
Eric	Smith

Kestrel	Institute
and

Kestrel	Technology

Using	Axe	to	Reason
About	Binary	Code

ACL2	Workshop,	May,	2017

Goal
• Lift	binary	code	into	logic
– JVM	bytecode
– x86	binary	code

• Then
– verify	against	a	spec

• using	Axe
• or	by	constructing	an	APT	derivation

– analyze	/	prove	properties
– equivalence	check	two	implementations
– compare	to	malware
– run	on	concrete	data

Step	0:	Parse	the	binary

• Parsers	for	Mach-O	and	PE	(Windows)	binaries.
• Build	an	ACL2	constant	representing	the	binary.

Parsed	Mach-O	
binary	for	TEA	
(Tiny	Encryption	
Algorithm)

302	lines	total

Parsed	PE	
(Windows)	
binary
for	TEA

32,589	lines	
total	!

Axe	Tools

• Axe	Rewriter
• Axe	Prover
• Axe	Equivalence	Checker
• Lifter:	JVM	to	logic
• Lifter:	x86	to	logic

• All	built	on	ACL2
• All	based	on	structure-shared	terms	(DAGs)

Axe	Rewriter
• Represents	terms	as	DAGs

– Represent	each	sub-term	only	once
– Allows	massive	sharing	of	structure
– Can	give	exponential	space/time	savings
– Manipulated	using	arrays	under	the	hood.
– Can	be	embedded	in	ACL2	terms

• Fast:	600K	rewrite	rule	attempts	per	sec.
• Fancy	features

– conditional	rules
– assumptions	and	free	variable	matching
– axe-syntaxp,	axe-bind-free
– axe-rewrite-objective
– “work	hard”	– like	force
– monitoring	rules
– memoization
– limited	use	of	content	from	overarching	ifs
– outside-in	rewriting

• No	forward	chaining,	linear,	or	type-prescription
• Does	not	produce	proofs

Axe	Equivalence	Checker

• Tactic-based:
– Rewriting
– SMT	solving
– “sweeping	and	merging”
– pruning	dead	branches	(with	STP	and/or	rewriting)
– case-splitting
– fancy	handling	of	loops/recursions

• Can	compare:
– code	to	spec
– code	to	code

Lifting	Into	Logic
• JVM	Lifter
– Based	on	our	JVM	model
– Has	been	used	on	dozens	of	examples
– Can	lift	loops	to	recursive	functions

• X86	Lifter
– Based	on	Shilpi’s x86	model
– Newer
– Support	for	loops	still	in	progress

• Both	lifters	use	the	Axe	rewriter	for	symbolic	
execution.

Prototype	x86	Lifter
• Can	lift	small	x86	binaries	into	logic

– subroutine	calls
– conditional	branches
– data	from	data	segment
– unrollable	loops

• Automatically	adds	lots	of	standard	assumptions
– especially	if	there	is	a	symbol	table

• Symbolic	execution	with	Axe	is	orders	of	magnitude	faster	than	with	
ACL2’s	rewriter

• No	clock	functions!
– Partial	function	to	“run	until	return”	(run-until-rsp-greater-than)
– Repeatedly	open	one	step	and	simplify

• Currently	can	only	lift	unrollable	loops
– Loop	lifter	in	progress,	based	on	JVM	lifter

• Does	not	produce	proofs
– Must	trust	Axe,	etc.

Trivial	Example:	Lifting	“add”	(Mach-O)	
into	Logic

C	function:
int add(int x, int y)

{ return(x+y); }

Lift	the	subroutine	into	logic:
(def-lifted-x86 add1 "_add"

acl2::|*add1.o*| 1)

Assembly:

Trivial	Example:	Lifting	“add”	(PE)

Using	/	Extending	the	x86	Model
• Adding	many	rewrite	rules
– Some	adjustments	for	Axe	rewriter
– Rules	about	disjointness
– Connecting	to	our	bit	vector	library

• Every	operator	has	an	explicit	size
• Hundreds	of	rewrite	rules
• Used	in	our	specs	for	crypto	code
• Used	in	translation	to	STP	SMT	solver
• Used	in	the	Axe	equivalence	checker

• Adding	for	32-bit	instructions	to	x86	model.

Examples

• Popcount
• TEA

Example:	popcount
• Count	the	number	of	1’s	in	a	bit	vector
• Optimized	C	program
• Correctness	non-obvious!

• Lift	to	a	structure-shared	“DAG”
• Lifting	takes	~1	second.

Example:	popcount

Lift

Example:	popcount

• Spec:		(acl2::bvcount	64	x)
– Unrolls	to	naive	algorithm	(check	each	bit	and	
count	the	1’s)

• Equivalence	proof	by	unrolling	spec,	rewriting,	
calling	SMT	(most	work	done	by	SMT).
– Proof	takes	a	few	minutes

• Shows	spec	and	code	equivalent,	for	all	264
inputs.

Example:	TEA	Block	Cipher	(Tiny	
Encryption	Algorithm)

(defconst *delta* #x9e3779b9)

(defun tea-encrypt-loop (n y z sum k)
(declare (xargs :guard (and (unsigned-byte-p 32 n) ;n<=32

(unsigned-byte-p 32 y)
(unsigned-byte-p 32 z)
(unsigned-byte-p 32 sum)
(bv-arrayp 32 4 k))))

(if (zp n)
(mv y z)

(let* ((n (+ -1 n))
(sum (bvplus 32 sum *delta*))
(y (bvplus 32 y (bvxor 32 (bvplus 32 (shl 32 z 4) (bv-array-read 32 4 0 k))

(bvxor 32 (bvplus 32 z sum)
(bvplus 32 (shr 32 z 5) ;unsigned right-shift

(bv-array-read 32 4 1 k))))))
(z (bvplus 32 z (bvxor 32 (bvplus 32 (shl 32 y 4) (bv-array-read 32 4 2 k))

(bvxor 32 (bvplus 32 y sum)
(bvplus 32 (shr 32 y 5) ;unsigned right-shift

(bv-array-read 32 4 3 k)))))))
(tea-encrypt-loop n y z sum k))))

;; encrypt value V with key K
(defun tea-encrypt (v k)

(declare (xargs :guard (and (bv-arrayp 32 2 v)
(bv-arrayp 32 4 k))))

(let* ((y (bv-array-read 32 2 0 v))
(z (bv-array-read 32 2 1 v))
(sum 0)
(n 32))

(mv-let (y z)
(tea-encrypt-loop n y z sum k)
(bv-array-write 32 2 0 y (bv-array-write 32 2 1 z '(0 0))))))

Formal	spec:

Example:	TEA	

• Lifting	the	binary	requires	assuming	non-
overlap	in	memory	of:
• Params (v,	k)	and	next	stack	slots
• Params (v,	k)	and	code
• v	param and	stored	return	address

Example:	TEA
• Stats	on	lifted	TEA	(after	
extracting	the	result):

• Unrolled	spec	is	similar
• Equivalence	proof	via	rewriting
• 4,540	rule	hits	of	229,625	tries
• 0.23	seconds

Challenges	/	Next	Steps

• Lifting	loops	in	x86	binaries
– Approach	similar	to	our	JVM	lifter
–May	do	some	things	differently:
• Have	lifted	functions	still	traffic	in	x86	memories

– Don’t	require	all	aliasing	to	be	resolved

• Allow	lifted	functions	to	represent	exceptions	/	errors
– Don’t	require	proving	absence	of	errors

Bonus	Example:	TEA	in	Java

TEA	in	Java	(bouncycastle)
private int encryptBlock(

byte[] in,
int inOff,
byte[] out,
int outOff)

{
// Pack bytes into integers
int v0 = bytesToInt(in, inOff);
int v1 = bytesToInt(in, inOff + 4);

int sum = 0;

for (int i = 0; i != rounds; i++)
{

sum += delta;
v0 += ((v1 << 4) + _a) ^ (v1 + sum) ^ ((v1 >>> 5) + _b);
v1 += ((v0 << 4) + _c) ^ (v0 + sum) ^ ((v0 >>> 5) + _d);

}

unpackInt(v0, out, outOff);
unpackInt(v1, out, outOff + 4);

return block_size;
}

TEA	in	Java

• Lifting	into	logic
• Reconstruct	a	derivation
– Proof-emitting	
transformation	steps

– Link	the	code	and	the	spec

spec

code

flatten	array	param

rename-params

reorder-params

normalize	right	shift	
and	trim	bit	vectors

match

simplify

extract-output

convert	loop	index	from	bit-
vector	to	integer	(no	overflow)

flatten-params

lift	to	logic

trim	bit-vector	
operations

re-index	loop	using	isodata:	
counting	up	vs.	counting	down

