ABNF in ACL2

Alessandro Coglio

. Kestrel

» Institute

2
"ACL2 Workshop 2017

Augmented Backus-Naur Form is a formal context-free grammar
notation that adds conveniences and makes slight modifications to
Backus-Naur Form, e.g.:

numeric range

. : case-insensitive string
terminal notations

terminal notations

DIGIT = %x30-39 / /
HEXDIG — DIGIT / IIAII / IIBII / IICII / IIDII / IIEII / IIFII

hl16 = 1x4HEXDIG \
repetition prefixes,

message-body = *0CTET ———— min. (default 0) to

__— max. (default oo)

RWS = 1x(SP / HTAB)

ABNF is specified by two RFCs (i.e. Internet standards).

Network Working Group D. Crocker, Ed.
Request for Comments: 5234 Brandenburg InternetWorking
STD: 68 P. Overell
Obsoletes: 4234 THUS plc.
Category: Standards Track January 2008

Augmented BNF for Syntax Specifications: ABNF
Status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards” (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

Internet technical specifications often need to define a formal
syntax. Over the years, a modified version of Backus-Naur Form
(BNF), called Augmented BNF (ABNF), has been popular among many
Internet specifications. The current specification documents ABNF.
It balances compactness and simplicity with reasonable
representational power. The differences between standard BNF and
ABNF involve naming rules, repetition, alternatives, order-
independence, and value ranges. This specification also supplies
additional rule definitions and encoding for a core lexical analyzer
of the type common to several Internet specifications.

Crocker & Overell Standards Track [Page 1]

Internet Engineering Task Force (IETF) P. Kyzivat
Request for Comments: 7405 December 2014
Updates: 5234

Category: Standards Track

ISSN: 2070-1721

Case-Sensitive String Support in ABNF

Abstract
This document extends the base definition of ABNF (Augmented Backus-
Naur Form) to include a way to specify US-ASCII string literals that
are matched in a case-sensitive manner.

Status of This Memo

This is an I st Track .
This is a of the T Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has

received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7405.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Kyzivat Standards Track (Page 1)

The RFCs use natural language to informally specify ABNF.
And they use ABNF to formally specify the syntax of ABNF.

natural language

informally
formally specifies
specifies

Q ABNF language

D 4 syntax semantics
CL2 —7?—

How to formally specify ABNF in ACL2, faithfully to the RFCs,
including the meta-circular formal syntax specification?

The RFCs use natural language to informally specify ABNF.
And they use ABNF to formally specify the syntax of ABNF.

natural language

- -
- -~
- ~~
- S~
- ~
~
~
~

informally
formally specifies
specifies

\ i

ABNF language

concrete abstract .
Ry -~ 4 semantics

ANC[2 3, syntax syntax

How to formally specify ABNF in ACL2, faithfully to the RFCs,
including the meta-circular formal syntax specification?

Formalize an abstract syntax of ABNF in ACL2, based on the ABNF
grammar rules that define the concrete syntax of ABNF, e.g.:

alternation = concatenation

x(kc-wsp "/" xc-wsp concatenation)
concatenation = repetition *x(1xc—wsp repetition)
repetition = [repeat] element
element = rulename / group / ...
group = " (" *c-wsp alternation *c-wsp ")"

(fty::deftypes alt/conc/rep/elem
(fty::deflist alternation :elt-type concatenation)
(fty::deflist concatenation :elt-type repetition)
(fty::defprod repetition
((range repeat-range) (element element)))
(fty::deftagsum element
(:rulename ((get rulename)))
(:group ((get alternation)))
—_—
.)

The start nonterminal of the ABNF grammar of ABNF is rulelist.

rulelist = 1x(rule / (xc-wsp c-nl))

In the abstract syntax, an ABNF grammar is a value of type rulelist.

(fty::deflist rulelist :elt-type rule)

These values (grammars) can be operated upon in the ACL2 logic,
e.g. to check their well-formedness and to compose them.

natural language

informally
formally specifies
specifies

\ I

ABNF language

concrete abstract .
semantics
syntax syntax
A

formally specifies

D
ACL2

Formalize a semantics of ABNF in terms of matching relations
between parse trees and (abstract) syntactic entities, e.g.:

X = %y %d17.80
Z z %;“/ e ///7<i (17 80)
/ £ A
d grammar
(65/) (\;7)

\ a parse tree

branches are organized into that matches x

lists (for concatenations) of
lists (for repetitions)

Formalize a semantics of ABNF in terms of matching relations
between parse trees and (abstract) syntactic entities, e.g.:

17 80)

(65) (97) type of
parse trees

(fty::deftypes trees
(fty::deftagsum tree
(:leafterm ((get nat-list)))
(:leafrule ((get rulename)))
(:nonleaf ((rulename? maybe-rulename)
(branches tree-list-1list))))
(fty::deflist tree-list :elt-type tree)
(fty::deflist tree-list-list :elt-type tree-1list))

Formalize a semantics of ABNF in terms of matching relations
between parse trees and (abstract) syntactic entities, e.g.:

(tree-match-element-p tree element rules)

/

matching
relation X X = xy %d17.80
/< y = 2z / %d1-4
17 8@ Z — IIaII
/Ax N
(65) (97)

(equal (tree->string tree) string)

string at /

the leaves (2 65 97 4 17 80)
of the tree

natural language

formally \
specifies

informally

specifies

l

\

ABNF language

concrete abstract :
semantics
syntax syntax
) ~
/
formally specifies

/

D
ACL2

Formalize the concrete syntax of ABNF by transcribing the ABNF
grammar rules of ABNF “in abstract syntax”, thus breaking the
meta-circularity, e.g.:

num-val = "%" (bin-val / dec-val / hex-val)

(def-rule-const *knum-valx

(/_met (1 (/_ #bin-valx) ——0u0

(/_ xdec-valx) specially crafted
(/_ xhex-valx)))) and named
functions and
macros
group = "(" *c-wsp alternation *c-wsp ")" ‘///

(def-rule-const *kgroupsx
(/_ "(" (%_ *xc—-wspx) s*xalternationx (%_ xc-wspx) ")"))

Formalize the relationship between concrete and abstract syntax
via abstraction functions from parse trees of ABNF grammars to
corresponding abstract syntactic entities, e.g.:

repeat

+
()
/+\/.\ (:REPEAT 1 (:FINITE 20))

DIGIT (42) DIGIT DIGIT

+ t ¢

(49) (50) (48)

(equal (abstract-repeat tree) raﬁge)

abstraction function /

for repetition ranges

Formalize the relationship between concrete and abstract syntax
via abstraction functions from parse trees of ABNF grammars to
corresponding abstract syntactic entities, e.g.:

rulelist

((:RULE ...)
)\ (:RULE ...)
(:RULE ...)

rule rule rule ... ces)

(equal (abstract-rulelist tree) rufes)

abstraction function /

for lists of rules

natural language

formally \
specifies

\

informally

specifies

l

ABNF language

concrete
syntax

abstract
syntax

semantics

"

A

=

N

formally

NI/

D
ACL2

/

specifies

ABNF is used in several Internet syntax specifications, e.g. HTTP.

Internet Engineering Task Force (IETF) R. Fielding, Ed.
Request for Comments: 7230 Adobe
Obsoletes: 2145, 2616 J. Reschke, Ed.
Updates: 2817, 2818 greenbytes
Category: Standards Track June 2014

ISSN: 2070-1721

Hypertext Transfer Protocol (HTTP/l.1): Message Syntax and Routing

Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-
level protocol for distributed, collaborative, hypertext information
systems. This document provides an overview of HTTP architecture and
its associated terminology, defines the "http" and "https" Uniform
Resource Identifier (URI) schemes, defines the HTTP/l.l message
syntax and parsing requirements, and describes related security
concerns for implementations.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

ABNF is used in several Internet syntax specifications, e.g. HTTP.

HTTP syntax

A

formally specifies

ABNF language

A

formally specifies

D
ACL2

How to formally specify the HTTP syntax in ACL2, faithfully to the RFC?

/ HTTP syntax
A

el - | formally specifies

ABNF language

A

formally specifies

D
ACL2

How to formally specify the HTTP syntax in ACL2, faithfully to the RFC?

Transcribe the ABNF grammar rules of HTTP in abstract (ABNF) syntax,
as done with the ABNF grammar rules of ABNF?

a constant of type rulelist,
representing an ABNF grammar,
which has semantics in ACL2

————- Nt tp—g ramma rx J

transcribe

tedious and error-prone /

How to formally specify the HTTP syntax in ACL2, faithfully to the RFC?

Write and use a verified parser of ABNF grammars.

parse tree of the

ABNF grammar
grammar of HTTP
text file /
rulelist

— \ —} /K —} xhttp—-grammark

copy& parse-grammar—from-file abstract-rulelist

paste
i \ verified ABNF \ top-level syntax

grammar parser abstraction function

The verified ABNF grammar parser consists of 85 functions.

The ABNF grammar of ABNF is mostly LL(1), with three LL(2) rules, two
LL(*) rules, and one (non-critically) ambiguous rule.

The parser is implemented as recursive descent with backtracking,
using the Seq macros from the Community Books.

The parser correctness proof consists of soundness and completeness.

Soundness: if the parser succeeds, the output parse tree matches
rulelist andits tree—>string is the input string.

Completeness: running the parser on the tree—>string of a parse
tree that matches rulelist and that (necessarily) satisfies certain
disambiguating restrictions, succeeds and yields that parse tree.

The correctness proof consists of 424 theorems, organized into several
inter-dependent categories.

Completeness is much more laborious to prove than soundness.

These proof techniques should be more generally applicable.

The ABNF grammar parser can be run on the ABNF grammar of ABNF.

ABNF
RFCs

rulelist

J—} \ — /K =P xabnf-grammarx

copy& parse-grammar—from—file abstract-rulelist
paste

The ABNF grammar parser can be run on the ABNF grammar of ABNF.

This provides a validation of the ABNF concrete syntax formalization.

of the ABNF concrete syntax

/—m

& trascription in the formalization

J-’ \ — /K P xabnf-grammarx

copy& parse-grammar—from—file abstract-rulelist
paste

For more information:
“ABNF in ACL2”, Technical Report (http://www.kestrel.edu/~coglio)

ABNF in ACL2

Alessandro Coglio

Kestrel Institute, Palo Alto, California, USA
http://www.kestrel.edu/"coglio

Technical Report, April 2017

Abstract. Augmented Backus-Naur Form (ABNF) is a standardized
formal grammar notation used in several Internet syntax specifications.
This paper describes (i) a formalization of the syntax and semantics of
the ABNF notation and (ii) a verified parser that turns ABNF grammar
text into a formal representation usable in declarative specifications of
parsers of ABNF-specified languages. This work has been developed in
the ACL2 theorem prover.

1 Problem, Contribution, and Related Work

Augmented Backus-Naur Form (ABNF) is a standardized [12,18| formal gram-

mar notation used in several Internet syntax specifications [8,13,21,16,11,10].
| @ | T S S, i AR e R AT A Ky PO\ T (Y (e, [SOSNEL, & ;g op Y b TR SR, 1]

For much more information:
‘ABNF’ topic in the ACL2+Books manual

=Top
+ACL2
“Books
drBoolean-reasoning
sFDebugging
s*Documentation
srHardware-verification
<rInterfacing-tools
s*Macro-libraries
fFMath
“rProjects
“FProof-automation
drSoftware-verification
<rStd

ACL2::kestrel-books

Abnf

[books] /kestrel/abnf/top.lisp
A library for ABNF (Augmented Backus-Naur Form).

ABNF is a standardized formal grammar notation used in several Internet syntax
specifications, e.g. URI#, HTTP#, IMF&, SMTP#, IMAP#, and JSON&. ABNF is specified by
RFC 5234# and RFC 7405%; the latter updates two portions of the former. The syntax of
ABNF is specified in ABNF itself.

This ACL2 library provides:

e A formalization of the syntax and semantics of the ABNF notation.

e Averified parser that turns ABNF grammar text (e.g. from the HTTP RFC) into a
formal representation suitable for formal specification (e.g. for HTTP parsing).

e Executable operations on ABNF grammars, e.g. to check their well-formedness and
to compose them.

In the documentation of this library, we append dotted section and subsection numbers to
‘RFC’ to refer to the corresponding sections and subsections of the result of updating RFC
5234 as specified by RFC 7405. For example, ‘RFC.3’ refers to Section 3 of RFC 5234. As
another example, ‘RFC.2.3’ refers to the result of updating Section 2.3 of RFC 5234 as
specified in Section 2.1 of RFC 7405.

Subtopics .

Abstract-syntax
Abstract syntax of ABNF.

P,

ABNF
Package

