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For positive integer n,

the triangular number, ∆n,

is defined by

∆n =
n∑

i=1

i = 1 + 2 + · · ·+ (n− 1) + n

=
n · (n + 1)

2
.
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The first 4 triangular numbers:

• • • •
•• •• ••

••• •••
••••

∆1 = 1 ∆2 = 3 ∆3 = 6 ∆4 = 10
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Problem. Find triangular numbers that are

also squares.

That is, find positive integers, n and k,

such that

n · (n + 1)

2
= k2

or

n · (n + 1) = 2 · k2.

Clearly ∆1 = 1 is a square.

Are there other square triangular numbers?

Are there infinitely many square triangular

numbers?

Answer these questions.

The answers are formally verified using ACL2.
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Reformulate the Problem

Transform the original problem into one that

has been studied for a long time and has a

well understood solution.
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Lemma. If n and k are positive integers such

that

n · (n + 1) = 2 · k2,

then x = 2 · n + 1 and y = 2 · k are positive

integers such that

x2 − 2 · y2 = 1.

Moreover, x ≥ 3 is odd and y ≥ 2 is even.

Lemma. If x and y are positive integers such

that

x2 − 2 · y2 = 1,

then n = x−1
2 and k = y

2 are positive

integers such that

n · (n + 1) = 2 · k2.

The proofs use elementary algebra.
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Pell’s Equation

For squarefree positive integers D, the
equation

x2 −D · y2 = 1

is usually called Pell’s equation.

John Pell (1610–1685) is an English
Mathematician.

He made no contribution to the study of this
equation!

Original problem: Find positive integers n

and k such that

n · (n + 1) = 2 · k2

Equivalent Pell Eqn: Find positive integers
x and y such that

x2 − 2 · y2 = 1.
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Original problem: Find positive integers n

and k such that

n · (n + 1) = 2 · k2

Equivalent Pell Eqn: Find positive integers

x and y such that

x2 − 2 · y2 = 1.

The obvious solution, n = 1, k = 1, to original

problem corresponds to the solution,

x = 3, y = 2, of the Pell equation.
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Generate Many Solutions

Construct new solutions to our Pell equation

from known solutions:

Lemma. If a, b, c, and d are positive integers

such that

a2 − 2 · b2 = 1,

and

c2 − 2 · d2 = 1,

then x = a · c + 2 · b · d and y = a · d + b · c
are positive integers such that

x2 − 2 · y2 = 1.

The proof uses elementary algebra.
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Lemma from previous slide:

Lemma. If a, b, c, and d are positive integers
such that

a2 − 2 · b2 = 1,

and

c2 − 2 · d2 = 1,

then x = a · c + 2 · b · d and y = a · d + b · c
are positive integers such that

x2 − 2 · y2 = 1.

In the above lemma, the two given solutions,
a, b and c, d, need not be distinct.

That is, using a = c and b = d in the
construction of x, y yields a new solution.

Thus, starting with one known solution,
a = 3, b = 2, many other solutions can be
generated:
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Definition 1. For each positive integer, j,

recursively define (xj, yj) by

(x1, y1) = (3, 2)

(xj+1, yj+1) = (x1 · xj + 2 · y1 · yj,

x1 · yj + xj · y1)

Examples.

j 1 2 3 4 5 6
xj 3 17 99 577 3363 19601
yj 2 12 70 408 2378 13860

j 7 8 9
xj 114243 665857 3880899
yj 80782 470832 2744210
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This theorem is proved by mathematical

induction on j.

Theorem 1. For each positive integer j,

x2
j − 2 · y2

j = 1.
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No Other Solutions

Definition 1. For each positive integer, j,

recursively define (xj, yj) by

(x1, y1) = (3, 2)

(xj+1, yj+1) = (x1 · xj + 2 · y1 · yj,

x1 · yj + xj · y1)

Solutions given by Definition 1 are all the

positive integer solutions:

Theorem 2. If x and y are positive integers

such that

x2 − 2 · y2 = 1,

then for some positive integer j,

(x, y) = (xj, yj).
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Construct another new solution, (a, b), to our

Pell equation from a known solution, (x, y).

The new solution is “smaller” than the old

solution in the sense that b < y.

Lemma. If x and y are positive integers such

that y > 2 and

x2 − 2 · y2 = 1,

then a = 3 · x− 4 · y and b = −2 · x + 3 · y
are positive integers such that

a2 − 2 · b2 = 1.

Moreover, b < y.

The proof uses elementary algebra.
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Theorem 2. If x and y are positive integers

such that

x2 − 2 · y2 = 1,

then for some positive integer j,

(x, y) = (xj, yj).

Proof. By contradiction.

Choose positive integers x and y,

with y as small as possible,

such that for all positive integers j,

(x, y) 6= (xj, yj)

and

x2 − 2 · y2 = 1.

Since y 6= yj for any j, then y > 2.
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Proof cont. By Lemma,

a = 3 · x− 4 · y
and

b = −2 · x + 3 · y

are positive integers that satisfy

b < y

and

a2 − 2 · b2 = 1.

Since y is as small as possible and b < y,
there must be a j such that

(a, b) = (xj, yj).

By Definition 1,

(xj+1, yj+1) = (x1 · xj + 2 · y1 · yj,

x1 · yj + xj · y1)

= (3 · a + 2 · 2 · b,
3 · b + a · 2)

= (x, y).
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Proof cont. Here is the contradiction:

Positive integers x and y were chosen so

that for all positive integers j,

(x, y) 6= (xj, yj).

Positive integers a and b were constructed

so that there must be a j such that

(a, b) = (xj, yj)

and

(xj+1, yj+1) = (x, y).
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Translate solutions of the Pell equation into

solutions of the original problem.

Definition 2. For each positive integer, j,

define (nj, kj) by

(nj, kj) =
(

xj − 1

2
,
yj

2

)
.

Examples.

j 1 2 3 4 5 6
nj 1 8 49 288 1681 9800
kj 1 6 35 204 1189 6930

j 7 8 9
nj 57121 332928 1940449
kj 40391 235416 1372105
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Theorem 3. For each positive integer j,

nj · (nj + 1)

2
= k2

j .

If n and k are positive integers such that

n · (n + 1)

2
= k2,

then for some positive integer j,

(n, k) = (nj, kj).
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Conclusion

An algorithm, described in Definition 1 and

Definition 2, is presented that enumerates

all pairs,

(n, k),

of positive integers such that

∆n = k2.

ACL2 is used to verify that the algorithm is

correct.
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