User Control and Direction of a
More Efficient Simplifier in ACL2

ACL2 Workshop 2009

May 11th, 2009

Rob Sumners

Advanced Micro Devices, Inc.

robert.sumners@Qamd.com

[supporting materials now, full release soon enough |||

| ACL2 Waterfall Overview |

e Preprocess — early simplification
e Simplify
e Setup For Induction

— Eliminate-Destructors

— Fertilize

— Generalize

— Eliminate-Irrelevance

e Induct

| The Need for Simplification |

e The ACL2 simplifier is the primary compo-
nent of ACL2 theorem proving application

— Most theorems are proven by simplification or induc-
tion followed by simplification

e Most proofs about hardware /software systems
essentially reduce to defining and proving invari-
ants

— Proving (inductive) invariants requires considerable
case analysis

— While ACL2 simplification is useful for many proofs,
ACL2 simplification is not optimized for efficient case
analysis

| Start from A Simple Rewriter |

e Mutually recursive function clique:

e (apply-rule trm rl ctx) — apply a rewrite rule

e (try-rules trm rls ctx) — apply a list of rules

o (rewrite-if args ctx) — rewrite args of if term

e (rewrite-list 1lst ctx) — rewrite a list of args

e (rewrite-args args fn ctx) — rewrite args of a term
e (rewrite-step trm ctx) — rewrite args then apply rules

o (rewrite-term trm ctx) — fixpoint of rewrite-step

e Top-level function:

(defun simple-rewrite (trm) (rewrite-term trm ()))

e The context ctx argument is a list of equali-
ties which are currently assumed

— Extended when the true and false branch of an if
term are rewritten

| KAS Architecture Overview |

o KAS stands for Kernel Architecture Simplifier

— KAS is best viewed as an optimized elaboration of
this simple rewriter

— Similar to ACL2, KAS uses inside-out ordered condi-
tional rewriting

e How is this a simplifier?

— Implement simplification on top of KAS as instances
of a meta-process

— Transform terms (soundly) via rewrite rules

— Support efficient complex user functions to guide ap-
plication of these rewrite rules

e Interfaces with ACL2 as a trusted clause pro-
CESSOT

— Loads proven rules and definitions from ACL2 world

| Two main areas of optimization |

e Terms and Memory management
— How do we represent and store terms efficiently?

— How do we manage this memory?

e Memoization and Context management
— How do we cache previous computations?

— How do we deal with changing contexts?

| Terms and Memory management - 1 |

e Terms are main construct manipulated in KAS

and ACL2

— Use large fixnum arrays in stobjs to store nodes in
terms

— Fixnum indexes into these arrays used as pointers

e Many benefits compared to using cons, but
— It is less elegant — mitigated by use of macros

o Functions and macros also used for print/debug

— Need for garbage collection — mitigated by node pro-
motion scheme

| Terms and Memory management - 2 |

e Node Promotion Rules

e All nodes are initially “junk” and promoted if
one of the following applies:

— (a) node is a quoted constant or variable

— (b) node is in normal form in the current context

— (c¢) arguments are promoted and matches previous
transient node

o Use simple cache to store previous viable matches

o Incrementally grow set of promoted nodes — with
some user control

| Terms and Memory management - 3 |

e Transient nodes
— are not uniquely constructed
— have minimal storage per node

— are reclaimed efficiently by “stack” deallocation

e Promoted nodes
— are constructed uniquely
— include storage for memoized computations

— are never reclaimed and never demoted

| Memoization and Context management - 1 |

e Need to cache rewrite results to avoid repeated
computation

— Every promoted node includes a repnode field point-
ing to another node

— An invariant of KAS execution is that a node is always
equivalent to its repnode assuming the current context

o When an equality is assumed from if test, a repnode
is created

o When KAS rewrites a node, it first consults
repnode as replacement

— repnodes are updated to resulting normal-forms when
rewriting completes

e Obviously we need a system for undoing repn-
ode assignments when we pop contexts

10

| Memoization and Context management - 2 |

e Every repnode is tagged with a context vector

— A context vector is a subset of the current context
encoded as a bitvector

— Invariant is every node is equivalent to its repnode
assuming 1ts context vector

e Lvery function in main rewrite loop returns
context vector along with rewrite result

e An example to demonstrate context manage-
ment of repnodes:

(if (=ab) (if (=b c) (= (f a) (f ¢))
(= (f a) (f b)))
(= (f a) (f a)))

e repnode is updated or undone for (f a) to
match equality in each leat

11

| Memoization and Context management - 3 |

e The question of reducing contexts

— How to deal with rewriting the following term:

a = (if (= (f a) (f b)) t (if (= a b) nil t))

— 1. Enable context reduction in KAS

o KAS will rewrite (not (= (f a) (f b))) assum-
ing (= a b) to determine an invalid context

— 2. Use case splitting or other rewriting technique

o rewrite a to be (if (= a b) a «)

12

| Several Additional Optimizations |

e Avoiding Lisp Execution Overhead

— fixnums, stobjs, and more fixnums — no consing in
main loop

— inlining and tail recursion to avoid overhead of func-
tion calls

e Specialized Data Structures

— undo stack which is a stack of lists of “undos” to be
performed when popping the context

e Additional Memoization

— KAS tags nodes which have been rewritten

13

| User Control and Interfacing - 1 |

o KAS imports conditional rewrite rules proven
as ACL2 theorems

e Fine-grained rewrite control supported through
sieve operator

— Sieves can access ACL2 state and KAS logic stob]
— Sleves can access and update user stob]
— Sieves can determine if a rule is applied or not

— Sieves return a list of updates to the KAS logic stob]

o Updates are restricted to have no effect on soundness

of KAS

14

| User Control and Interfacing - 2 |

e The current list of sieve function updates:

operation
set-var-bound
set-rule-sieves
set-rule-enabled
set-rule-ctr
set-node-step
set-node-limit
change-rule-order
set-rule-traced
set-user—-mark

side effect

bind a free variable in a rewrite
modify the filters attached to a rule
enable or disable a rewrite rule
modify counter for number of rule apps
set node allocation incremental step
set node allocation limits

change the order of rewrite rules
enable or disable rule trace output
set or clear a boolean mark on a node

15

| Example: Case Splitting |

e Introduce identity functions used as stages in
meta-process

(defun prv (x) x) (defun prv2 (x) x) (defun prv3 (x) x)

e Prove rewrite rules to sequence term transi-
tions 1n meta-process

— Use sieves to define complex functions or functions
outside of term transformation

— case-split selects a term based on weighted occur-
rence in if tests

(defthm (equal (prv3 t) t))

(defthm (equal (prv2 (if
(defthm (equal (prv2 (if
(defthm (equal (prv2 (if

(prv2 (if

xy z)) (if xy z)))
x t (hide z))) (if x t (prv z)))
x (prv3 y) z))
x (prv y) z))))
(defthm (equal (prv x) x))
(defthm (implies (sieve (case-split C))
(equal (prv x)
(prv2 (if C (prv3 x) (hide x))))))

16

| Example: Failure Reporting |

e A different meta-process for reporting a tailing
case as a list of predicates

— Designed to work with case splitting process using
rfl and gfl identity functions

(defthm (implies (sieve (report-to-cw leaf))
(equal (rfl leaf x) x)))
(defthm (implies (sieve (report-to-cw tst))
(equal (rfl (if tst tbr fbr) x)
(rfl tbr x))))
(defthm (implies (and (sieve (non-nilp tbr))
(sieve (report-to-cw (not tst))))
(equal (rfl (if tst tbr fbr) x)
(rfl fbr x))))

(defthm (equal (gfl x) (fail (rfl x x))))
(defthm (equal (gfl t) t))

e Standard defthmk macro takes a term « and
creates a call to KAS with (gfl (prv «))

17

| Application: Pipeline Verification - 1 |

e Prove a stuttering refinement for a simple
pipeline model

— Stuttering refinement between ma level and isa level

— Example modified from DLX pipeline by Mano-
lios,Srinivasan

e Predicate defining a matched ma state:
(defun ma-matches-isa (x)
(if (commit x)
(equal (rep (ma x)) (isa (rep x)))

(and (equal (rep (ma x)) (rep x))
(< (rank (ma x)) (rank x)))))

— rep maps ma state to isa state

— rank i1s well-founded measure on ma states

— commit defines when ma will make isa visible step

18

| Application: Pipeline Verification - 2 |

e Neat idea from Manolios,Srinivasan: let the
ma steps build invariant

— Leads to brutal case explosion in a few steps

(defun maX4 (m) (ma (ma (ma (ma (flush m))))))
(defun maX5 (m) (ma (maX4 m)))
(defun maX6 (m) (ma (maX5 m)))
(defun maX7 (m) (ma (maX6 m)))
(defun maX8 (m) (ma (maX7 m)))

(defthmk maX4-proof (ma-matches-isa (maX4 m)))
(defthmk maX5-proof (ma-matches-isa (maX5 m)))
(defthmk maX6-proof (ma-matches-isa (maX6 m)))
(defthmk maX7-proof (ma-matches-isa (maX7 m)))
(defthmk maX8-proof (ma-matches-isa (maX8 m)))

e ACL2 blows up on maX5, KAS takes a few
minutes for maX8, but how about proof from
arbitrary state:

(defthmk ma-proof (ma-matches-isa (ma (ma (ma (ma x))))))

19

| Implemented, Tested, Rescinded |

e Infinite Rewriting
— Only support unconditional rewriting

— Not enough benefit for complications in contexts

e Targeted rewriting
— Only rewrite the subterms which change in a context

— Required maintaining backpointers

e Allow user to rewrite everything

— Use special operators for contexts, hypothesis, etc.

20

| Current and Future Work |

e Putting together full KAS and library release
— with comments

e Continuing effort to integrate invariant dis-
covery tool of Ray,Sumners into KAS

e Mechanical Proof of Soundness for KAS

— Proven simple rewriter is sound for a fixed evaluator
with assumed rules from world

— Define an architectural definition of KAS and prove
it equivalent to simple rewriter

o Requires an involved invariant definition

— Prove KAS implementation is equivalent to architec-
tural model

o Requires much more involved invariant definition

21

