
Proof Reduction of Fair Stuttering
Refinement of Asynchronous Systems

and Applications

Rob Sumners

Centaur Technology

ACL2 Workshop 2017

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Motivation

I Hardware/software implementation systems attempt to
optimize task execution:

I break-up tasks into more manageable chunks..
I ..schedule chunks for execution over time and resources

I Intuitive specification:
I all tasks eventually complete..
I ..with results consistent with atomic (as possible) task

execution

I Assume specification defined as simpler system and show that
the behaviors of the implementation are consistent with the
specification.

I Additional theorems or properties could be proven about the
simpler specification system as needed..

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Fair Stuttering Refinement

I Assume implementation and specification defined as systems
and prove:

I all fair runs of implementation map to valid runs of
specification upto finite stutter:

1. a run is fair if every task is eventually selected.
2. a run is valid if every task is eventually selected

AND changes state.
3. specification either matches implementation or stutters.

I A task which is selected must change state unless it is blocked

I Refinement compactly encapsulates safety and progress
properties of the implementation.

I Unwieldy to prove properties on infinite runs directly..

I ..define functions and properties over single steps of a small
number of tasks and derive results relating infinite runs.

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Example: Bakery Algorithm

Algorithm Bakery Task

1: choosing← ’t
2: temp← shared.max
3: pos← temp + 1
4: if (shared.max ≤ temp) shared.max← pos
5: choosing← ’nil
6: for every task do
7: wait if task.choosing
8: wait if lex<(task.pos, task.id, pos, id)

9: ..critical section.. goto 1

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Example: Bakery Specification

Algorithm Specification Task

1: state← ’interested
2: state← ’go if task.state 6= ’go for all task
3: ..critical section..
4: state← ’idle goto 1

I Ensures at most one task in critical section at any time..
I A fair run does NOT ensure every task eventually reaches

critical section.. BUT..
I A valid run does ensure every task eventually reaches critical

section!

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Requirements for Refinement Proofs

1. Split step into an update function and blocking relation.

2. Prove that specification can match implementation
I Specification can stutter a finite amount between steps

3. Prove that implementation has no deadlocks amongst tasks.

4. Prove that implementation has no starvation of tasks.

5. Prove sufficient conditions are invariant in implementation.

I Primary contribution is a theory that demonstrates
(fair stuttering) refinement as a result of defining the
necessary functions and proving these properties.

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Bakery Algorithm: Update and Blocking

I Split step into update function and blocking relation:

1: choosing← ’t

2: temp← shared.max

3: pos← temp + 1

4: if (shared.max ≤ temp) shared.max← pos

5: choosing← ’nil
6: for every task do
7: wait if task.choosing

8: wait if lex<(task.pos, task.id, pos, id)

9: ..critical section.. goto 1

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Bakery Algorithm: Blocking Relation

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

I Split task step into update and blocking relations..

(defun t-block (a b)

(or (and (= (g :loc a) 5) (g :choosing b))

(and (= (g :loc a) 6)

(lex< (g :pos b) (ndx (g :id b))

(g :pos a) (ndx (g :id a))))))

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Refinement Proof: Matching Specification-1

I Mapping Bakery Task states to ’idle , ’interested , and ’go :

1: choosing← ’t

2: temp← shared.max

3: pos← temp + 1

4: if (shared.max ≤ temp) shared.max← pos

5: choosing← ’nil
6: for every task do
7: wait if task.choosing

8: wait if lex<(task.pos, task.id, pos, id)

9: ..critical section.. goto 1

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Refinement Proof: Matching Specification-2

I Define (t-map a) and (t-rank a):
I (t-map a) maps a bakery task state to a specification task.
I (t-rank a) returns ordinal decreases on bakery steps which

are not matched in specification.

I t-rank for ’interested states returns “distance” remaining to

transition to ’go state
I when specification match is blocked, then implementation

must have been blocked..

(implies (and ... (t-next a b))

(if (equal (t-map a) (t-map b))

(o< (t-rank b) (t-rank a))

(and (spec-next (t-map a) (t-map b))

(implies (spec-block (t-map a) (t-map c))

(t-block a c)))))

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Refinement Proof: Ensuring No Deadlocks

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

I Ensuring lack of deadlock: define a rank which decreases
when one task blocks another..

(defun t-nlock (a)

(make-ord 2 (if (g :choosing a) 1 2)

(make-ord 1 (1+ (nfix (g :pos a)))

(ndx (g :id a)))))

....

(thm (implies (and ... (t-block a b))

(o< (t-nlock b) (t-nlock a)))

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Refinement Proof: Ensuring No Starvation - 1

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

I Ensuring No Starvation: first define a predicate which defines
when a task can no longer be blocked by another task..

(defun t-noblk (a b)

(or (and (!= (g :loc a) 5) (!= (g :loc a) 6))

(and (not (g :choosing b))

(> (g :pos b) (g :pos a)))))

....

(thm (implies (and .. (t-next b c) (t-noblk a b))

(and (not (t-block a b))

(t-noblk a c))))

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Refinement Proof: Ensuring No Starvation - 2

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

I Ensuring No Starvation: ..and then define a rank which
decreases until we reach t-noblk state.

(defun t-nstrv (a b)

... "distance" from task state b to reach a state where

... b is no longer choosing and b.pos greater than a.pos)

....

(thm (implies (and .. (t-next b c)

(not (t-noblk a b))

(not (t-noblk a c)))

(bnl< (t-nstrv a c) (t-nstrv a b) ..))

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Refinement Proof: Prove Sufficient Conditions are
Invariant

I For the sake of this paper.. no magic here.. we have to define
an invariant which:

I Implies the conditions sufficient to prove the other properties..
I ..and is inductive – holds on initial states and across steps.

I For the Bakery.. the invariants were fairly straightforward
properties relating task positions, code locations, and the
shared variables..

I ..but nonetheless relatively substantial compared to the other
definitions and proofs

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Comparison to Previous Efforts..

I Previous efforts at proving concurrent program refinements:

‘‘Specification and Verification of Concurrent

Programs Through Refinements’’

-- S. Ray and R. Sumners, J. Autom. Reasoning, 2013

I In comparison, the previous efforts...
I Supported more general forms of system definition with less

assumptions.
I Required bolting definition of specific fairness and progress

tracking apparatus onto the system state.
I Used simpler refinement properties, but required more complex

rank functions and more components in invariants.
I Muddled correctness of specification by need to review

correctness of measures for fairness and progress.
I Did not facilitate efficient finite-state property checking.

Rob Sumners Proof Reduction for Fair Stuttering Refinement

Further Considerations, Questions.

I This is one step along the path.. to take it further:
I Relaxing system definition requirements?

I For example, allowing synchronous task updates?

I Efficiently reducing to finite-state checks?
I Can we break properties down into smaller theorems,

GL/GLMC checks

I Many other considerations...

I Rump Session: Efficient Checking of Fair Stuttering
Refinements of Finite State Systems in ACL2!

Questions?

Rob Sumners Proof Reduction for Fair Stuttering Refinement

