
GLMC

Connecting ACL2 with Hardware
Model Checkers

Proving Invariants in Hardware Verification

● Inductive invariants are “easy” to prove
○ Provable by SAT for finite state machines
○ In ACL2, can use GL.

● Downsides:
○ Hard to find
○ Brittle, implementation-sensitive

● Model-checking proves invariants that aren’t necessarily inductive
○ Automatically searches for inductive invariant that implies the invariant you want.
○ Increasingly powerful algorithms: explicit state → BDDs → interpolation → PDR/IC3
○ Available in open source tools, e.g. ABC

GLMC Operation

● (User): Break down the problem. Parts:
○ Frame inputs
○ Next-state function
○ Invariant property
○ Initial state predicate
○ Constraints

● (GLMC): Express everything as Boolean functions
○ AIG representation

● Solve using external model checker
○ Configurable by attachment
○ ABC is a suitable open-source one
○ Or write one in ACL2 (and release it, please!)

Very Simple
Example

● Machine counts up modulo 10

● Inputs: reset, increment

● Want to know: never reaches 14
○ Not an inductive invariant!

(defun my-nextst (st incr reset)
 (b* (((when reset) 0)
 (st (lnfix st))
 ((unless incr) st)
 (next (1+ st))
 ((when (eql next 10)) 0))
 next))

(defund my-run-prop (st ins)
 (declare (xargs :measure (len ins)))
 (if (atom ins)
 t
 (and (not (equal st 14))
 (my-run-prop (my-nextst st (caar ins) (cdar ins)) (cdr ins)))))

(defthm my-run-prop-correct
 (implies (and (natp st)
 (< st 5))
 (my-run-prop st ins))) ;; Not inductive!

(defthm my-run-prop-correct
 (implies (and (natp st)
 (< st 5))
 (my-run-prop st ins))
 :hints ((glmc-hint
 :shape-spec-bindings `((incr ,(g-var 'incr))
 (reset ,(g-var 'reset))
 (st ,(g-int 2 1 5)))
 :state-var st
 :initstatep (< st 5)
 :nextstate (my-nextst st incr reset)
 :frame-input-bindings ((incr (caar ins))
 (reset (cdar ins)))
 :rest-of-input-bindings ((ins (cdr ins)))
 :end-of-inputsp (atom ins)
 :measure (len ins)
 :run (my-run-prop st ins)
 :state-hyp (and (natp st) (< st 16))
 :prop (not (equal st 14))
 :run-check-hints ('(:expand ((my-run-prop st ins))))

Hardware
Model-checking

with GLMC

module counter (input clk,
 input reset,
 input incr,
 output logic [3:0] count);

 always @(posedge clk) begin
 automatic logic [3:0] tmpcount = count;
 if (reset) begin
 tmpcount = 0;
 end else begin
 tmpcount = tmpcount + incr;
 end
 if (tmpcount == 10)
 tmpcount = 0;
 count <= tmpcount;
 end

endmodule

(Experimental!)

(defsvtv counter-step
 :mod *counter*
 :inputs '(("clk" 0 1)
 ("reset" reset _)
 ("incr" incr _))
 :outputs '(("count" count _))
 :state-machine t)

(define counter-run-step ((ins svex-env-p)
 (st svex-env-p))

 (b* (((svtv counter) (counter-step))
 (ins (make-fast-alist ins))
 ((mv (list step) (list nextst))
 (svtv-fsm-run-outs-and-states
 (list ins) st (counter-step)
 :out-signals '((count reset incr))
 :state-signals (list (alist-keys counter.nextstate)))))

 (mv (make-fast-alist step)
 (make-fast-alist nextst))))

(define counter-ok ((st svex-env-p)
 (ins svex-envlist-p))
 (b* (((when (atom ins)) t)
 ((svtv counter) (counter-step))
 (in (car ins))
 ((mv step nextst) (counter-run-step in st))
 (count (svex-env-lookup 'count step))
 (reset (4vec-zero-ext 1 (svex-env-lookup 'reset in)))
 (incr (4vec-zero-ext 1 (svex-env-lookup 'incr in)))
 ((unless (and (2vec-p reset)
 (2vec-p incr))) t)
 ((unless (and (2vec-p count)
 (not (equal (2vec->val count) 14))))
 nil))
 (counter-ok nextst (cdr ins))))

(defthm counter-is-ok
 (b* (((mv step &) (counter-run-step (car ins) st))
 (count (svex-env-lookup 'count step)))
 (implies (and (2vec-p count)
 (< count 5))
 (counter-ok st ins)))
 :hints ((gl::glmc-hint
 :state-var st
 :nextstate (b* (((mv & nextst) (counter-run-step in st)))
 nextst)
 :prop (b* (((mv step &) (counter-run-step in st))
 (count (svex-env-lookup 'count step)))
 (and (2vec-p count)
 (not (equal (2vec->val count) 14))))
 :constraint (and (2vec-p (4vec-zero-ext 1 (svex-env-lookup 'reset in)))
 (2vec-p (4vec-zero-ext 1 (svex-env-lookup 'incr in))))
 :initstatep (b* (((mv step &) (counter-run-step in st))
 (count (svex-env-lookup 'count step)))
 (and (2vec-p count)
 (< count 5)))
 :frame-input-bindings ((in (car ins)))
 :rest-of-input-bindings ((ins (cdr ins)))
 :end-of-inputsp (atom ins)
 :measure (len ins)
 :run (counter-ok st ins)
 :shape-spec-bindings `((in ,(gl::g-var 'in))
 (st ,(gl::g-var 'st)))
 :run-check-hints ('(:expand ((counter-ok st ins)))))))

Questions?
● Released soon
● Yes, the interface is baroque
● Generates counterexamples
● Works with GL term-level stuff
● Performance mostly depends

on backend model checker

