
A Framework for Asynchronous Circuit Modeling and
Verification in ACL2

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science

The University of Texas at Austin

May 22, 2017

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 1 / 28

mailto:ckcuong@cs.utexas.edu

Outline

1 Introduction

2 The DE System

3 Modeling and Verifying Self-Timed Circuits Using the DE System

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 2 / 28

Outline

1 Introduction

2 The DE System

3 Modeling and Verifying Self-Timed Circuits Using the DE System

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 3 / 28

Introduction

Synchronous circuits (or clock-driven circuits): changes in the state of
storage elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): there is no global clock
signal distributed in asynchronous circuits. The communication between
state-holding elements is performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Low electromagnetic interference,
Better composability and modularity in large systems,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 4 / 28

Introduction

Synchronous circuits (or clock-driven circuits): changes in the state of
storage elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): there is no global clock
signal distributed in asynchronous circuits. The communication between
state-holding elements is performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Low electromagnetic interference,
Better composability and modularity in large systems,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 4 / 28

Introduction

Synchronous circuits (or clock-driven circuits): changes in the state of
storage elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): there is no global clock
signal distributed in asynchronous circuits. The communication between
state-holding elements is performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Low electromagnetic interference,
Better composability and modularity in large systems,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 4 / 28

Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

We use the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 5 / 28

Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

We use the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.

Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 5 / 28

Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

We use the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.

Exploring strategies for reasoning with non-deterministic circuit
behavior.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 5 / 28

Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

We use the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 5 / 28

Outline

1 Introduction

2 The DE System

3 Modeling and Verifying Self-Timed Circuits Using the DE System

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 6 / 28

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 7 / 28

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 7 / 28

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 7 / 28

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.

This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 7 / 28

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 7 / 28

Outline

1 Introduction

2 The DE System

3 Modeling and Verifying Self-Timed Circuits Using the DE System

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 8 / 28

Modeling

No global clock signal

⇒ Adding local signaling to state-holding devices.

Local communication protocols

⇒ Modeling the link-joint model, a universal communication model
for various circuit families [Roncken et al.:2015].

Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 9 / 28

Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices.
Local communication protocols

⇒ Modeling the link-joint model, a universal communication model
for various circuit families [Roncken et al.:2015].

Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 9 / 28

Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices.
Local communication protocols
⇒ Modeling the link-joint model, a universal communication model
for various circuit families [Roncken et al.:2015].
Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 9 / 28

Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices.
Local communication protocols
⇒ Modeling the link-joint model, a universal communication model
for various circuit families [Roncken et al.:2015].
Non-deterministic behavior due to variable delays in wires and gates
⇒ Employing an oracle, which we call a collection of go signals.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 9 / 28

The Link-Joint Model

We model self-timed systems as finite-state-machine representations of
networks of links communicating with each other locally via handshake
components, which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 10 / 28

The Link-Joint Model

We model self-timed systems as finite-state-machine representations of
networks of links communicating with each other locally via handshake
components, which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 10 / 28

The Link-Joint Model

We model self-timed systems as finite-state-machine representations of
networks of links communicating with each other locally via handshake
components, which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 10 / 28

The Link-Joint Model

D0

S0. S R /

fullin

Comb. Logic

drain

D1

S1. S R /

fill

fullout

JointLink Link

L0 L1

full

fire

full

GO
A joint can have several incoming and outgoing links connected to it.

Necessary conditions for a joint to fire: all of its incoming links are full
and all of its outgoing links are empty.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 11 / 28

The Link-Joint Model

D0

S0. S R /

fullin

Comb. Logic

drain

D1

S1. S R /

fill

fullout

JointLink Link

L0 L1

full

fire

full

GO

A joint can have several incoming and outgoing links connected to it.

Necessary conditions for a joint to fire: all of its incoming links are full
and all of its outgoing links are empty.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 11 / 28

The Link-Joint Model

D0

S0. S R /

fullin

Comb. Logic

drain

D1

S1. S R /

fill

fullout

JointLink Link

L0 L1

full

fire

full

GO
A joint can have several incoming and outgoing links connected to it.

Necessary conditions for a joint to fire: all of its incoming links are full
and all of its outgoing links are empty.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 11 / 28

The Link-Joint Model

When a joint fires, the following three actions will be executed in parallel:

transfer data computed from the incoming links to the outgoing links,
fill the outgoing links, make them full,
drain the incoming links, make them empty,

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 12 / 28

The Link-Joint Model

fullin0...
fullinm

...

GO

fullout0...
fulloutn

...

drain0 ...
drainm

fill0...
filln

Comb. Logic
Din0...
Dinm

Dout0...
Doutn

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 13 / 28

Verification
Our framework applies a hierarchical verification approach to formalizing
single transitions of circuit behavior (simulated by se and de functions).

The output and next state of a module are formalized using the
formalized outputs and next states of submodules, without delving
into details about the submodules.

Reasoning with highly non-deterministic behavior in self-timed systems is
very challenging.

Computing invariance properties in self-timed systems becomes much
more complicated than in synchronous systems.

We impose design restrictions to reduce non-determinism, and
consequently reduce the complexity of the set of execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 14 / 28

Verification
Our framework applies a hierarchical verification approach to formalizing
single transitions of circuit behavior (simulated by se and de functions).

The output and next state of a module are formalized using the
formalized outputs and next states of submodules, without delving
into details about the submodules.

Reasoning with highly non-deterministic behavior in self-timed systems is
very challenging.

Computing invariance properties in self-timed systems becomes much
more complicated than in synchronous systems.

We impose design restrictions to reduce non-determinism, and
consequently reduce the complexity of the set of execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 14 / 28

Verification
Our framework applies a hierarchical verification approach to formalizing
single transitions of circuit behavior (simulated by se and de functions).

The output and next state of a module are formalized using the
formalized outputs and next states of submodules, without delving
into details about the submodules.

Reasoning with highly non-deterministic behavior in self-timed systems is
very challenging.

Computing invariance properties in self-timed systems becomes much
more complicated than in synchronous systems.

We impose design restrictions to reduce non-determinism, and
consequently reduce the complexity of the set of execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 14 / 28

Self-Timed Modules

Self-timed modules can be
treated either as links or
joints.

Our framework currently
treats modules as “complex”
links.

⇒ Self-timed modules also
report both data and com-
munication states to the
joints connecting them.

We plan to explore a notion
of modules being treated as
“complex” joints in the fu-
ture.

D0

S0

D1

S1

CL

D2

S2

D3

S3

D4

S4

ready-in- ready-out

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 15 / 28

Self-Timed Modules

Self-timed modules can be
treated either as links or
joints.

Our framework currently
treats modules as “complex”
links.
⇒ Self-timed modules also
report both data and com-
munication states to the
joints connecting them.

We plan to explore a notion
of modules being treated as
“complex” joints in the fu-
ture.

D0

S0

D1

S1

CL

D2

S2

D3

S3

D4

S4

ready-in- ready-out

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 15 / 28

Self-Timed Modules

Self-timed modules can be
treated either as links or
joints.

Our framework currently
treats modules as “complex”
links.
⇒ Self-timed modules also
report both data and com-
munication states to the
joints connecting them.

We plan to explore a notion
of modules being treated as
“complex” joints in the fu-
ture.

D0

S0

D1

S1

CL

D2

S2

D3

S3

D4

S4

ready-in- ready-out

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 15 / 28

Design Restrictions

Design restrictions: A module is ready to communicate with other
modules only when it finishes all of its internal operations and becomes
quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 16 / 28

State Space Reduction

S0

...

...

...

...

Design restrictions

S0
...
... SI

...

...

...
SI SI

...

...

...

...
Sf

Initialization Loop invariant Exit

S0: initial state, SI: invariant state, Sf : final state
Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 17 / 28

Outline

1 Introduction

2 The DE System

3 Modeling and Verifying Self-Timed Circuits Using the DE System

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 18 / 28

32-Bit Self-Timed Serial Adder Verification

We demonstrate our framework by modeling and verifying the functional
correctness of a 32-bit self-timed serial adder.

We prove that the self-timed serial adder indeed performs the addition
under an appropriate initial condition.

When the adder finishes its execution, the result is proven to be the
sum of the two 32-bit input operands and the carry-in.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 19 / 28

Data Flow of a 32-Bit Self-Timed Serial Adder

Shift-Reg0
0 1

�
1
�

Shift-Reg1
0 1

�
1
�

Ci

1
�

A
1
�

B
1
�

+

Co
1
�

S
1
�

1
�

1
�

1
�

1
�

1
�

Shift-Reg2

32
�

App

33�

Result+1
5�

1
�

1
�

Cntl-State

5�

Cntl-State’
5
� Done- 015

�

go-a

go-b

go-buf-cntl

go-cntl

go-add

go-carry

go-s

go-result

M1

M2

Full

Full

Full

Full Full

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 20 / 28

Correctness Theorems

Theorem 1 (Partial correctness).

async serial adder(netlist) ∧ (1)
init state(st) ∧ (2)
(operand size = 32) ∧ (3)
interleavings spec(input seq, operand size) ∧ (4)
(st ′ = run(netlist, input seq, st, n)) ∧ (5)
full(result status(st ′)) (6)

⇒ (result value(st ′) = shift reg 0 value(st) +
shift reg 1 value(st) +
ci value(st))

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 21 / 28

Correctness Theorems

Theorem 2 (Termination).

async serial adder(netlist) ∧ (1)
init state(st) ∧ (2)
(operand size = 32) ∧ (3)
interleavings spec(input seq, operand size) ∧ (4)
(st ′ = run(netlist, input seq, st, n)) ∧ (5)
(n ≥ num steps(input seq, operand size)) (6′)

⇒ full(result status(st ′))

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 22 / 28

Outline

1 Introduction

2 The DE System

3 Modeling and Verifying Self-Timed Circuits Using the DE System

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 23 / 28

Future Work
We plan to prove the partial correctness of the self-timed serial adder
without specifying the interleavings of the go signals’ values. In other
words, we aim to remove Hypothesis 4 from Theorem 1.

For the termination theorem (Theorem 2), simply removing Hypothesis 4
will make the theorem invalid.

We need to add a constraint guaranteeing that delays are bounded in
order to prove Theorem 2 without having Hypothesis 4.

We also plan to investigate a notion of modules with joints at the
interfaces, where two modules are connected by one or more external links.

We intend to follow a hierarchical approach to prove module-level
properties of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 24 / 28

Future Work
We plan to prove the partial correctness of the self-timed serial adder
without specifying the interleavings of the go signals’ values. In other
words, we aim to remove Hypothesis 4 from Theorem 1.

For the termination theorem (Theorem 2), simply removing Hypothesis 4
will make the theorem invalid.

We need to add a constraint guaranteeing that delays are bounded in
order to prove Theorem 2 without having Hypothesis 4.

We also plan to investigate a notion of modules with joints at the
interfaces, where two modules are connected by one or more external links.

We intend to follow a hierarchical approach to prove module-level
properties of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 24 / 28

Future Work
We plan to prove the partial correctness of the self-timed serial adder
without specifying the interleavings of the go signals’ values. In other
words, we aim to remove Hypothesis 4 from Theorem 1.

For the termination theorem (Theorem 2), simply removing Hypothesis 4
will make the theorem invalid.

We need to add a constraint guaranteeing that delays are bounded in
order to prove Theorem 2 without having Hypothesis 4.

We also plan to investigate a notion of modules with joints at the
interfaces, where two modules are connected by one or more external links.

We intend to follow a hierarchical approach to prove module-level
properties of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 24 / 28

Future Work
We plan to prove the partial correctness of the self-timed serial adder
without specifying the interleavings of the go signals’ values. In other
words, we aim to remove Hypothesis 4 from Theorem 1.

For the termination theorem (Theorem 2), simply removing Hypothesis 4
will make the theorem invalid.

We need to add a constraint guaranteeing that delays are bounded in
order to prove Theorem 2 without having Hypothesis 4.

We also plan to investigate a notion of modules with joints at the
interfaces, where two modules are connected by one or more external links.

We intend to follow a hierarchical approach to prove module-level
properties of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 24 / 28

Conclusions

We have presented a framework for modeling and verifying self-timed
circuits using the DE system.

We model a self-timed system as a network of links communicating with
each other locally via handshake components, which are called joints,
using the link-joint model.

We also model the non-determinism of event-ordering in self-timed
circuits by associating each joint with an external go signal.

Our verification framework is able to establish loop invariants using
induction when the circuit behavior obeys the design restrictions we
propose.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 25 / 28

Conclusions

We have presented a framework for modeling and verifying self-timed
circuits using the DE system.

We model a self-timed system as a network of links communicating with
each other locally via handshake components, which are called joints,
using the link-joint model.

We also model the non-determinism of event-ordering in self-timed
circuits by associating each joint with an external go signal.

Our verification framework is able to establish loop invariants using
induction when the circuit behavior obeys the design restrictions we
propose.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 25 / 28

Conclusions

We have presented a framework for modeling and verifying self-timed
circuits using the DE system.

We model a self-timed system as a network of links communicating with
each other locally via handshake components, which are called joints,
using the link-joint model.

We also model the non-determinism of event-ordering in self-timed
circuits by associating each joint with an external go signal.

Our verification framework is able to establish loop invariants using
induction when the circuit behavior obeys the design restrictions we
propose.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 25 / 28

Conclusions

We have presented a framework for modeling and verifying self-timed
circuits using the DE system.

We model a self-timed system as a network of links communicating with
each other locally via handshake components, which are called joints,
using the link-joint model.

We also model the non-determinism of event-ordering in self-timed
circuits by associating each joint with an external go signal.

Our verification framework is able to establish loop invariants using
induction when the circuit behavior obeys the design restrictions we
propose.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 25 / 28

References

W. Hunt (2000)
The DE Language
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Academic Publishers
Norwell, MA, USA, 151 – 166.

M. Roncken, S. Gilla, H. Park, N. Jamadagni, C. Cowan, I. Sutherland (2015)
Naturalized Communication and Testing
ASYNC 2015, 77 – 84.

A. Slobodova, J. Davis, S. Swords, and W. Hunt (2011)
A Flexible Formal Verification Framework for Industrial Scale Validation
MEMOCODE 2011, 89 – 97.

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 26 / 28

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 27 / 28

Questions?

Cuong Chau (UT Austin) Asynchronous Circuit Verification May 22, 2017 28 / 28

	Introduction
	The DE System
	Modeling and Verifying Self-Timed Circuits Using the DE System
	32-Bit Self-Timed Serial Adder Verification
	Future Work and Conclusions

