A Proof of the Group Properties
of an Elliptic Curve

David M. Russinoff

ACL2 Workshop 2017
May 22,2017

1/21

CURVE25519
Let p = 225 — 19, A = 486662, and

E={(x,y) €F, xFy, | y* = > + Ax® + x} U {c0}.

Our goal is to show that E is an abelian group under the
following operation:

1) PPoo=0c0o@®P=P.
(2) If P = (x,y), then P & (x, —y) = oc.
@) P = (x1,1), Q= (x2,42) # (x1,—¥1), and

Y2—Y1 :
N { x2= if xq 75 X2
- 3x7+2Ax1+1 . .
““Ey;“‘* 1f.x1 = X7,

then P ® Q = (x,y), where x = \ — A — x; — xp and
y=Ax1 —x)—y1.

2/21

ELLIiPTIC CURVE ADDITION

3/21

CURVE25519
Let p = 225 — 19, A = 486662, and

E={(x,y) €F, xFy, | y* = > + Ax® + x} U {c0}.

Our goal is to show that E is an abelian group under the
following operation:

1) PPoo=0c0o@®P=P.
(2) If P = (x,y), then P & (x, —y) = oc.
@) P = (x1,1), Q= (x2,42) # (x1,—¥1), and

Y2—Y1 :
N { x2= if xq 75 X2
- 3x7+2Ax1+1 . .
““Ey;“‘* 1f.x1 = X7,

then P ® Q = (x,y), where x = \ — A — x; — xp and
y=Ax1 —x)—y1.

4/21

HOW HARD COULD IT BE?

In principle, associativity could be verified by equating two
compositions of the defining functions (for each of several
cases), cross-multiplying, expanding into monomials, applying
the curve equation, and canceling terms.

5/21

HOW HARD COULD IT BE?

In principle, associativity could be verified by equating two
compositions of the defining functions (for each of several
cases), cross-multiplying, expanding into monomials, applying
the curve equation, and canceling terms.

“Standard (although lengthy) calculations show that E is a

commutative group under oo, —, +.”
—D.]. Bernstein, Curve25519: new Diffie-Hellman speed records

5/21

HOW HARD COULD IT BE?

In principle, associativity could be verified by equating two
compositions of the defining functions (for each of several
cases), cross-multiplying, expanding into monomials, applying
the curve equation, and canceling terms.

“Standard (although lengthy) calculations show that E is a
commutative group under oo, —, +.”
—D.]. Bernstein, Curve25519: new Diffie-Hellman speed records

“Of course, there are a lot of cases to consider Butin a few
days you will be able to check associativity using these
formulas. So we need say nothing more about the proof of the
associative law!”

—J.H. Silverman and].T. Tate, Rational Points on Elliptic Curves

5/21

HOW HARD COULD IT BE?

In principle, associativity could be verified by equating two
compositions of the defining functions (for each of several
cases), cross-multiplying, expanding into monomials, applying
the curve equation, and canceling terms.

“Standard (although lengthy) calculations show that E is a
commutative group under oo, —, +.”
—D.]. Bernstein, Curve25519: new Diffie-Hellman speed records

“Of course, there are a lot of cases to consider But in a few
days you will be able to check associativity using these
formulas. So we need say nothing more about the proof of the
associative law!”

—J.H. Silverman and].T. Tate, Rational Points on Elliptic Curves

But the number of terms produced would exceed 10%.

5/21

A CRITERION OF PROOF

A proof may be said to be computationally surveyable if its only
departure from strict surveyability is its dependence on
unproved assertions that satisfy the following:

(1) Each such assertion pertains to a function for which a clear
constructive definition has been provided, and merely
specifies the value of that function corresponding to a
concrete set of arguments.

(2) The computation of this value has been performed

mechanically by the author of the proof in a reasonably
short time.

(3) A competent reader could readily code the function in the
programming language of his choice and verify the
asserted result on his own computing platform.

6/21

MANAGING COMPUTATIONAL COMPLEXITY

We combine three techniques:

» Sparse Horner Normal Form: an efficient method of
establishing equality of multivariable polynomials

» Efficient reduction of SHNFs modulo the curve equation

» Encoding points on the curve as integer triples

7/21

POLYNOMIAL TERMS

Standard encoding of polynomial terms as S-expressions:

Let
V=XY 2).
If
T=(x X (EXPT (+ Y 2) 3)) € T(V)
and
A= ((X 2) (Y 3) (Z 0)),
then

evalp(t,A) = 2 - (3 +0)> = 54.

8/21

SPARSE HORNER NORMAL FORM

A SHNF is an element of a certain set 7 of S-expressions.
We define two mappings:

» GivenV = (vg...7v) and 7 € T(V), norm(r,V) € H.
» GivenN = (ng...ng) and h € H, evalh(h,N) € Z.

Lemma Let A = ((vg.ng)... (v . ng)).
evalh(norm(r, V), N) = evalp(t, A).
Corollary If norm(m, V) = norm(m, V), then

evalp(ri,A) = evalp(m, A).

9/21

SHNF EVALUATION

A SHNF & € H has one of three forms:

(1) heZ:
evalh(h,N) = h.

(2) h= (pow i p q),whereic€ Z*,p e H,and g € H:
evalh(h,N) = car(N)' - evalh(p, N) + evalh(q, cdr(N)).
(3) h= (POP i p),wherei € Z*,p e H:

evalh(h,N) = evalh(q, nthcdr(i,N)).

10/21

NORMALIZATION (EXAMPLE)
LetV = (x y z) and
7 = dxty? + 327 + 228 + 5 = 23 (dwy? + 3) + (22 +5).

Then
norm(r,V) = (POW 3 p q),

where

p = norm(4xy* +3,V)
= (Pow 1 norm(4y?, V) norm(3,cdr(V)))
= (POW 1 (POP 1 (POW 2 4 0)) 3),

g = norm(2z* +5,cdr(V)) = (POP 1 (POW 4 2 5)).

11/21

REDUCTION MODULO THE CURVE EQUATION
Let P; = (x;,y;),i = 0,1, 2, be fixed points on E.

N= (yo ¥1 ¥2 o x1 x2), V= (Y0 Yl Y2 X0 X1 X2),
A= ((Y0.yp) (YL.y1) (Y2.¥y2) (XO.x0) (X1.x0) (X2.x2)).

We define a mapping
reduce : T(V) — H

that effectively substitutes x? + Ax? + x; for y? wherever
possible.

Lemma evalh(reduce(t),N) = evalh(norm(7),N) (mod g).
Corollary If reduce(o) = reduce(r), then
evalp(o,A) = evalp(t,A) (mod g).

12/21

ENCODING POINTS OF E AS INTEGER TRIPLES
A point P € E is represented by P = (m, n,z) € Z° if

decode(P) = <Zn;, ;) =P.

Note that every P = (z,y) € E admits the canonical
representation P = (x,y,1).

For two important cases, we define an efficiently computable
operation “@®” on 73, involving no division in IF,, such that if

decode(P) = P € E and decode(Q) = Q € E,

then
decode(P & Q) =P & Q.

Case1: P = (x,y,1)and P # Q
Case2: P=0Q

13/21

CASE 1

IfP=(x,y,1)and Q = (m,n,z), define P ® Q = (m',n’,7’),
where

7 = z(Zx—m),
m = <z3y - n>2 - (zz(A +x) + m> (sz - m)z
n = <z3y - n) (z’2x - m’) — 2y.

Lemma If decode(P) = P € E, decode(Q) = Q € E, and P # £Q,
then
decode(P @ Q) =P & Q.

14/21

CASE 2

If P = (m,n,z) € Z3 define P & P = (m',n',z'), where

~

= 2nz,
= 3m*+2Amz* + 7%,
= w? —4n®(AZ® +2m),

= o' (4mn® —m') — 8n*.

~

3038w

Lemma If decode(P) = P € E, then

decode(P @& P) =P & P.

15/21

ENCODING POINTS ON THE CURVE AS TERM TRIPLES

Notation:

» T =T(V).

» If 7 € T, then 7 = evalp(7, A).

> If 1T = (u,v,¢) € T, then 1T = (i1, #,¢) and

decode(I1) = decode(II).

» IIp = (x0,Y0,1),II; = (x1,Y1,1),II, = (X2,Y2,1).

Note that fori = 0,1, 2,
decode(11;) = decode(ﬁi) = decode(x;,y;, 1) = P;.

The operation “®” that we defined on Z* may be lifted to 72 in
a straightforward manner.

16/21

CASE 1

IF11 = (6,6,1) € T2 and A = (4, ,C) € T,
then we define T & A = (¢/, /', ("), where

¢('=(x C(— (+ (EXPT ¢ 2) 6) u),

W = (- (EXPT (- (* (EXPT ¢ 3) v) 2)
(» (+ (» (EXPT C 2) (+ A 0)) w)
(EXPT (= (% (EXPT ¢ 2) 0) u) 2))),
nu' = (- (» (- (x (EXPT(3) ¢) v)

(- (» (ExPT ¢"'2) 0) p))
(+ (EXPT ¢ 3) ¢)).

Lemma If decode(Il) = P € E, decode(A) = Q € E, and P # +Q,
then
decode(Il® A) = P& Q.

17/21

CASE 2

Similarly, given Il = (y,v,¢) € T2, we define I1 & II so that the
following holds:

Lemma If decode(IT) = P € E, then

decode(IT®II) =P & P.

18/21

AN EQUIVALENCE RELATION ON 73

GivenIl = (p,v,¢) € TP and I' = (', 1/, ') € T°, let

o=(x p (EXPT (" 2)), o =(x p (EXPT (2)),
T=(x v (EXPT (' 3)), 7 =(+x v (EXPT (3)).

If reduce(o) = reduce(o’) and reduce(r) = reduce(7'), then we
shall write IT ~ II'.

A consequence of our main result pertaining to reduce:

Lemma If decode(I1) = P € E, decode(Il') = P’ € E,and IT ~ 1T/,
then P = P'.

19/21

COMMUTATIVITY

We need only show that Py & P; = Py @© Pp; commutativity
follows by functional instantiation. We may assume Py # £P;.
By direct computation,

Iy @ I ~ 11 & 1.
It follows that
decode(I1y & I1y) = decode(11; @ Ily),
where
decode(I1y & I11) = decode(I1y) @ decode(111) = Py & Pq
and

decode(I1y & Iy) = decode(I1y) @ decode(Ily) = Py & Py.

20/21

ASSOCIATIVITY

The proof of associativity is similar in principle, but requires
extensive case analysis.
By direct computation,

Iy IL) & 11 ~ I @ (II; @ IIy)
and therefore
decode((Iy & I1;) & I1,) = decode(I1y & (111 @ I13)).

Associativity follows under the conditions Py # +Pq,
Py @ Py # £P, P1 # £P>, and Py © P, # £P.
Other cases require additional computations:

(g @ o) & Iy ~ Iy @ (IIp & ILy),

(Ip 1)) & (p @ I1y) ~ Iy @ (I1; & (IIp @ I11)),

etc.

21/21

