
ACL2-2017

Shilpi Goel
shilpi@centtech.com

The x86isa Books:
 Features, Usage, and Future Plans

x86 Machine-Code Verification

2

Reasoning about x86 machine-code programs is hard…

…unfortunately, it can be necessary at times.

• Formal, executable model of the x86 instruction-set architecture

- 64-bit mode

- Uniprocessor

• Framework to reason about x86-64 machine-code programs

x86 Machine-Code Verification

2

Reasoning about x86 machine-code programs is hard…

…unfortunately, it can be necessary at times.

• Formal, executable model of the x86 instruction-set architecture

- 64-bit mode

- Uniprocessor

• Framework to reason about x86-64 machine-code programs

This talk is about x86isa’s:

• current capabilities

• implementation

• future directions

Use as an x86 instruction-set simulator for concrete program runs

• Monitor program runs à la GNU Debugger (GDB)

What Can I Do with x86isa?

3Sources: GDB and Pin Websites

Use as an x86 instruction-set simulator for concrete program runs

• Monitor program runs à la GNU Debugger (GDB)

What Can I Do with x86isa?

3Sources: GDB and Pin Websites

• Dynamically instrument programs à la Intel’s Pin

Use as a framework to reason about x86 programs

What Can I Do with x86isa?

4

system call
procedures

operating system

standard
libraries

application
programs

system
-mode

programs

user-mode programs• Both user- and system- mode programs

‣ System calls

‣ Memory management

- Paging

- Segmentation

Use as a framework to reason about x86 programs

What Can I Do with x86isa?

4

• Kinds of formal analysis

‣ Functional correctness

‣ Detect dependence on undefined behavior

‣ Determine bounds on resource consumption

‣ Security properties

‣ …

system call
procedures

operating system

standard
libraries

application
programs

system
-mode

programs

user-mode programs• Both user- and system- mode programs

‣ System calls

‣ Memory management

- Paging

- Segmentation

Specification?

5

~3000 pages
~3400 pages

__asm__ volatile
("stc\n\t" // Set CF.
 "mov $0, %%eax\n\t" // Set EAX = 0.
 "mov $0, %%ebx\n\t" // Set EBX = 0.
 "mov $0, %%ecx\n\t" // Set ECX = 0.
 "mov %4, %%ecx\n\t" // Set CL = rotate_by.
 "mov %3, %%edx\n\t" // Set EDX = old_cf = 1.
 "mov %2, %%eax\n\t" // Set EAX = num.
 "rcl %%cl, %%al\n\t" // Rotate AL by CL.
 "cmovb %%edx, %%ebx\n\t" // Set EBX = old_cf if CF = 1.
 // Otherwise, EBX = 0.
 "mov %%eax, %0\n\t" // Set res = EAX.
 "mov %%ebx, %1\n\t" // Set cf = EBX.

 : "=g"(res), "=g"(cf)
 : "g"(num), "g"(old_cf), "g"(rotate_by)
 : "rax", "rbx", "rcx", "rdx");

Running tests on x86 machines

Co-Simulations for Model Validation

6

x86isa
in ACL2

x86isa: Design Goals

7

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort

Accuracy
Reliable program
analysis

x86isa: Design Goals

7

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort

Accuracy
Reliable program
analysis

⦚⦚

x86isa: Design Goals

7

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort

Accuracy
Reliable program
analysis

⦚⦚
abstract stobjs,
guards, type
declarations,
mbe…

x86isa: Design Goals

7

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort

Accuracy
Reliable program
analysis

⦚⦚ ⦚⦚
abstract stobjs,
guards, type
declarations,
mbe…

x86isa: Design Goals

7

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Usability
Balance verification
effort and verification
utility

Reasoning Efficiency
Reduce user effort

Accuracy
Reliable program
analysis

⦚⦚ ⦚⦚
abstract stobjs,
guards, type
declarations,
mbe…

modes
of operation

8

regs

flags

byte-addressable
mem

model-specific
fields x86 State

interface to
the x86 state

…

(step x86)

(run n x86)

instruction
semantic
functions

ADD SUB MUL MOV PUSH POP…

fetch, decode, &
execute one
instruction

Development Style
Interpreter-style of Operational Semantics

rb wbxr xw
x86 read x86 write read bytes write bytes

u/s
ms

env

x86 State: 64-bit Mode

9

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Source: Intel Manuals

x86 State: Some Model-Specific Fields

10

• MS: Model State

- If a model-related error occurs (e.g., an unimplemented opcode is
encountered), this field is populated with an appropriate error message.

- The model is expected to reflect the real machine’s state only if this
field is empty.

x86 State: Some Model-Specific Fields

10

• MS: Model State

- If a model-related error occurs (e.g., an unimplemented opcode is
encountered), this field is populated with an appropriate error message.

- The model is expected to reflect the real machine’s state only if this
field is empty.

• U/S: User/System

- Switches the mode of operation of the x86 model:

‣ User-level mode

‣ System-level mode

x86 State: Some Model-Specific Fields

10

• MS: Model State

- If a model-related error occurs (e.g., an unimplemented opcode is
encountered), this field is populated with an appropriate error message.

- The model is expected to reflect the real machine’s state only if this
field is empty.

• U/S: User/System

- Switches the mode of operation of the x86 model:

‣ User-level mode

‣ System-level mode

• ENV: Environment

- Specifies an external environment

- Also includes an oracle that is instrumental in modeling non-
deterministic, undefined, and random behaviors

Rationale for Different Modes of Operation

11

• A user may wish to assume that these underlying OS services are correct.

• To prove an x86 program correct, one would need to prove the correctness
of the supporting operating system code as well.

• E.g., statically compiling a Hello World C program generates an executable
file of size ~0.8MB!

- printf is a standard C library function that ultimately relies on the
write system call provided by the OS.

Modes of Operation

12

User-level Mode System-level Mode

Verification of application programs Verification of system programs

Assumptions about correctness of
certain OS operations

(e.g., system calls)
No such assumptions

Linear memory address space* Physical memory address space
(includes specification of paging)

* Linear memory (264 bytes) is an OS-provided abstraction of the physical memory.
64-bit programs cannot access physical memory directly.

Interface to the x86 State

13

• xr and xw:

- Accessor and updater for all x86 state components, except memory

• rb and wb:

- Accessor and updater for linear memory

‣ User-level mode:

- Memory field specifies the linear memory.

- These functions directly access this field.

‣ System-level mode:

- Memory field specifies the physical memory.

- These functions first convert linear addresses to physical
addresses (paging), and then use them to access the memory field.

Instruction Semantic Functions

14

• 413 x86 instruction opcodes are specified [:doc implemented-opcodes]

• Some instructions like SYSCALL and SYSRET are implemented differently
depending on the mode of operation.

x86 Machine-Code Proofs

15

• Symbolic simulation is central to program verification.

- Control the unwinding of the x86 interpreter during code proofs.

- For all those times proofs fail, see .

- And also, Codewalker works in the user-level mode.

[:doc debugging-code-proofs]

x86 Machine-Code Proofs

15

• Symbolic simulation is central to program verification.

- Control the unwinding of the x86 interpreter during code proofs.

- For all those times proofs fail, see .

- And also, Codewalker works in the user-level mode.

[:doc debugging-code-proofs]

• Examples of code proofs included in x86isa:

- Straight-line, computationally-intensive application program
‣ bit-twiddling popcount

- Application program with loops and system calls
‣ word-count

- System program that modifies the linear memory abstraction
‣ zero-copy (copy-on-write technique)

Possible Future Directions: x86 ISA Modeling

16

• Exceptions and Interrupts

- Already implemented:

‣ relevant system registers

‣ memory-resident data structures (descriptor tables)

‣ detection of exception-causing conditions (e.g., #DE)
- halt the program execution upon encountering these conditions

- TODO:

‣ Detection of interrupts

- Consult an oracle at every instruction boundary?

‣ Use the descriptor tables to locate the appropriate exception- and
interrupt-handling procedures in the memory

[short-term project]

Possible Future Directions: x86 ISA Modeling

17

• Caches and Multiprocessing

- Model caches, translation-look aside buffers, store buffers

- Specify how memory reads & writes are resolved by multiple processors

- Reason about cache coherence, etc.

[long-term project]

Possible Future Directions: x86 ISA Modeling

17

• Caches and Multiprocessing

- Model caches, translation-look aside buffers, store buffers

- Specify how memory reads & writes are resolved by multiple processors

- Reason about cache coherence, etc.

[long-term project]

[long-term project]
• Simulate a stripped-down version of a mainstream OS

- An OS is tightly intertwined with low-level x86 system features

‣ Difficult to separate OS-specific behavior from x86 behavior…

- Ideally, run co-simulations against a “bare” x86 processor

‣ Difficult to work with such a machine…

- Simulating an OS is a way to validate x86isa’s system-level mode

‣ Another would be to co-simulate against QEMU (for instance)

Possible Future Directions: Program Analysis

18

• Codewalker + x86isa

- Already implemented: Codewalker can be used in the user-level mode

- TODO: Support for analysis in the system-level mode

[almost there…]

Possible Future Directions: Program Analysis

18

• Codewalker + x86isa

- Already implemented: Codewalker can be used in the user-level mode

- TODO: Support for analysis in the system-level mode

[almost there…]

[long-term project]• Automated Precondition Discovery

- Difficult to discover the preconditions under which the program
behaves as expected

- Suggest hypotheses that are candidates to be top-level preconditions

‣ Observe why some rules fail to fire when expected

‣ Obtain conditions that would make those rules applicable

‣ Generalize these conditions

‣ Avoid suggestions that lead to contradictory or unsatisfiable
preconditions

Other Possible Applications

19

Firmware Verification

formally specify software/hardware interfaces

Micro-architecture Verification

x86 ISA model can serve as a build-to specification

Thanks!

[Documentation]
x86isa in the ACL2+Community Books Manual

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

➡ A formal, executable x86 ISA model (64-bit mode)

Formal Specification

➡ Executable file readers and loaders (ELF/Mach-O)
➡ A GDB-like mode for dynamic instrumentation of machine code
➡ Examples of program execution and debugging

Instruction-Set Simulator

➡ Helper libraries to reason about x86 machine code
➡ Proofs of various properties of some machine-code programs

Code Proof Libraries

➡ Documentation

Manual

x86isa

21

