The x86isa Books:
Features, Usage, and Future Plans

ACL2-2017

Shilpi Goel
shilpi@centtech.com

x86 Machine-Code Verification

Reasoning about x86 machine-code programs is hard...

...unfortunately, it can be necessary at times.

Branch: master v acl2 / books / projects /| x86isa /

Formal, executable model of the x86 instruction-set architecture
64-bit mode
Uniprocessor

Framework to reason about x86-64 machine-code programs

x86 Machine-Code Verification

Reasoning about x86 machine-code programs is hard...

...unfortunately, it can be necessary at times.

Branch: master v acl2 / books / projects /| x86isa /

Formal, executable model of the x86 instruction-set architecture
64-bit mode
Uniprocessor

Framework to reason about x86-64 machine-code programs

This talk is about x86isa’s:
current capabilities

implementation

future directions

What Can I Do with x86isa?

Use as an x86 instruction-set simulator for concrete program runs

Monitor program runs a la GNU Debugger (GDB)

GDB can do four main kinds of things (plus other things in support of these) to
help you catch bugs in the act:

e Start your program, specifying anything that might affect its behavior.

e Make your program stop on specified conditions.

e Examine what has happened, when your program has stopped.

e Change things in your program, so you can experiment with correcting the
effects of one bug and go on to learn about another.

Sources: GDB and Pin Websites 3

What Can I Do with x86isa?

Use as an x86 instruction-set simulator for concrete program runs

» Monitor program runs a la GNU Debugger (GDB)

GDB can do four main kinds of things (plus other things in support of these) to
help you catch bugs in the act:

e Start your program, specifying anything that might affect its behavior.

e Make your program stop on specified conditions.

e Examine what has happened, when your program has stopped.

e Change things in your program, so you can experiment with correcting the
effects of one bug and go on to learn about another.

» Dynamically instrument programs a la Intel’s Pin

As a dynamic binary instrumentation tool,
instrumentation is performed at run time on the compiled binary
files. Thus, it requires no recompiling of source code and can
support instrumenting programs that dynamically generate code.

Sources: GDB and Pin Websites 3

What Can I Do with x86isa?

Use as a framework to reason about x86 programs

Both user- and system- mode programs
System calls
Memory management
Paging

Segmentation

user-mode programs

application
programs

<>

standard
libraries

\/

system call
procedures

system
-mode

operating system programs

!

What Can I Do with x86isa?

Use as a framework to reason about x86 programs

Both user- and system- mode programs
System calls
Memory management
Paging

Segmentation

Kinds of formal analysis

Functional correctness

user-mode programs

application
programs

<>

standard
libraries

\/

system call
procedures

system
-mode

operating system programs

!

Detect dependence on undefined behavior

Determine bounds on resource consumption

Security properties

Specification?

~3400 pages
: /7 ~3000 pages
AMD64 Technology
Intel® 64 and IA-32 Architectures
Software Developer's Manual .
Co" o : AMDG64 Architecture
mbine olumes. : ’
1,2A, 2B, 2C, 3A, 3B and 3C Programmer s Manual
__asm__ volatile
("stc\n\t" // Set CF.
ISR IEE. doxiuent contsine S seven "mov $0, %%eax\n\t" // Set EAX = 0.
veloper's Manual: Basic Architecture, Ir]
Znstrcton et Reference.ond the S5 "mov. $0, - %%ebx\n\t" // set EBX = 0.
i "mov $0, %%ecx\n\t" // Set ECX = Q.
"mov %4, %kecx\n\t" // Set CL = rotate by.
S 'mov %3, %hedx\n\t" // Set EDX = old_cf = 1.
"mov %2, %%eax\n\t" // Set EAX = num.
"rel %%cl, %%al\n\t" // Rotate AL by CL.
"cmovb %%edx, %%ebx\n\t" // Set EBX = old _cf if CF = 1.
// Otherwise, EBX = 0.
"mov %%eax, %O\n\t" // Set res = EAX.
"mov %%ebx, %1\n\t" // Set cf = EBX.
”=g”(re5), ll=gll(cf)
"g"(num), "g"(old_cf), "g"(rotate by)
”I‘aX” , ”I‘bX” , lerXll , ”I‘dX”) ;

Running tests on x86 machines

Co-Simulations for Model Validation

Co-simulations

State-by-State
ACL2 printing lef GDB scripts,

C functionyv \ Pin
| o

GCC/LLVM
Implement x86isa
P No —» missing .
rrgn S TISE | inACL2

10000100100010100
10000100100010100
10000100100010100
100001001000101 ?
1000010010001010 | oy [IMplemented?
100100010100
100010100
00

Yes

_ _/

v

Binary Program
Loader in ACL2

x861isa: Design Goals

Accuracy
Reliable program
analysis

Usability
Balance verification
effort and verification
utility

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Reasoning Efficiency
Reduce user effort

x861isa: Design Goals

Accuracy
Reliable program
analysis

Usability
Balance verification
effort and verification
utility

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Reasoning Efficiency
Reduce user effort

x861isa: Design Goals

Accuracy
Reliable program
analysis

Usability
Balance verification
effort and verification
utility

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Reasoning Efficiency
Reduce user effort

x861isa: Design Goals

Accuracy
Reliable program
analysis

Usability
Balance verification
effort and verification
utility

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Reasoning Efficiency
Reduce user effort

x861isa: Design Goals

Accuracy
Reliable program
analysis

Usability
Balance verification
effort and verification
utility

Execution Efficiency
Aid in co-simulations
Up to 3.3 mil. ins/sec

Reasoning Efficiency
Reduce user effort

Development Style

Interpreter-style of Operational Semantics

model-specific = ;agg

- byte-addressable
flelds oy em x86 State
ms flags
u/s
XTI XW rb wb interface to
x86 read x86 write read bytes write bytes the x86 state
instruction
ADD SUB MUL MOV PUSH POP semantic
functions
v
(step x86)

fetch, decode, & ——> (run n x86)
execute one

instruction 8

x86 State: 64-bit Mode

Address Space

Basic Program Execution Registers
2764 -1
Sixteen 64-bit General-Purpose Registers
Registers
Six 16-bit ;
Registers Segment Registers
| 64-bits | RFLAGS Register
| 64-bits | RIP (Instruction Pointer Register)
FPU Registers
Eight 80-bit Floating-Point
Registers Data Registers 0
Control Register
Status Register
Tag Register
[] Opcode Register (11-bits)
| 64 bits | FPU Instruction Pointer Register
| 64 bits | FPU Data (Operand) Pointer Register
MMX Registers
Eight 64-bit ;
Registers MMX Registers

XMM Registers

Sixteen 128-bit
Registers

XMM Registers

32-bits | MXCSR Register

Figure 3-2. 64-Bit Mode Execution Environment

RFLAGS

Control Register

CR8
CR4
CR3
CR2
CR1
CRO

Task Register

Physical Address
————— >

Linear Address
H

Segment Selector
>

Global Descriptor
Table (GDT)

| Segment Sel. | - »| Seg. Desc. —

Interrupt TR |’ — » TSS Desc.

Vector

Interrupt Descriptor |
Table (IDT)

Interrupt Gate — — |

> Trap Gate |- -~
|

IDTR Call-Gate

Segment Selector

Interrupt Gate | - - -
& GDTR .

|
Lo— —

\j

Code, Data or Stack

Segment (Base =0)

Task-State

Segment (TSS)

-
-~

Irlerrupt Handler

- - — > Seg. Desc.

- — — »| Seg. Desc. i
e
LDT Desc. —

Current TSS

~ "I Code |

L Stack

NULL

Interr. Handler

Local Descriptor
Table (LDT)

- = Stack

Exception Handler

|
-»| Seg. Desc.

F - »{ Call Gate

XCRO (XFEM)

I

Linear Address Space

LDTR |=

> Code |
NULL - — >
Stack

Protected Procedure
B &ode

L Stack

Linear Address

T»I PML4 | Dir. Pointer | Directory | Table | Offset |
Linear Addr.

PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page
Physical
PML4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>
0 This page mapping example is for 4-KByte pages
and 40-bit physical address size.

*Physical Address

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Source: Intel Manuals

x86 State: Some Model-Specific Fields

MS: Model State

If a model-related error occurs (e.g., an unimplemented opcode is
encountered), this field is populated with an appropriate error message.

The model is expected to reflect the real machine’s state only if this
field is empty.

10

x86 State: Some Model-Specific Fields

MS: Model State

If a model-related error occurs (e.g., an unimplemented opcode is
encountered), this field is populated with an appropriate error message.

The model is expected to reflect the real machine’s state only if this
field is empty.
U/S: User/System
Switches the mode of operation of the x86 model:
User-level mode

System-level mode

10

x86 State: Some Model-Specific Fields

MS: Model State

If a model-related error occurs (e.g., an unimplemented opcode is

encountered), this field is populated with an appropriate error message.

The model is expected to reflect the real machine’s state only if this
field is empty.
U/S: User/System
Switches the mode of operation of the x86 model:
User-level mode

System-level mode

ENV: Environment
Specifies an external environment

Also includes an oracle that is instrumental in modeling non-
deterministic, undefined, and random behaviors

10

Rationale for Different Modes of Operation

To prove an x86 program correct, one would need to prove the correctness
of the supporting operating system code as well.

E.g., statically compiling a Hello World C program generates an executable
file of size ~0.8MB!

printf is a standard C library function that ultimately relies on the
write system call provided by the OS.

#1include <stdio.h>

int main() {
printf("Hello, world!\n");
return 0;

}

A user may wish to assume that these underlying OS services are correct.

11

Modes of Operation

User-level Mode System-level Mode

Verification of application programs Verification of system programs

...

Assumptions about correctness of
certain OS operations No such assumptions
(e.g., system calls) '

Physical memory address space

Li dd - ificati i
Iheal Memoty atdress space (includes specification of paging)

" Linear memory (2% bytes) is an OS-provided abstraction of the physical memory.
64-bit programs cannot access physical memory directly.

Interface to the x86 State

xr and xw:
Accessor and updater for all x86 state components, except memory
rb and wb:
Accessor and updater for linear memory
User-level mode:
Memory field specifies the linear memory.
These functions directly access this field.
System-level mode:
Memory field specifies the physical memory.

These functions first convert linear addresses to physical
addresses (paging), and then use them to access the memory field.

13

Instruction Semantic Functions

413 x86 instruction opcodes are specified [: doc implemented-opcodes]

Some instructions like SYSCALL and SYSRET are implemented differently
depending on the mode of operation.

System-level Mode

User Space Kernel Space
(Ring 3) (Ring 0)
_ MOV %rax, @ save user state
Linux r;zc:ndazi/izlem call SYSCALL :
MOV %rbx, %rax — SYSRET

restore user state

User-level Mode

14

x86 Machine-Code Proofs

Symbolic simulation is central to program verification.

Control the unwinding of the x86 interpreter during code proofs.

For all those times proofs fail, see [: doc debugging-code-proofs].

And also, Codewalker works in the user-level mode.

15

x86 Machine-Code Proofs

Symbolic simulation is central to program verification.

Control the unwinding of the x86 interpreter during code proofs.

For all those times proofs fail, see [: doc debugging-code-proofs].

And also, Codewalker works in the user-level mode.

Examples of code proofs included in x86isa:
Straight-line, computationally-intensive application program
bit-twiddling popcount
Application program with loops and system calls

word-count

System program that modifies the linear memory abstraction
zero-copy (copy-on-write technique)

15

Possible Future Directions: x86 ISA Modeling

. short-term project
Exceptions and Interrupts [project]

Already implemented:
relevant system registers
memory-resident data structures (descriptor tables)

detection of exception-causing conditions (e.g., #DE)
halt the program execution upon encountering these conditions

TODO:
Detection of interrupts
Consult an oracle at every instruction boundary?

Use the descriptor tables to locate the appropriate exception- and
interrupt-handling procedures in the memory

16

Possible Future Directions: x86 ISA Modeling

Caches and Multiprocessing [long-term project]
Model caches, translation-look aside buffers, store buffers
Specify how memory reads & writes are resolved by multiple processors

Reason about cache coherence, etc.

17

Possible Future Directions: x86 ISA Modeling

Caches and Multiprocessing [long-term project]
Model caches, translation-look aside buffers, store buffers
Specify how memory reads & writes are resolved by multiple processors

Reason about cache coherence, etc.

[long-term project]
Simulate a stripped-down version of a mainstream OS

An OS is tightly intertwined with low-level x86 system features
Difficult to separate OS-specific behavior from x86 behavior...
Ideally, run co-simulations against a “bare” x86 processor
Difficult to work with such a machine...
Simulating an OS is a way to validate x861isa’s system-level mode

Another would be to co-simulate against QEMU (for instance)

17

Possible Future Directions: Program Analysis

Codewalker + x86isa [almost there...]

Already implemented: Codewalker can be used in the user-level mode

TODO: Support for analysis in the system-level mode

18

Possible Future Directions: Program Analysis
Codewalker + x86isa [almost there...]

Already implemented: Codewalker can be used in the user-level mode

TODO: Support for analysis in the system-level mode

Automated Precondition Discovery [long-term project]

Difficult to discover the preconditions under which the program
behaves as expected

Suggest hypotheses that are candidates to be top-level preconditions
Observe why some rules fail to fire when expected
Obtain conditions that would make those rules applicable
Generalize these conditions

Avoid suggestions that lead to contradictory or unsatisfiable
preconditions

18

Other Possible Applications

Firmware Verification

formally specify software/hardware interfaces

Micro-architecture Verification

x86 ISA model can serve as a build-to specification

19

[Documentation]
x86isa in the ACL2+Community Books Manual

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

x861sa

Formal Specification

A formal, executable x86 ISA model (64-bit mode)

Instruction-Set Simulator

Executable file readers and loaders (ELF/Mach-0)
A GDB-like mode for dynamic instrumentation of machine code
Examples of program execution and debugging

Code Proof Libraries

Helper libraries to reason about x86 machine code
Proofs of various properties of some machine-code programs

Manual

Documentation

21

