Proof Reduction of Fair Stuttering
Refinement of Asynchronous Systems
and Applications

Rob Sumners

Centaur Technology

ACL2 Workshop 2017

Proof Reduction for Fair Stuttering Refinement



» Hardware/software implementation systems attempt to
optimize task execution:

> break-up tasks into more manageable chunks..
» ..schedule chunks for execution over time and resources
» Intuitive specification:

> all tasks eventually complete..
» ..with results consistent with atomic (as possible) task
execution

» Assume specification defined as simpler system and show that
the behaviors of the implementation are consistent with the
specification.

» Additional theorems or properties could be proven about the
simpler specification system as needed..

Rob Sumners Proof Reduction for Fair Stuttering Refinement



uttering Refinement

» Assume implementation and specification defined as systems
and prove:

» all fair runs of implementation map to valid runs of
specification upto finite stutter:

1. arun is fair if every task is eventually selected.
2. arun is valid if every task is eventually selected
AND changes state.
3. specification either matches implementation or stutters.

» A task which is selected must change state unless it is blocked

» Refinement compactly encapsulates safety and progress
properties of the implementation.

» Unwieldy to prove properties on infinite runs directly..

» ..define functions and properties over single steps of a small
number of tasks and derive results relating infinite runs.

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Example: Bakery Algorithm

Algorithm Bakery Task
1: choosing < 't
2: temp < shared.max
3: pos <+ temp+1
4: if (shared.max < temp) shared.max < pos
5. choosing < 'nil
6: for every task do
.
8
9

wait if task.choosing
wait if lex<(task.pos, task.id, pos, id)

. ..critical section.. goto 1

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Example: Bakery Specification

Algorithm Specification Task
1: state < 'interested
2. state < 'go if task.state # 'go for all task
3. ..critical section..
4: state + 'idle goto 1

» Ensures at most one task in critical section at any time..
» A fair run does NOT ensure every task eventually reaches
critical section.. BUT..
» A valid run does ensure every task eventually reaches critical
section!

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Requirements for Refinement Proofs

1

. Split step into an update function and blocking relation.
. Prove that specification can match implementation
» Specification can stutter a finite amount between steps

N

3. Prove that implementation has no deadlocks amongst tasks.
4. Prove that implementation has no starvation of tasks.

5. Prove sufficient conditions are invariant in implementation.

» Primary contribution is a theory that demonstrates
(fair stuttering) refinement as a result of defining the
necessary functions and proving these properties.

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Bakery Algorithm: Update and Blocking

> Split step into update function and |blocking relation:

: choosing < 't
. temp < shared.max
: pos < temp + 1

. if (shared.max < temp) shared.max < pos

. for every task do

1

2

3

4

5: choosing < 'nil
6

7 wait if task.choosing
8

wait if lex<(task.pos, task.id, pos, id)

9: ..critical section.. goto 1

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Bakery Algorithm: Blocking Relation

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

» Split task step into update and blocking relations..

(defun t-block (a b)
(or (and (= (g :loc a) 5) (g :choosing b))
(and (= (g :loc a) 6)
(lex< (g :pos b) (ndx (g :id b))
(g :pos a) (ndx (g :id a))))))

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Refinement Proof: Matching Specification-1

» Mapping Bakery Task states to 'idle, 'interested , and |'go :

: choosing < 't
. temp < shared.max
: pos < temp + 1

. if (shared.max < temp) shared.max < pos

. for every task do

1

2

3

4

5: choosing < 'nil
6

7 wait if task.choosing
8

wait if lex<(task.pos, task.id, pos, id)

9: ..critical section.. goto 1

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Refinement Proof: Matching Specification-2

» Define (t-map a) and (t-rank a):
» (t-map a) maps a bakery task state to a specification task.
» (t-rank a) returns ordinal decreases on bakery steps which
are not matched in specification.
» t-rank for 'interested states returns “distance” remaining to
transition to | 'go state
> when specification match is blocked, then implementation
must have been blocked..

(implies (and ... (t-next a b))
(if (equal (t-map a) (t-map b))
(o< (t-rank b) (t-rank a))
(and (spec-next (t-map a) (t-map b))
(implies (spec-block (t-map a) (t-map c))
(t-block a c)))))

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Refinement Proof: Ensuring No Deadlocks

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

» Ensuring lack of deadlock: define a rank which decreases
when one task blocks another..

(defun t-nlock (a)
(make-ord 2 (if (g :choosing a) 1 2)
(make-ord 1 (1+ (nfix (g :pos a)))
(ndx (g :id a)))))

..&éhm (implies (and ... (t-block a b))
(o< (t-nlock b) (t-nlock a)))

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Refinement Proof: Ensuring No Starvation - 1

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

» Ensuring No Starvation: first define a predicate which defines
when a task can no longer be blocked by another task..

(defun t-noblk (a b)
(or (and (!'= (g :loc a) 5) (!= (g :loc a) 6))
(and (not (g :choosing b))
(> (g :pos b) (g :pos a)))))

.‘&éhm (implies (and .. (t-next b c) (t-noblk a b))
(and (not (t-block a b))
(t-noblk a c))))

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Refinement Proof: Ensuring No Starvation - 2

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

» Ensuring No Starvation: ..and then define a rank which
decreases until we reach t-noblk state.

(defun t-nstrv (a b)
"distance" from task state b to reach a state where
. b is no longer choosing and b.pos greater than a.pos)

(thm (implies (and .. (t-next b c¢)
(not (t-noblk a b))
(not (t-noblk a c)))
(bnl< (t-nstrv a c¢) (t-nstrv a b) ..))

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Refinement Proof: Prove Sufficient Conditions are

Invariant

» For the sake of this paper.. no magic here.. we have to define
an invariant which:
» Implies the conditions sufficient to prove the other properties..
» ..and is inductive — holds on initial states and across steps.
> For the Bakery.. the invariants were fairly straightforward
properties relating task positions, code locations, and the
shared variables..

> ..but nonetheless relatively substantial compared to the other
definitions and proofs

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Comparison to Previous Efforts..

» Previous efforts at proving concurrent program refinements:

‘‘Specification and Verification of Concurrent
Programs Through Refinements’’
-- S. Ray and R. Sumners, J. Autom. Reasoning, 2013

> In comparison, the previous efforts...

» Supported more general forms of system definition with less
assumptions.

» Required bolting definition of specific fairness and progress
tracking apparatus onto the system state.

» Used simpler refinement properties, but required more complex
rank functions and more components in invariants.

» Muddled correctness of specification by need to review
correctness of measures for fairness and progress.

» Did not facilitate efficient finite-state property checking.

Rob Sumners Proof Reduction for Fair Stuttering Refinement



Further Considerations, Questions.

» This is one step along the path.. to take it further:
» Relaxing system definition requirements?
> For example, allowing synchronous task updates?
» Efficiently reducing to finite-state checks?

» Can we break properties down into smaller theorems,
GL/GLMC checks

» Many other considerations...

» Rump Session: Efficient Checking of Fair Stuttering
Refinements of Finite State Systems in ACL2!

Questions?

Rob Sumners Proof Reduction for Fair Stuttering Refinement



