
ABNF	in	ACL2
Alessandro	Coglio

Kestrel
Institute

Workshop	2017

DIGIT = %x30-39

Augmented	Backus-Naur	Form	is	a	formal	context-free	grammar	
notation	that	adds	conveniences	and	makes	slight	modifications	to	
Backus-Naur	Form,	e.g.:

HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

h16 = 1*4HEXDIG

message-body = *OCTET

RWS = 1*(SP / HTAB)

numeric	range	
terminal	notations case-insensitive	string	

terminal	notations

repetition	prefixes,	
min.	(default	0)	to	
max.	(default	∞)

ABNF	is	specified	by	two	RFCs	(i.e.	Internet	standards).

natural	language

semanticssyntax

The	RFCs	use	natural	language	to	informally	specify	ABNF.
And	they	use	ABNF	to	formally	specify	the	syntax	of	ABNF.

informally
specifies

How	to	formally	specify	ABNF	in	ACL2,	faithfully	to	the	RFCs,	
including	the	meta-circular	formal	syntax	specification?

formally
specifies

?

ABNF	language

natural	language

abstract
syntax semanticsconcrete

syntax

The	RFCs	use	natural	language	to	informally	specify	ABNF.
And	they	use	ABNF	to	formally	specify	the	syntax	of	ABNF.

informally
specifies

How	to	formally	specify	ABNF	in	ACL2,	faithfully	to	the	RFCs,	
including	the	meta-circular	formal	syntax	specification?

?

formally
specifies

ABNF	language

Formalize	an	abstract	syntax	of	ABNF	in	ACL2,	based	on	the	ABNF	
grammar	rules	that	define	the	concrete	syntax	of	ABNF,	e.g.:

alternation = concatenation
*(*c-wsp "/" *c-wsp concatenation)

concatenation = repetition *(1*c-wsp repetition)
repetition = [repeat] element
element = rulename / group / ...
group = "(" *c-wsp alternation *c-wsp ")"
...

(fty::deftypes alt/conc/rep/elem
(fty::deflist alternation :elt-type concatenation)
(fty::deflist concatenation :elt-type repetition)
(fty::defprod repetition
((range repeat-range) (element element)))

(fty::deftagsum element
(:rulename ((get rulename)))
(:group ((get alternation)))
...)

...)

These	values	(grammars)	can	be	operated	upon	in	the	ACL2	logic,	
e.g.	to	check	their	well-formedness	and	to	compose	them.

(fty::deflist rulelist :elt-type rule)

The	start	nonterminal	of	the	ABNF	grammar	of	ABNF	is	rulelist.

rulelist = 1*(rule / (*c-wsp c-nl))

In	the	abstract	syntax,	an	ABNF	grammar	is	a	value	of	type	rulelist.

natural	language

abstract
syntax semanticsconcrete

syntax

formally
specifies

ABNF	language

formally	specifies

informally
specifies

a	parse	tree	
that	matches	xbranches	are	organized	into	

lists	(for	concatenations)	of	
lists	(for	repetitions)

x

y y y (17 80)

(2) (4)z z

(65) (97)

Formalize	a	semantics	of	ABNF	in	terms	of	matching	relations	
between	parse	trees	and	(abstract)	syntactic	entities,	e.g.:

x = *y %d17.80
y = 2z / %d1-4
z = "a"

a	grammar

(fty::deftypes trees
(fty::deftagsum tree
(:leafterm ((get nat-list)))
(:leafrule ((get rulename)))
(:nonleaf ((rulename? maybe-rulename)

(branches tree-list-list))))
(fty::deflist tree-list :elt-type tree)

(fty::deflist tree-list-list :elt-type tree-list))

Formalize	a	semantics	of	ABNF	in	terms	of	matching	relations	
between	parse	trees	and	(abstract)	syntactic	entities,	e.g.:

x

y y y (17 80)

(2) (4)z z

(65) (97) type	of	
parse	trees

(2 65 97 4 17 80)

Formalize	a	semantics	of	ABNF	in	terms	of	matching	relations	
between	parse	trees	and	(abstract)	syntactic	entities,	e.g.:

x = *y %d17.80
y = 2z / %d1-4
z = "a"

x

y y y (17 80)

(2) (4)z z

(65) (97)

(tree-match-element-p tree element rules)

x
matching	
relation

(equal (tree->string tree) string)

string	at	
the	leaves	
of	the	tree

natural	language

abstract
syntax semanticsconcrete

syntax

formally
specifies

ABNF	language

informally
specifies

formally	specifies

Formalize	the	concrete	syntax	of	ABNF	by	transcribing	the	ABNF	
grammar	rules	of	ABNF	“in	abstract	syntax”,	thus	breaking	the	
meta-circularity,	e.g.:	

num-val = "%" (bin-val / dec-val / hex-val)

group = "(" *c-wsp alternation *c-wsp ")"

(def-rule-const *num-val*
(/_ "%" (!_ (/_ *bin-val*)

(/_ *dec-val*)
(/_ *hex-val*))))

(def-rule-const *group*
(/_ "(" (*_ *c-wsp*) *alternation* (*_ *c-wsp*) ")"))

specially	crafted	
and	named	
functions	and	

macros

Formalize	the	relationship	between	concrete	and	abstract	syntax	
via	abstraction	functions	from	parse	trees	of	ABNF	grammars	to	
corresponding	abstract	syntactic	entities,	e.g.:

repeat

()

(42)DIGIT DIGIT DIGIT

(49) (50) (48)

(:REPEAT 1 (:FINITE 20))

(equal (abstract-repeat tree) range)

abstraction	function	
for	repetition	ranges

Formalize	the	relationship	between	concrete	and	abstract	syntax	
via	abstraction	functions	from	parse	trees	of	ABNF	grammars	to	
corresponding	abstract	syntactic	entities,	e.g.:

rulelist

rulerule rule ...

...

...

...

((:RULE ...)
(:RULE ...)
(:RULE ...)
...)

(equal (abstract-rulelist tree) rules)

abstraction	function	
for	lists	of	rules

natural	language

abstract
syntax semanticsconcrete

syntax

formally
specifies

ABNF	language

informally
specifies

formally	specifies

ABNF	is	used	in	several	Internet	syntax	specifications,	e.g.	HTTP.

formally	specifies

ABNF	language

formally	specifies

ABNF	language

formally	specifies

HTTP	syntax

ABNF	is	used	in	several	Internet	syntax	specifications,	e.g.	HTTP.

formally	specifies

ABNF	language

formally	specifies

HTTP	syntax

?

How	to	formally	specify	the	HTTP	syntax	in	ACL2,	faithfully	to	the	RFC?

Transcribe	the	ABNF	grammar	rules	of	HTTP	in	abstract	(ABNF)	syntax,	
as	done	with	the	ABNF	grammar	rules	of	ABNF?

How	to	formally	specify	the	HTTP	syntax	in	ACL2,	faithfully	to	the	RFC?

transcribe
http-grammar

a	constant	of	type	rulelist,
representing	an	ABNF	grammar,	
which	has	semantics	in	ACL2

tedious	and	error-prone

verified	ABNF	
grammar	parser

http-grammar

How	to	formally	specify	the	HTTP	syntax	in	ACL2,	faithfully	to	the	RFC?
Write	and	use	a	verified	parser	of	ABNF	grammars.

grammar
text	file

copy	&
paste

parse-grammar-from-file

parse	tree	of	the	
ABNF	grammar	

of	HTTP

rulelist

...

abstract-rulelist

top-level	syntax	
abstraction	function

The	ABNF	grammar	of	ABNF	is	mostly	LL(1),	with	three	LL(2)	rules,	two	
LL(*)	rules,	and	one	(non-critically)	ambiguous	rule.
The	parser	is	implemented	as	recursive	descent	with	backtracking,	
using	the	Seqmacros	from	the	Community	Books.

The	verified	ABNF	grammar	parser	consists	of	85	functions.

The	parser	correctness	proof	consists	of	soundness	and	completeness.
Soundness:	if	the	parser	succeeds,	the	output	parse	tree	matches	
rulelist and	its	tree->string is	the	input	string.
Completeness:	running	the	parser	on	the	tree->string of	a	parse	
tree	that	matches	rulelist and	that	(necessarily)	satisfies	certain	
disambiguating	restrictions,	succeeds	and	yields	that	parse	tree.
The	correctness	proof	consists	of	424	theorems,	organized	into	several	
inter-dependent	categories.
Completeness	is	much	more	laborious	to	prove	than	soundness.
These	proof	techniques	should	be	more	generally	applicable.

The	ABNF	grammar	parser	can	be	run	on	the	ABNF	grammar	of	ABNF.The	ABNF	grammar	parser	can	be	run	on	the	ABNF	grammar	of	ABNF.

abnf-grammar

copy	&
paste

rulelist

...

abstract-rulelistparse-grammar-from-file

ABNF
RFCs

This	provides	a	validation	of	the	ABNF	concrete	syntax	formalization.
The	ABNF	grammar	parser	can	be	run	on	the	ABNF	grammar	of	ABNF.The	ABNF	grammar	parser	can	be	run	on	the	ABNF	grammar	of	ABNF.

abnf-grammar

copy	&
paste

rulelist

...

abstract-rulelistparse-grammar-from-file

trascription	in	the	formalization	
of	the	ABNF	concrete	syntax

For	more	information:
“ABNF	in	ACL2”,	Technical	Report	(http://www.kestrel.edu/~coglio)

For	much	more	information:
‘ABNF’	topic	in	the	ACL2+Books	manual

