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This talk is about x86isa’s: 

• current capabilities 

• implementation 

• future directions
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• Dynamically instrument programs à la Intel’s Pin
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• Kinds of formal analysis 

‣ Functional correctness 

‣ Detect dependence on undefined behavior 

‣ Determine bounds on resource consumption 

‣ Security properties 

‣ …
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Specification?
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~3000 pages
~3400 pages

__asm__ volatile 
("stc\n\t"                   // Set CF. 
 "mov $0, %%eax\n\t"         // Set EAX = 0. 
 "mov $0, %%ebx\n\t"         // Set EBX = 0. 
 "mov $0, %%ecx\n\t"         // Set ECX = 0. 
 "mov %4, %%ecx\n\t"         // Set CL = rotate_by. 
 "mov %3, %%edx\n\t"         // Set EDX = old_cf = 1. 
 "mov %2, %%eax\n\t"         // Set EAX = num. 
 "rcl %%cl, %%al\n\t"        // Rotate AL by CL.  
 "cmovb %%edx, %%ebx\n\t"    // Set EBX = old_cf if CF = 1.  
                             // Otherwise, EBX = 0.  
 "mov %%eax, %0\n\t"         // Set res = EAX. 
 "mov %%ebx, %1\n\t"         // Set cf  = EBX. 
  
 : "=g"(res), "=g"(cf)    
 : "g"(num), "g"(old_cf), "g"(rotate_by)   
 : "rax", "rbx", "rcx", "rdx"); 

Running tests on x86 machines



Co-Simulations for Model Validation
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x86 State: 64-bit Mode
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Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or 
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment 
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage 
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses 
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information. 

Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and 
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table 
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table 
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as 
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical 
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel 

Figure 3-2.  64-Bit Mode Execution Environment
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• MS: Model State 

- If a model-related error occurs (e.g., an unimplemented opcode is 
encountered), this field is populated with an appropriate error message. 

- The model is expected to reflect the real machine’s state only if this 
field is empty.
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• MS: Model State 

- If a model-related error occurs (e.g., an unimplemented opcode is 
encountered), this field is populated with an appropriate error message. 

- The model is expected to reflect the real machine’s state only if this 
field is empty.

• U/S: User/System 

- Switches the mode of operation of the x86 model: 

‣ User-level mode 

‣ System-level mode

• ENV: Environment 

- Specifies an external environment 

- Also includes an oracle that is instrumental in modeling non-
deterministic, undefined, and random behaviors



Rationale for Different Modes of Operation
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• A user may wish to assume that these underlying OS services are correct.

• To prove an x86 program correct, one would need to prove the correctness 
of the supporting operating system code as well. 

• E.g., statically compiling a Hello World C program generates an executable 
file of size ~0.8MB! 

- printf is a standard C library function that ultimately relies on the 
write system call provided by the OS.



Modes of Operation
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User-level Mode System-level Mode

Verification of application programs Verification of system programs

Assumptions about correctness of 
certain OS operations 

(e.g., system calls)
No such assumptions

Linear memory address space* Physical memory address space 
(includes specification of paging)

* Linear memory (264 bytes) is an OS-provided abstraction of the physical memory. 
64-bit programs cannot access physical memory directly.



Interface to the x86 State
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• xr and xw: 

- Accessor and updater for all x86 state components, except memory 

• rb and wb: 

- Accessor and updater for linear memory 

‣ User-level mode:  

- Memory field specifies the linear memory. 

- These functions directly access this field. 

‣ System-level mode: 

- Memory field specifies the physical memory. 

- These functions first convert linear addresses to physical 
addresses (paging), and then use them to access the memory field.



Instruction Semantic Functions
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• 413 x86 instruction opcodes are specified [:doc implemented-opcodes] 

• Some instructions like SYSCALL and SYSRET are implemented differently 
depending on the mode of operation.



x86 Machine-Code Proofs
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• Symbolic simulation is central to program verification. 

- Control the unwinding of the x86 interpreter during code proofs. 

- For all those times proofs fail, see                                                           . 

- And also, Codewalker works in the user-level mode.

[:doc debugging-code-proofs]
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• Symbolic simulation is central to program verification. 

- Control the unwinding of the x86 interpreter during code proofs. 

- For all those times proofs fail, see                                                           . 

- And also, Codewalker works in the user-level mode.

[:doc debugging-code-proofs]

• Examples of code proofs included in x86isa: 

- Straight-line, computationally-intensive application program 
‣ bit-twiddling popcount 

- Application program with loops and system calls 
‣ word-count 

- System program that modifies the linear memory abstraction 
‣ zero-copy (copy-on-write technique)



Possible Future Directions: x86 ISA Modeling
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• Exceptions and Interrupts 

- Already implemented:  

‣ relevant system registers 

‣ memory-resident data structures (descriptor tables) 

‣ detection of exception-causing conditions (e.g., #DE) 
- halt the program execution upon encountering these conditions 

- TODO: 

‣ Detection of interrupts 

- Consult an oracle at every instruction boundary? 

‣ Use the descriptor tables to locate the appropriate exception- and 
interrupt-handling procedures in the memory

[short-term project]
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• Caches and Multiprocessing 

- Model caches, translation-look aside buffers, store buffers  

- Specify how memory reads & writes are resolved by multiple processors 

- Reason about cache coherence, etc.

[long-term project]
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• Caches and Multiprocessing 

- Model caches, translation-look aside buffers, store buffers  

- Specify how memory reads & writes are resolved by multiple processors 

- Reason about cache coherence, etc.

[long-term project]

[long-term project]
• Simulate a stripped-down version of a mainstream OS 

- An OS is tightly intertwined with low-level x86 system features 

‣ Difficult to separate OS-specific behavior from x86 behavior… 

- Ideally, run co-simulations against a “bare” x86 processor 

‣ Difficult to work with such a machine… 

- Simulating an OS is a way to validate x86isa’s system-level mode 

‣ Another would be to co-simulate against QEMU (for instance)



Possible Future Directions: Program Analysis
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• Codewalker + x86isa 

- Already implemented: Codewalker can be used in the user-level mode 

- TODO: Support for analysis in the system-level mode

[almost there…]
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• Codewalker + x86isa 

- Already implemented: Codewalker can be used in the user-level mode 

- TODO: Support for analysis in the system-level mode

[almost there…]

[long-term project]• Automated Precondition Discovery 

- Difficult to discover the preconditions under which the program 
behaves as expected 

- Suggest hypotheses that are candidates to be top-level preconditions 

‣ Observe why some rules fail to fire when expected 

‣ Obtain conditions that would make those rules applicable 

‣ Generalize these conditions 

‣ Avoid suggestions that lead to contradictory or unsatisfiable 
preconditions



Other Possible Applications
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Firmware Verification 

formally specify software/hardware interfaces

Micro-architecture Verification 

x86 ISA model can serve as a build-to specification



Thanks!

[Documentation] 
x86isa in the ACL2+Community Books Manual

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA


➡ A formal, executable x86 ISA model (64-bit mode)

Formal Specification

➡ Executable file readers and loaders (ELF/Mach-O) 
➡ A GDB-like mode for dynamic instrumentation of machine code 
➡ Examples of program execution and debugging

Instruction-Set Simulator

➡ Helper libraries to reason about x86 machine code 
➡ Proofs of various properties of some machine-code programs

Code Proof Libraries

➡ Documentation

Manual

x86isa
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