipping the
details, we get the following formula:

(z1 ↔ ¬x1) ∧ (z0 ↔ x0)∧
(y1 ↔ (x1 ⊕ x0)) ∧ (y0 ↔ ¬x0)∧
(a → ((xp1 ↔ x1) ∧ (xp0 ↔ x0)))∧
(¬a → ((xp1 ↔ y1) ∧ (xp0 ↔ y0)))∧
(a → ((yp1 ↔ y1) ∧ (yp0 ↔ y0)))∧
(¬a → ((yp1 ↔ z1) ∧ (yp0 ↔ z0)))∧
(a → ((zp1 ↔ z1) ∧ (zp0 ↔ z0)))∧
(¬a → ((zp1 ↔ ¬y1) ∧ (zp0 ↔ y0)))∧
(¬(zp1 ↔ ¬xp1) ∨ ¬(zp0 ↔ xp0)∨
¬(yp1 ↔ (xp1 ⊕ xp0)) ∧ (yp0 ↔ ¬xp0)
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Circuit Example

Recall that the invariant of the circuit is captured by the
following formula:

(y = x + 1 AND z = x + 2 AND
x’ = IF a THEN x ELSE y AND
y’ = IF a THEN y ELSE z AND
z’ = IF a THEN z ELSE y + 2) IMPLIES
y’ = x’ + 1 AND z’ = x’ + 2

When using a SAT solver, this formula must be encoded into
propositional logic

Using an SMT solver, the formula can be solved as it is
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Motivation

Automatic analysis of computer hardware and software
requires engines capable of reasoning efficiently about large
and complex systems.

Boolean engines such as Binary Decision Diagrams and SAT
solvers are typical engines of choice for today’s industrial
verification applications.

However, systems are usually designed and modeled at a
higher level than the Boolean level and the translation to
Boolean logic can be expensive.

A primary goal of research in Satisfiability Modulo Theories
(SMT) is to create verification engines that can reason
natively at a higher level of abstraction, while still retaining the
speed and automation of today’s Boolean engines.
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Roadmap

• SMT and Theories
• Combining Theories
• From SAT to SMT
• Building on SMT
• Successes and Challenges
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Satisfiability Modulo Theories

It is important to make a distinction between SMT and first
order satisfiability. For example, is the following sentence
satisfiable?

read (write (a, i, v), i) 6= v

ACL2 Workshop, Northeastern University, May 11-12, 2009. – p. 9/71



Satisfiability Modulo Theories

It is important to make a distinction between SMT and first
order satisfiability. For example, is the following sentence
satisfiable?

read (write (a, i, v), i) 6= v

If the set of allowable models is unrestricted, then the answer
is yes.
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Satisfiability Modulo Theories

It is important to make a distinction between SMT and first
order satisfiability. For example, is the following sentence
satisfiable?

read (write (a, i, v), i) 6= v

If the set of allowable models is unrestricted, then the answer
is yes.

However, if we only consider models that obey the axioms for
read and write then the answer is no.
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Satisfiability Modulo Theories

For a theory T , the T -satisfiability problem consists of
deciding whether there exists a model A and variable
assignment α such that (A, α) |= T ∪ ϕ for an given formula ϕ.

Another way to think of this is as a restriction on the models
we are willing to consider when trying to satisfy ϕ.

Some recent work in SMT considers a theory to be a
collection of models rather than a set of sentences.
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Theories

In principle, SMT can be applied to any theory T .

In practice, when people talk about SMT, they are usually
referring to a small set of specific theories.

We will consider a few examples of theories which are of
particular interest in verification applications (MZ03).

All of these assume first order logic with equality.
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The Theory TE of Equality

The theory TE of equality is the empty theory.

The theory does not restrict the possible values of symbols in
any way. For this reason, it is sometimes called the theory of
equality with uninterpreted functions (EUF).

The satisfiability problem for TE is just the satisfiability
problem for first order logic, which is undecidable.

The satisfiability problem for conjunctions of literals in TE is
decidable in polynomial time using congruence closure.
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The Theory TZ of Integers

Let ΣZ be the signature (0, 1,+,−,≤).

Let AZ be the standard model of the integers with domain Z.

Then TZ is defined to be the set of all ΣZ-sentences true in
the model AZ .

As showed by Presburger in 1929, the general satisfiability
problem for TZ is decidable, but its complexity is
triply-exponential.

The quantifier-free satisfiability problem for TZ is “only”
NP-complete.
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The Theory TZ of Integers

Let Σ×
Z be the same as ΣZ with the addition of the symbol ×

for multiplication, and define A×
Z and T×

Z in the obvious way.

The satisfiability problem for T×
Z is undecidable (a

consequence of Gödel’s incompleteness theorem).

In fact, even the quantifier-free satisfiability problem for T×
Z is

undecidable.
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The Theory TR of Reals

Let ΣR be the signature (0, 1,+,−,≤).

Let AR be the standard model of the reals with domain R.

Then TR is defined to be the set of all ΣR-sentences true in
the model AR.

The satisfiability problem for TR is decidable, but the
complexity is doubly-exponential.

The quantifier-free satisfiability problem for conjunctions of
literals (atomic formulas or their negations) in TR is solvable in
polynomial time, though exponential methods (like Simplex or
Fourier-Motzkin) tend to perform best in practice.
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The Theory TR of Reals

Let Σ×
R be the same as ΣR with the addition of the symbol ×

for multiplication, and define A×
R and T×

R in the obvious way.

In contrast to the theory of integers, the satisfiability problem
for T×

R is decidable though the complexity is inherently
doubly-exponential.
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The Theory TA of Arrays

Let ΣA be the signature (read , write ).

Let ΛA be the following axioms:

∀ a ∀ i ∀ v (read (write (a, i, v), i) = v)
∀ a ∀ i ∀ j ∀ v (i 6= j → read (write (a, i, v), j) = read (a, j))
∀ a ∀ b ((∀ i (read (a, i) = read (b, i))) → a = b)

Then TA = Cn ΛA.

The satisfiability problem for TA is undecidable, but the
quantifier-free satisfiability problem for TA is decidable (the
problem is NP-complete).
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Theories of Inductive Data Types

An inductive data type (IDT) defines one or more
constructors, and possibly also selectors and testers.

Example: list of int

• Constructors: cons : (int, list) → list, null : list

• Selectors: car : list → int, cdr : list → list

• Testers: is cons, is null

The first order theory of a inductive data type associates a
function symbol with each constructor and selector and a
predicate symbol with each tester.

Example: ∀x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y, z))
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Theories of Inductive Data Types

An inductive data type (IDT) defines one or more
constructors, and possibly also selectors and testers.

Example: list of int

• Constructors: cons : (int, list) → list, null : list

• Selectors: car : list → int, cdr : list → list

• Testers: is cons, is null

For IDTs with a single constructor, a conjunction of literals is
decidable in polynomial time (Opp80).

For more general IDTs, the problem is NP complete, but
reasonbly efficient algorithms exist in practice
(ZSM04a; ZSM04b; BST07).
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Other Interesting Theories

Some other interesting theories include:

• Theories of bit-vectors
(CMR97; Möl97; BDL98; BP98; EKM98; GBD05)

• Fragments of set theory (CZ00)
• Theories of pointers and reachability

(RBH07; YRS+06; LQ08)
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Roadmap

• SMT and Theories
• Combining Theories
• From SAT to SMT
• Building on SMT
• Successes and Challenges
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Combining Theories

We are usually interested in a combination of theories. The
standard technique for this is the Nelson-Oppen
method (NO79; TH96).

Suppose that T1, . . . , Tn are stably-infinite theories with
disjoint signatures Σ1, . . . ,Σn and Sat i decides Ti-satisfiability
of Σi(C) literals.

We wish to determine the satisfiability of a ground conjunction
Γ of Σ(C)-literals.

1. Purify Γ to obtain an equisatisfiable set
∧

ϕi, where each
ϕi is i-pure.

2. Let S be the set of shared variables (i.e. appearing in
more than one ϕi).

3. For each arrangement ∆ of S,
Check Sat i(ϕi ∧ ∆) for each i.
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Combining Theories

If S is a set of terms and ∼ is an equivalence relation on S,
then the arrangement of S induced by ∼ is
{x = y | x ∼ y} ∪ {x 6= y | x 6∼ y}.
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Example

Consider the following example in a combination of TE , TZ ,
and TA:

¬p(y) ∧ s = write (t, i, 0) ∧ x − y − z = 0 ∧
z + read (s, i) = f(x − y) ∧ p(x − f(f(z))).

After purification, we have the following:

ϕE ϕZ ϕA

¬p(y) l − z = j s = write (t, i, j)

m = f(l) j = 0 k = read (s, i)

p(v) l = x − y

n = f(f(z)) m = z + k

v = x − n
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Example

ϕE ϕZ ϕA

¬p(y) l − z = j s = write (t, i, j)

m = f(l) j = 0 k = read (s, i)

p(v) l = x − y

n = f(f(z)) m = z + k

v = x − n

There are 12 variables in this example:
• Shared: l, z, j, y,m, k, v, n

• Unshared: x, s, t, i

There are 21147 arrangements of {l, z, j, y,m, k, v, n}.
Practical implementations have efficient strategies for
searching the space of arrangements.
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Roadmap

• SMT and Theories
• Combining Theories
• From SAT to SMT
• Building on SMT
• Successes and Challenges
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Combining SAT and SMT

Theory solvers check the satisfiability of conjunctions of
literals.

What about more general Boolean combinations of literals?

What is needed is a combination of SAT reasoning and theory
reasoning.

The so-called eager approach to SMT tries to find ways of
encoding everything into SAT. There are a variety of
techniques, and for some theories, this works quite well.

In this talk, I will focus on the lazy combination of SAT and
theory reasoning. The lazy approach is the basis for most
modern SMT solvers (BDS02).

ACL2 Workshop, Northeastern University, May 11-12, 2009. – p. 26/71



Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers (NOT06).
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Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers (NOT06).

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
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Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers (NOT06).

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
• The initial state is ∅ || F , where F is to be checked for

satisfiability.
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Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers (NOT06).

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
• The initial state is ∅ || F , where F is to be checked for

satisfiability.
• Transitions between states are defined by a set of

conditional transition rules.
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Abstract DPLL

The final state is either:
• a special fail state: fail , if F is unsatisfiable, or
• M || G, where G is a CNF formula equisatisfiable with the

original formula F , and M satisfies G

We write M |= C to mean that for every truth assignment v,
v(M) = true implies v(C) = true .
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Abstract DPLL Rules

UnitProp :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

8

<

:

M |= ¬C

l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

l occurs in some clause of F

−l occurs in no clause of F

l is undefined in M

Decide :

M || F =⇒ M ld || F if

8

<

:

l or ¬l occurs in a clause of F

l is undefined in M

Fail :

M || F, C =⇒ fail if

8

<

:

M |= ¬C

M contains no decision literals
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Abstract DPLL Rules

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

M ld N |= ¬C, and there is

some clause C′ ∨ l′ such that:

F, C |= C′ ∨ l′ and M |= ¬C′,

l′ is undefined in M , and

l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |= C

Forget :

M || F, C =⇒ M || F if

n

F |= C

Restart :

M || F =⇒ ∅ || F
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

ACL2 Workshop, Northeastern University, May 11-12, 2009. – p. 38/71



Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

Result: Unsatisfiable
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Abstract DPLL Modulo Theories

The Abstract DPLL Modulo Theories framework extends the
Abstract DPLL framework, providing an abstract and formal
setting for reasoning about the combination of SAT and
theory reasoning (NOT06).

Assume we have a theory T with signature Σ and a solver
Sat T that can check T -satisfiability of conjunctions of
Σ-literals.

Suppose we want to check the satisfiability of an arbitray
(quantifier-free) Σ-formula φ.

We start by converting φ to CNF.

We can then use the Abstract DPLL rules, allowing any
first-order literal where before we had propositional literals.
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Abstract DPLL Modulo Theories

The Abstract DPLL Modulo Theories framework extends the
Abstract DPLL framework, providing an abstract and formal
setting for reasoning about the combination of SAT and
theory reasoning (NOT06).

Assume we have a theory T with signature Σ and a solver
Sat T that can check T -satisfiability of conjunctions of
Σ-literals.

Suppose we want to check the satisfiability of an arbitray
(quantifier-free) Σ-formula φ.

We start by converting φ to CNF.

What other changes do we need to make to Abstract DPLL so
it will work for SMT?
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Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.
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Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)
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Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The SAT solver will take care of this
automatically if we can add a clause C such that M |= ¬C.
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Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The SAT solver will take care of this
automatically if we can add a clause C such that M |= ¬C.

What clause should we add? How about ¬M?
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Abstract DPLL Modulo Theories

The justification for adding ¬M is that T |= ¬M .

We can generalize this to any clause C such that T |= C. The
following modified Learn rule allows this (we also modify the
Forget rule in an analagous way):

Theory Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |=T C

Theory Forget :

M || F, C =⇒ M || F if

n

F |=T C
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Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.
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A somewhat surprising observation is that the pure literal rule
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Propositional literals are independent of each other, but first
order literals may not be.
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Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

Propositional literals are independent of each other, but first
order literals may not be.

The remaining rules form a sound and complete procedure
for SMT.
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From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3
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Improving Abstract DPLL Modulo Theories

We will mention three ways to improve the algorithm.

• Minimizing learned clauses
• Eager conflict detection
• Theory propagation
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Minimizing Learned Clauses

The main difficulty with the approach as it stands is that
learned clauses can be highly redundant.

Suppose that F contains n + 2 propositional variables.

When a pseudo-final state is reached, M will determine a
value for all n + 2 variables.

But what if only 2 of these assignments are already
T -unsatisfiable?

If we always learn ¬M in a pseudo-final state, in the worst
case, 2n clauses will be need to be learned when a single
clause containing the two offending literals would have
sufficed.
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Minimizing Learned Clauses

To avoid this kind of redundancy, we can be smarter about
the clauses that are learned with Theory Learn.

In particular, when Sat T (M) is called, we should make an
effort to find the smallest possible subset of M which is
inconsistent.

We can then learn a clause derived from only these literals.

One way to implement this is to start removing literals one at
a time from M and repeatedly call Sat T until a minimal
inconsistent set is found.

However, this is typically too slow to be practical.
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Minimizing Learned Clauses

A better, but more difficult way to implement this is to
instrument Sat T to keep track of which facts are used to
derive an inconsistency.

We can use a data structure similar to the implication graph
discussed earlier.

Alternatively, if Sat T happens to produce proofs, the proof of
unsatisfiability of M can be traversed to obtain this
information.

This is the approach used in the CVC tools.
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From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3
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Eager Conflict Detection

Currently, we have indicated that we will check M for
T -satisfiability only when a pseudo-final state is reached.

In contrast, a more eager policy would be to check M for
T -satisfiability every time M changes.

Experimental results show that this approach is significantly
better.

It requires Sat T be online: able quickly to determine the
consistency of incrementally more literals or to backtrack to a
previous state.

It also requires that the SAT solver be instrumented to call
Sat T every time a variable is assigned a value.
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Theory Propagation

A final improvement is to add the following rule:
Theory Propagate :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

M |=T l

l or ¬l occurs in F

l is undefined in M

This rule allows a theory solver to inform the SAT solver if it
happens to know that an unassigned literal is entailed by M .

Experimental results show that this can also be very helpful in
practice.
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Roadmap

• SMT and Theories
• Combining Theories
• From SAT to SMT
• Building on SMT
• Successes and Challenges
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Building on SMT

We briefly mention two extensions.

The first is to allow the theory solver to use the SAT solver for
internal case splitting (BNOT06).

We do this by allowing the learning rule to introduce new
variables and terms

Extended T-Learn :

M || F =⇒ M || F, C if

8

<

:

each atom of C occurs in F or in L(M)

F |=T ∃∗(C)
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Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):
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=⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd, w 6∈ z
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Theory: w ∈ y ∪ z . . . w ∈ y . . . w ∈ ∅ . . . ⊥
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Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd, w 6∈ z
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Theory: w ∈ y ∪ z . . . w ∈ y . . . w ∈ ∅ . . . ⊥

=⇒ Backjump

. . .
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Quantifiers

The Abstract DPLL Modulo Theories framework can also be
extended to include rules for quantifier instantiation (GBT07).

• First, we extend the notion of literal to that of an abstract
literal which may include quantified formulas in place of
atomic formulas.

• Add two additional rules:

Inst_∃ :

M || F =⇒ M || F, (¬∃x. P ∨ P [x/sk]) if

8

<

:

∃x P is an abstract literal in M

sk is a fresh constant.

Inst_∀ :

M || F =⇒ M || F, (¬∀x. P ∨ P [x/t]) if

8

<

:

∀x P is an abstract literal in M

t is a ground term.
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An Example

Suppose a and b are constant symbols and f is an
uninterpreted function symbol. We show how to prove the
validity of the following formula:

(0 ≤ b ∧ (∀x. 0 ≤ x → f(x) = a)) → f(b) = a

We first negate the formula and put it into abstract CNF. The
result is three unit clauses:

(0 ≤ b) ∧ (∀x. (¬0 ≤ x ∨ f(x) = a)) ∧ (¬f(b) = a)
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An Example

Let l1, l2, l3 denote the three abstract literals in the above
clauses. Then the following is a derivation in the extended
framework:

∅ || (l1)(l2)(l3) =⇒ (UnitProp)

l1, l2, l3 || (l1)(l2)(l3) =⇒ (Inst_∀)

l1, l2, l3 || (l1)(l2)(l3)(¬(0 ≤ b) ∨ f(b) = a) =⇒ (Fail)

fail

The last transition is possible because M falsifies the last
clause in F and contains no decisions (case-splits). As a
result, we may conclude that the original set of clauses is
unsatisfiable, which implies that the original formula is valid.
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Quantifiers

The simple technique of quantifier instantiation is remarkably
effective on verification benchmarks.

The main difficulty is coming up with the right terms to
instantiate.

Matching techniques pioneered by Simplify (DNS03) have
recently been adopted and improved by several modern SMT
solvers (BdM07; GBT07).
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Roadmap

• SMT and Theories
• Combining Theories
• From SAT to SMT
• Building on SMT
• Successes and Challenges
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Successes

Building on fast SAT technology, SMT solvers have been
improving dramatically.

The winners of this year’s SMT competition are orders of
magnitude faster than those of just a couple of years ago.

Current leading solvers include:
• Barcelogic (U Barcelona, Spain)
• CVC3 (NYU, U Iowa)
• MathSAT (U Trento, Italy)
• Yices (SRI)
• Z3 (Microsoft)

SMT solvers are becoming the engine of choice for an
ever-increasing set of verification applications.
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Successes

What are some factors in the success of SMT?

• Progress in SAT
• Standard format
• Yearly competition
• Nice abstractions
• An idea whose time has come:

◦ Lots of new applications need verificaiton engines
◦ Threshold of usability has been reached
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Challenges

Theory

• Beyond Nelson-Oppen
• New Theories

Engineering

• Better integration of SAT in SMT
• Parallel SMT
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Challenges

Embracing Incompleteness

• More techniques for quantifiers
• Nonlinear arithmetic

Reliability and Interoperability

• Producing and Checking Proofs
• Standard formats for communicating with other theorem

provers
• API’s, communication formats, etc.
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More Information

www.smtlib.org

www.smtcomp.org

www.cs.nyu.edu/acsys/cvc3

SMT chapter in the Handbook of
Satisfiability (BSST09; BHvMW09)
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