A Mechanized Proof of the Curve Length of a Rectifiable Curve

Jagadish Bapanapally and Ruben Gamboa

ACL2 Workshop 2017
May 23, 2017

Theory

$$
L \approx \sum_{i=1}^{n}\left|P_{i}-P_{i-1}\right|
$$

Deriving length of a continuously differentiable curve

$$
\mathrm{L}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i}-P_{i-1}\right|
$$

Deriving length of a continuously differentiable curve

$$
\mathrm{L}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i}-P_{i-1}\right|
$$

$$
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|\left\{f(t)=x(t)+i * y(t), t_{0} \leq t \leq t_{n}\right\}
$$

Deriving length of a continuously differentiable curve

$$
\begin{aligned}
& \mathrm{L}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i}-P_{i-1}\right| \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|\left\{f(t)=x(t)+i * y(t), t_{0} \leq t \leq t_{n}\right\} \\
& \quad=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|\frac{f\left(t_{i}\right)-f\left(t_{i-1}\right)}{\Delta t}\right| \Delta t
\end{aligned}
$$

Deriving length of a continuously differentiable curve

$$
\begin{aligned}
\mathrm{L} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i}-P_{i-1}\right| \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|\left\{f(t)=x(t)+i * y(t), t_{0} \leq t \leq t_{n}\right\} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|\frac{f\left(t_{i}\right)-f\left(t_{i-1}\right)}{\Delta t}\right| \Delta t \\
& =\int_{t_{0}}^{t_{n}}\left|f^{\prime}(t)\right| d t
\end{aligned}
$$

Deriving length of a continuously differentiable curve

$$
\begin{aligned}
\mathrm{L} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i}-P_{i-1}\right| \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|\left\{f(t)=x(t)+i * y(t), t_{0} \leq t \leq t_{n}\right\} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|\frac{f\left(t_{i}\right)-f\left(t_{i-1}\right)}{\Delta t}\right| \Delta t \\
& =\int_{t_{0}}^{t_{n}}\left|f^{\prime}(t)\right| d t \\
& =\int_{t_{0}}^{t_{n}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

Continuously Differentiable curve

(encapsulate ((c (x) t)
(c-derivative (x) t))
; $;$ Our witness continuous function is the identit.
(local (defun $c(x) x)$)
(local
(defun c-derivative (x) (declare (ignore x)) 1))

$$
\begin{aligned}
;(i-\operatorname{close}(/ & \left.\left(-\binom{c}{x}(c \quad y)\right)(-x y)\right) \\
; & (c-\text { derivative } x))
\end{aligned}
$$

; (i-close (c-derivative $x)$ (c-derivative $y)$)
)

Norm of the derivative of a continuous function is continuous

- Continuously differentiable function means it's derivative is continuous.

Norm of the derivative of a continuous function is continuous

- Continuously differentiable function means it's derivative is continuous.
- real and imaginary parts of a continuous function are continuous. ($\frac{d x}{d t}, \frac{d y}{d t}$ are continuous)

Norm of the derivative of a continuous function is continuous

- Continuously differentiable function means it's derivative is continuous.
- real and imaginary parts of a continuous function are continuous. ($\frac{d x}{d t}, \frac{d y}{d t}$ are continuous)
- Square of a continuous function is continuous.

$$
\left(\frac{d x}{d t}\right)^{2},\left(\frac{d y}{d t}\right)^{2} \text { are continuous }
$$

Norm of the derivative of a continuous function is continuous

- Continuously differentiable function means it's derivative is continuous.
- real and imaginary parts of a continuous function are continuous. ($\frac{d x}{d t}, \frac{d y}{d t}$ are continuous)
- Square of a continuous function is continuous.

$$
\left(\frac{d x}{d t}\right)^{2},\left(\frac{d y}{d t}\right)^{2} \text { are continuous }
$$

- Sum of 2 continuous functions is continuous.

$$
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} \text { is continuous }
$$

Square root of a continuous function is Continuous

```
(implies (and (realp y1)
    (realp y2)
    (i-limited y1)
    (i-limited y2)
    (>= y1 0)
    (>= y2 0)
    (not (i-close y1 y2)))
(not (= (standard-part (square y1))
        (standard-part (square y2)))))
```

(implies (and (realp y1)
(realp y2)
(i-limited y1)
(i-limited y2)
($>=\mathrm{y} 10$)
($>=\mathrm{y} 2$ 0)
($\operatorname{not}(i-c l o s e ~ y 1 ~ y 2))) ~$
(not (i-close (square y1) (square y2))))

Square root of a continuous function is Continuous

(defthmd root-close-f
(implies
(and (standardp $\times 1$)
(realp $\times 1$)
(realp $\times 2$)
($>=\times 10$ 0)
$(>=x 20)$

$$
(i-\text { close } \times 1 \times 2))
$$

(i-close (acl2-sqrt $\times 1$) (acl2-sqrt x2)))
;hints omitted
)
$\therefore \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$ is continuous

Riemann sum of the lengths of the chords

- Let $h(t)=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$

Riemann sum of the lengths of the chords

- Let $h(t)=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
- Riemann sum for the partition $\left(t_{0}, t_{1}, t_{2}, \ldots, t_{n}\right)$ is $h\left(t_{1}\right) \cdot \Delta t+h\left(t_{2}\right) \cdot \Delta t+\ldots . . h\left(t_{n}\right) \cdot \Delta t$

Riemann sum of the lengths of the chords

- Let $h(t)=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
- Riemann sum for the partition $\left(t_{0}, t_{1}, t_{2}, \ldots, t_{n}\right)$ is $h\left(t_{1}\right) \cdot \Delta t+h\left(t_{2}\right) \cdot \Delta t+\ldots . . h\left(t_{n}\right) \cdot \Delta t$
- We can prove this is limited using limited - riemann - rcfn - small - partition
in continuous - function book

Riemann sum of the lengths of the chords

- Let $h(t)=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
- Riemann sum for the partition $\left(t_{0}, t_{1}, t_{2}, \ldots, t_{n}\right)$ is $h\left(t_{1}\right) \cdot \Delta t+h\left(t_{2}\right) \cdot \Delta t+\ldots . . h\left(t_{n}\right) \cdot \Delta t$
- We can prove this is limited using limited - riemann - rcfn - small - partition in continuous - function book
- Thus as $n \rightarrow \infty, \Delta t$ is infinitely small and riemann sum is equal to $\int_{t_{0}}^{t_{n}} h(t) d t$

Circumference of a circle with radius r

Circle with radius r (standard and real number) can defined as

$$
f(t)=r * e^{i t}=r *(\cos t+i * \sin t), 0 \leq t \leq 2 \pi
$$

Circumference of a circle with radius r

Circle with radius r (standard and real number) can defined as

$$
f(t)=r * e^{i t}=r *(\cos t+i * \sin t), 0 \leq t \leq 2 \pi
$$

$$
\text { let, } g(t)=r *(-\sin t+i * \cos t)
$$

Circumference of a circle with radius r

Circle with radius r (standard and real number) can defined as

$$
f(t)=r * e^{i t}=r *(\cos t+i * \sin t), 0 \leq t \leq 2 \pi
$$

$$
\text { let, } g(t)=r *(-\sin t+i * \cos t)
$$

Since, $\frac{d}{d t} \cos t=-\sin t$ and $\frac{d}{d t} \sin t=\cos t$,

$$
f^{\prime}(t) \approx g(t)
$$

Circumference of a circle with radius r

Circle with radius r (standard and real number) can defined as

$$
f(t)=r * e^{i t}=r *(\cos t+i * \sin t), 0 \leq t \leq 2 \pi
$$

$$
\text { let, } g(t)=r *(-\sin t+i * \cos t)
$$

Since, $\frac{d}{d t} \cos t=-\sin t$ and $\frac{d}{d t} \sin t=\cos t$,

$$
f^{\prime}(t) \approx g(t)
$$

Since $\sin t$ and $\cos t$ are continuous, $g(t)$ is continuous.

Circumference of a circle with radius r

Circle with radius r (standard and real number) can defined as

$$
f(t)=r * e^{i t}=r *(\cos t+i * \sin t), 0 \leq t \leq 2 \pi
$$

$$
\text { let, } g(t)=r *(-\sin t+i * \cos t)
$$

Since, $\frac{d}{d t} \cos t=-\sin t$ and $\frac{d}{d t} \sin t=\cos t$,

$$
f^{\prime}(t) \approx g(t)
$$

Since $\sin t$ and $\cos t$ are continuous, $g(t)$ is continuous.
Thus by using above proof length of $f(t)$ is equal to

$$
\int_{0}^{2 \pi}|g(t)| d t
$$

Applying second Fundamental Theorem of Calculus

$g(t)=r *(-\sin t+i * \cos t)$
$|g(t)|=r ; \quad \therefore \int_{0}^{2 \pi}|g(t)| d t=\int_{0}^{2 \pi} r d t$
Let, $h(t)=r * t, \quad h^{\prime}(t)=|g(t)|$
\therefore Using second fundamental theorem of calculus

$$
\int_{0}^{2 \pi}|g(t)| d t=h(2 \pi)-h(0)=r * 2 * \pi
$$

